
Loation-Sale DepthIvan Mizera and Christine H. M�ullerAbstrat. The paper introdues a halfspae depth in the loation-sale model, along the linesof the general theory given by Mizera on the basis of the idea by Rousseeuw and Hubert, omple-mented by a new likelihood-based priniple for designing riterial funtions. The most tratableversion of the proposed depth, the Student depth, turns out to be nothing but the bivariatehalfspae depth interpreted in the Poinar�e plane model of the Lobahevski geometry. This fatimplies many fortuitous theoretial and omputational properties, in partiular equivariane withrespet to the M�obius group and favorable time omplexities of algorithms. It also opens a wayto introdue some other depth notions in the loation-sale ontext, for instane, loation-salesimpliial depth. A maximum depth estimator of loation and sale|the Student median|isintrodued. Possible appliations of the proposed onepts are investigated on data examples.1. IntrodutionThis paper proposes a notion of depth in the univariate loation-sale model and its possibleappliations. The new depth is introdued in Setion 3 as an instane of the general theory ofhalfspae depth elaborated by Mizera (2002) on the basis of the idea outlined by Rousseeuw andHubert (1999). This theory is omplemented in Setion 2 by a likelihood-based priniple fordesigning of riterial funtions in various statistial models.The ore of the paper, starting with Setion 4, is devoted to the most tratable version of thenew onept, the Student depth, and also to the maximum depth loation and sale estimatorbased on it, the Student median. After Setion 4, a asual reader may go diretly to Setion 8whih ontains several data-analyti examples. To avoid logial gaps, however, we suggest ratherKey words and phrases. Depth ontours; Exploratory data analysis; Loation-sale model; Median; M�obiusequivariane; Robust estimation.Ivan Mizera is Assoiate Professor, Department of Mathematial and Statistial Sienes, University of Alberta,Edmonton, Alberta, T6G2G1, Canada. Christine H. M�uller is Professor, Institute for Mathematis, Carl vonOssietzky University Oldenburg, Postfah 2503, D-26111, Oldenburg, Germany. The researh of Ivan Mizerawas supported by the Natural Sienes and Engineering Researh Counil of Canada, the researh of ChristineH. M�uller by the grant MU 1031/6-1 of the Deutshe Forshungsgemeinshaft during her sabbatial semester inEdmonton. Both authors thank all referees, the assoiate editor and the editor for onstrutive remarks that ledto removal of several ambiguities and helped to make the presentation more foused.1



2to read setions in their normal order: Setion 5 explores the underlying hyperboli geometry|it turns out that the Student depth is nothing but the halfspae depth in the Poinar�e planemodel of the Lobahevski geometry, inheriting all favorable properties of the bivariate loationhalfspae depth; Setion 6 studies equivariane properties with respet to the M�obius group;Setion 7 surveys some further statistial (asymptotis, robustness) and omputational fats.Conlusions and future diretions are briey summarized in Setion 9; the Appendix ontains allproofs. 2. Depth via likelihood-based riterial funtionsThe de�nition of the depth in general models is motivated by theoretial onsiderations witha deision-theoreti avor. Those are more thoroughly explained, together with details on theexamples onsidered below, by Mizera (2002); here we give only an aelerated overview.Our starting point are data omposed of datapoints zi (as usual, i = 1; 2; : : : ; n). For everydatapoint zi, we onsider a riterial funtion Fi; given a �t represented by #, the riterialfuntion Fi evaluates the lak of �t of # to the partiular datapoint zi. That is, we onsider ~#�tting zi better than #, if Fi(~#) < Fi(#).Suh riterial funtions may be derived from intuitive onsiderations. For instane, in linearregression with datapoints zi = (xi; yi), a natural hoie is Fi(#) = (yi � xTi #)2; or Fi(#) =jyi � xTi #j. Both hoies are equivalent, sine only the order on # imposed by Fi is essential.In the anonial example of the multivariate loation model onsidered by Tukey (1975), theriterial funtions may be either Fi(zi) = kzi � #k or their squares.General halfspae depth an be de�ned as a measure of data-analyti admissibility|the sim-plest version of this priniple, in the spirit of Rousseeuw and Hubert (1999), de�nes depth of #as the proportion of the datapoints whose omission auses # to beome a non�t, a �t than anbe uniformly dominated by another one. We refer again to Mizera (2002) for the more elabo-rate version of what is alled global depth therein, as well as for further tehnial details of itsproperties and in partiular its relationship to the more operational tangent depth, the result ofa transition from the optimality-based priniple to its �rst-order reformulation. A good anal-ogy is that of maximum likelihood presription, and the related estimating equation(s) obtainedby taking derivatives and equating them to zero. The equations are often equivalent to theoriginal optimization problem, but even if they are not, they generally represent an interestingpresription of their own.Taking derivatives in the optimization problem explains why the following de�nition involvesgradients r#Fi(#), in #, of the riterial funtions. In this paper, we de�ne the (tangent) depthof a �t # to be(1) d(#) = infu6=0=kfi : uT r#Fi(#) � 0g;where =k stands for the relative proportion in the index set|its ardinality divided by n. Wesuppress the dependene on the data in the depth notation. Tukey (1975) and others onsider



3ardinalities instead of proportions; however, it is a minor di�erene whether depth assumesvalues 0, 1, 2, : : : , n or 0, 1=n, 2=n, : : : , 1, and relative proportions allow for the uni�edtreatment of population distributions later. For the same reason, we use in (1) less intuitive\inf" instead of equivalent \min".In the linear regression example, we may work our way from substituting riterial funtionsFi(#) = 12(yi � xTi #)2 into the formula (1) to the standard expressions of the regression depth,d(#) = infu6=0=kfi : � uTxi(yi � xTi #) � 0g= infu6=0=kfi : uTxi(yi � xTi #) � 0g= infu6=0=kfi : uTxi sgn(yi � xTi #) � 0g= infu6=0=kfi : sgn(uTxi) sgn(yi � xTi #) � 0g;as de�ned by Rousseeuw and Hubert (1999). (In the spirit of the equivalene of riterial funtionsmodulo the order they impose, the fator 1=2 involved in Fi is merely a onveniene multiplier,to give the gradients a neat form �xi(yi � xTi #). The hoie Fi(#) = jyi � xTi #j yields the samedepth.)Similar alulations show the above-onsidered riterial funtions in the multivariate loationmodel lead to the standard de�nition of the halfspae depth: the minimal proportion of data-points lying in any losed halfspae whose boundary ontains #, or, equivalently, the minimalproportion of datapoints whose omission leaves # outside the onvex hull of the remaining ones.Note that in this speial ase datapoints zi and �ts # live in the same spae; generally, however,formula (1) de�nes depth of �ts, not datapoints.The theoretial innovation brought by the present paper is the use of likelihood onsiderationsfor designing riterial funtions. As a motivating example, onsider again the linear regressionmodel. In this model with i.i.d. Gaussian disturbanes (for simpliity with a �xed known saleset equal to one), the standard expression for the negative log of the likelihood reads� logL(#) = nXi=1 �12(yi � xTi #)2 + logp2�� :Apart from the onstant logp2�, whih does not depend on # and hene may be omitted, weobtained the sum of funtions of #, eah of them dependent only on one datapoint. Atually,they are idential with the riterial funtions we onsidered in the linear regression model.This suggests the following priniple: the negative log-likelihood for the i.i.d. model is al-ways a sum of ontributions eah involving one partiular datapoint; hene we may adopt theseontributions for riterial funtions. The priniple not only gives some additional justi�ationfor the instanes already known, but provides a vehile to move beyond the limits of intuitiveonsiderations that typially led to those. In this paper, we want to illustrate this thesis on a



4novel instane, the univariate loation-sale model. For other appliations of this priniple, seeM�uller (2003). 3. Loation-sale depthLet us think for a moment that datapoints yi are realizations of i.i.d. random variables witha density f , determined up to loation parameter � and sale parameter �. The form of theresulting negative log-likelihood, nXi=1 �� log f�yi � �� � + log�� ;suggests, aording to the just formulated priniple, riterial funtions(2) Fi(�; �) = � log f�yi � �� �+ log �:To avoid tehnial ompliations, let us suppose that f(�) > 0 for all � , the assumption satis�edby most distributions used in modeling loation-sale data. On substituting (2) into (1), weobtain the following expression for the depth:(3) d(�; �) = infu6=0=k 8>><>>:i : (u1; u2)0BB� (� log f)0�yi � �� ��� 1��(� log f)0�yi � �� ���yi � ��2 � + 1�1CCA � 09>>=>>; ;where the expression in the braes is interpreted in the spirit of formula (1) as the inner produtin matrix notation.We assumed � > 0 so far; to see what to do with � = 0, imagine all datapoints lying in a singlepoint ; for typial instanes of f , the formula (3) yields zero depth for all (�; �) with � > 0 insuh a ase. The likelihood philosophy suggests that � =  and � = 0 provide the single best �tfor the data then|and when � approahes 0, then the values of the riterial funtion tend to 0too. Therefore, it is natural to assign depth n=n = 1 to (; 0), and 0 to other values of (�; �).Let us introdue funtions  (�) = (� log f(�))0 = �f 0(�)=f(�) and �(�) = � (�), in analogywith M-estimation in loation-sale models as presented by Huber (1981). Starting from (3), wearrive after some algebra to the following de�nition.Definition 1. The loation-sale depth of (�; �) 2 R � [0;1), with respet to the data-points y1; y2; : : : ; yn from R, is(4) d(�; �) = infu6=0=k �i : (u1; u2)�  (�i)�(�i)� 1� � 0� ; for � > 0,= =kfi : yi = �g; for � = 0,where �i is a shorthand for (yi � �)=� and  and � depend on a �xed density f as spei�edabove.



5In order to eluidate the dependene on f , let us assume that f is stritly unimodal withmode 0, the assumption again satis�ed by many distributions used in modeling loation-saledata. Together with the requirement that f is everywhere positive, this assumption implies thatsgn( (�)) = sgn(�). Let �(�) = �= (�) for � 6= 0; for � = 0, set �(0) = lim inf�!0 �(�). (In allpratial ases � has a limit at 0; for what follows, it is important only that �(0) > 0.)Theorem 1. If sgn( (�)) = sgn(�) and �(0) > 0, then the loation-sale depth is equal to(5) d(�; �) = infu6=0=k �i : (u1; u2)� �i� 2i � �(�i)� � 0� ; for � > 0,= =kfi : yi = �g; for � = 0,where �i has the same meaning as in De�nition 1 and � relates to  , � and f as spei�ed above.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

0

5

10

15

20

25

τ

Student
Logistic
Slash
Laplace

Figure 1. Illustration to Theorem 1: the plot of � 2 � �(�) against � for variousf : t (inluding Gaussian), logisti, slash, Laplae.The dependene on f still remains, but Theorem 1 redued it to a single term � 2��(�), shownin Figure 1 for various f . The simplest form �(�) = 1 orresponds to f equal to the standardGaussian density, as well as to all distributions from the t family; other hoies are f logisti,slash, and Laplae (double-exponential). The slash version is plotted multiplied by two, whihorresponds to a simple reparametrization � 7! �=2.Figure 2 shows the ontours of loation-sale depth for f set equal to t, logisti and slashdensity, using the same dataset for all three plots. All three panels appear qualitatively similar,although this may not be always the ase; see Setion 9. The plots of depth ontours bear somevisual similarity to \Tukey's graphial method of omputing Hodges-Lehmann estimate"; seeFig. 13 of Fisher (1983) and the related referenes therein.To gain �rst insights, we may look at simpli�ed models obtained by regarding one of theparameters as a onstant. In the �rst of those models, � is �xed and � free. After analogous



6
535 540 545 550 555 560 565 570 575 580 585

0

5

10

15

20

25

µ

σ

Student (and Gaussian) 535 540 545 550 555 560 565 570 575 580 585
0

5

10

15

20

25

µ

σ

Logisti 535 540 545 550 555 560 565 570 575 580 585
0

5

10

15

20

25

σ

µSlashFigure 2. Contours of the loation-sale depth for di�erent f , using the samearti�ial dataset. The ontours were obtained by omputing depth for a �ne gridof values; note qualitative similarity, but also possible di�erenes.steps as above, we obtain that the loation likelihood depth is, for given f ,(6) d�(�) = infu6=0=k �i : u �yi � �� � � 0� :For any stritly unimodal f , we have sgn( (t)) = sgn(t); this onverts (6) to the usual de�nitionof univariate loation depth(7) infu6=0=kfi : u sgn(yi � �) � 0g = minf=kfi : yi � �g;=kfi : yi � �gg:Note that d�(�) does not depend on �.The seond simpli�ed model has � �xed and � free. The resulting sale depth isd�(�) = infu6=0=k �i : u ���yi � �� �� 1� � 0�= min�=k �i : ��yi � �� � � 1� ;=k �i : ��yi � �� � � 1�� :(8)If f is unimodal, then �(t) � 0. If, moreover, �(�) dereases when � < 0 and inreases when� > 0 (this often holds|always if  is monotone) and is symmetri (whih is the ase when f issymmetri), then there is k suh thatd�(�) = minf=kfi : jyi � �j � k�g;=kfi : jyi � �j � k�gg:When f is taken to be the density of standard Gaussian, t or Laplae distribution, then k = 1and � has depth zero if and only if [��; �℄ ontains either all datapoints or no datapoint. Thedepth depends on � now; the �t with maximal sale depth orresponds to the quantity knownas median absolute deviation (MAD) about the �xed loation �.The extension of all the depth notions to general probabilities and even measures is straight-forward: the proportion of the sample points in a given set is replaed by the measure of this



7set. The de�nition for �nite samples is embedded into the general sheme via empirial proba-bilities. For the spei� details of the appliation of this well-known priniple, see Mizera (2002)or Rousseeuw and Hubert (1999).Theorem 2. The loation-sale, loation (likelihood), and sale depths satisfy for all � and �,(9) d(�; �) � d�(�) and d(�; �) � d�(�);for any given measure P (inluding any empirial probability supported by �nite-sample data).4. The Student depth and its appliationsOur approah to likelihood-based proedures is rather operational: we do not �rmly believe inthe postulated model, but rather use it as a guideline to derive a proedure possibly appliable ina wider ontext. De�nition 1 introdues not one, but a family of depths, depending on the hoieof the underlying density f . Among these densities, all with similar unimodal shape, we favorthose possessing better tratability and omputability than others. It annot be said that wepay no attention to the modeling realism, but our fous is rather on the �nal result than initialpremises; one the proedure is derived, we tend to forget the initial parametri assumptions,and rather investigate its behavior in the broader ontext. Suh an attitude is not new|justreall the approah of Huber (1967) to maximum likelihood estimation, for instane.It is hardly that unexpeted that the most tratable version of loation-sale depth is thatinvolving the standard Gaussian density f . In suh a ase,(10) d(�; �) = infu6=0=k �i : (u1; u2)� �i� 2i � 1� � 0� :It is tempting to think that what we deal here with is just the bivariate loation depth withrespet to the datapoints lifted on a parabola|but one has to keep in mind that �i depend on� and �, so when the parameters hange, the position of lifted points hanges too.Interestingly, the same depth is obtained when f is taken to be the density of any t distributionwith � degrees of freedom:d(�; �) = infu6=0=k �i : (u1; u2)� �i��+1(� 2i � 1)� � 0� ;the equality to (10) follows after absorbing the onstant �=(�+1) into the u term. This suggeststhat we may view the standard Gaussian distribution as t with � =1 here.In fat, formula (10) allows for a uni�ed treatment of all �, without a need to onsider thease � = 0 separately. To this end, note that, still formally assuming � > 0, we an rewrite (10)as d(�; �) = infu6=0=k �i : �u1� ; u2�2�� (yi � �)(yi � �)2 � �2� � 0� :



8Definition 2. The Student depth of (�; �) 2 R � [0;1), with respet to a (probability)measure P on R is(11) d(�; �; P ) = inf(u1;u2)T 6=0P �y : u1(y � �) + u2 �(y � �)2 � �2� � 0	 :The Student depth with respet to the data y1; y2; : : : ; yn is obtained by applying the de�nitionto the empirial probability measure Pn supported by the datapoints.Although the de�nition is formulated for general measures this time, we may return bakto the more omprehensible sample notation, and also suppress the dependene on P or Pn inthe notation and write simply d(�; �), if no onfusion may arise. All theorems formulated forsamples remain valid in the more general setting, with proportions (here denoted by =k) replaedby appropriate measures.What are the possible data-analyti uses of the new onept? The onstantly growing literatureon the subjet reords numerous appliations of various brands of multivariate loation depthand a growing number of the appliation of the regression depth. Thus, some �rst observationsan be made along the general lines.One important diretion are maximum depth estimators|deepest �ts. They an be onsideredas medians in the underlying models, sine in the univariate loation ase, the deepest �t is thesample median. Starting from the Tukey median in the multivariate loation model, it is quiteremarkable how the known instanes �t the mosai; for instane, the median harater of thedeepest regression is quite evident from Rousseeuw and Hubert (1999), Van Aelst, Rousseeuw,Hubert, and Struyf (2002).Maximum depth estimators have a few handiaps, possessed already by their univariate samplemedian prototype. There may be problems with the uniqueness of the deepest �t|formally it ismore appropriate to de�ne themaximum depth estimator as the set of all deepest �ts. In theunivariate ase, this ambiguity may be resolved by taking the midpoint of the median interval;analogous strategies in more sophistiated models are more demanding, but not prohibitively.Depth an also be used in various testing appliations, as those of Rousseeuw and Struyf (2002);a nie general perspetive in the multivariate loation ontext was given by Chaudhuri andSengupta (1993). The maximal depth attained in the partiular setting often plays a prominentrole here, but this would require onsiderable theoretial development.What we �nd more appealing is that the very speial feature of the present ontext|the two-dimensionality of our parametri spae|allows for graphial representation of depth ontours.For any Æ 2 [0; 1℄, we de�ne, abusing slightly the language, the depth ontour to be the setof (�; �) suh that d(�; �) � Æ. Trivially, the ontours are nested: the ontour orresponding toÆ1 is ontained in that orresponding to Æ2 whenever Æ1 � Æ2. In the bivariate loation model,the plot of depth ontours an be viewed as a generalization of quantile plotting|this line ofappliations aompanied depth from its very beginning, see Tukey (1975), Donoho and Gasko(1992), or Rousseeuw, Ruts, and Tukey (1999).



9
Figure 3. Poinar�e plane: the horizontal axis orresponds to �, the vertial to �,the solid line with datapoints is the line � = 0. The shaded areas ontain pointswith the Student depth 1=6 (lighter) and 2=6 (darker) for this arti�ial datapoints.The sensitivity of depth ontours to the distribution of the data suggests using them as atool for assessing distributional assumptions. In the style of Chapter 6 of Chambers, Cleveland,Kleiner, and Tukey (1983), we tried to explore how muh the plots of the Student depth ontoursmight omplement and enhane the use of quantile plots, sharing with them the similar inisiveharater (ompared to histograms and related methods) and the lak of need for elaboratetuning (ompared to density estimation). Some examples in this vein are studied in Setion 8.5. The Lobahevski geometry of the Student depthIt turns out that the Student depth is nothing but the bivariate loation halfspae depth inthe Poinar�e plane model of the Lobahevski hyperboli geometry. To explain this adequately,we have to introdue several notions from non-Eulidean geometry; the reader wishing to getmore thorough understanding is advised to onsult, for instane, Greenberg (1980).What we will all the Poinar�e plane here is the halfplane PP = R � [0;1), the parametrispae for (�; �). A Poinar�e line ` in PP is an objet whih is either a haline � = onst,� � 0, or a hemiirumferene whose enter lies on the line � = 0. The omplement of ` in PPonsists of two onneted omponents; their respetive unions with ` form two (losed) Poinar�ehalfspaes with boundary `. The (Poinar�e) points are simply points in PP; we onsider themlying in a Poinar�e halfspae or on a Poinar�e line if they belong to them in the usual set-theoretisense. (For a onnoisseur, our version of the Poinar�e plane inludes also the ideal points on theline � = 0, but not the 1 endpoint of all vertial Poinar�e lines.)Figure 3 demonstrates how the sample spae, the home of datapoints, is embedded into thePoinar�e plane, the home of parameters (�; �). The Poinar�e lines onneting the datapointsdelineate the orresponding Poinar�e halfspaes; the shaded areas indiate ontours with thedepth 1=6 and 2=6. The dashed line shows the vertial type of Poinar�e line; its � oordinate isthe midpoint of the interval of sample medians.Theorem 3. The Student depth of (�; �) is the minimal proportion (in�mum of measure Pin the general ase) of datapoints yi that lie in any Poinar�e halfspae with the point (�; �) on



10

Figure 4. The Student depth an be alulated with a right-angle triangularruler only. The ruler revolves with the vertex plaed in the point whose depth isomputed (arbitrary values of �, but only nonnegative values of � are onsidered);the number of points inside and outside is reorded; the minimum of all thosedivided by n gives the value of depth.its boundary; or, equivalently, the minimal proportion of datapoints yi that lie in any Poinar�ehalfspae ontaining the point (�; �).The seond part of Theorem 3 establishes a link to the de�nition of the halfspae depthoriginally given by Tukey (1975). It turns out that the Lobahevski geometry happens to bethe luky hoie among the non-Eulidean ones: still possessing parallels, albeit possibly in anon-unique fashion. The rewarding outome is the haraterization of ontours: a ontour onlevel Æ is the intersetion of all Poinar�e halfspaes whose measure P is greater than 1 � Æ; insample ases that means halfspaes ontaining at least n� dnÆe + 1 datapoints yi.Figure 4 shows how the Student depth an be alulated (for smaller data sets, obviously) inthe spirit of Tukey (1977): just with the help of a right angle triangular ruler (and perhaps apenil to reord the ounts). By the Thales theorem, the set of points on the line � = 0 lying inthe irle irumsribing (yi; 0), (yj; 0) and (�; �) is the same as the set of points lying in the rightangle with the vertex (�; �) and sides passing through (yi; 0) and (yj; 0). In view of Theorem 3,one has just to revolve the ruler with its right angle vertex positioned at (�; �), starting andending with the position when one leg is perpendiular to the line � = 0 ontaining datapoints,ount the number of points in and outside the angle (inluding in both ases those lying on thesides), and eventually take the minimum of all ounts.It may be of some interest that the hyperboli geometry of the Student depth oinides withthe Riemannian geometry generated by the Fisher information matrix, the so-alled informationgeometry introdued by Rao (1945) and Je�reys (1946); see Kass and Voss (1997).
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Figure 5. The on�guration from Figure 3 transformed, as spei�ed by (13) and(14), to the Poinar�e (left) and Klein (right) disks.It is useful to invoke also other models of the Lobahevski geometry. The right panel of Figure 5shows the Klein disk K D where lines are represented by hords of the boundary irumferene;this model allows for better thinking in usual Eulidean-geometri terms, without a need to hekevery move from the axioms. The transitory model is the Poinar�e disk PD , shown in the leftpanel of Figure 5, whose lines are ars interseting the boundary irumferene in the right angle.After transforming data and parameters into the Klein disk, the Student depth redues to thestandard bivariate halfspae depth, with the added advantage that all datapoints are extremalpoints of their onvex hull.Theorem 4. The Student depth satis�es for any probability measure P :(i) for all (�; �), d(�; �) � (P (f�g) + 1)=2; in partiular, if P has ontinuous umulativedistribution funtion, then the depth never exeeds 1=2; also, if no two points in a sample oinide,then the upper bound on the depth is (n + 1)=(2n) for n odd, and 1=2 = n=(2n) for n even;(ii) all depth ontours are onneted and losed; they are ompat for Æ > 0;(iii) if P has onneted support and its umulative distribution funtion is ontinuous, thenthere is a unique (�; �) with the maximal depth;(iv) there is (�; �) suh that d(�; �) � 1=3 (enterpoint theorem).A word of aution is appropriate here. The Poinar�e lines and halfspaes in the Klein diskoinide with those in the ordinary Eulidean geometry sense; but this oinidene does notextend to notions like length or volume. Congruent segments in hyperboli geometry may notpossess the same Eulidean length; in partiular, the hyperboli distane of any point on theboundary of the Klein disk to any point inside it is in�nite. This means that the realizationof the potential strategy \transform to Klein|alulate depth|transform bak" may be farfrom obvious, if the depth notion in the middle step is based on the distane or volume|as, for



12instane, the Oja simpliial volume depth or Mahalanobis depth, both surveyed by Liu, Parelius,and Singh (1999), or the various L1 depth versions presented by Zuo and Sering (2000a), Vardiand Zhang (2000), or Sering (2002).The aforementioned strategy is, however, possible for depth notions that are, like the halfspaedepth, independent of metri onepts. Suh notions inlude simpliial and majority depth; seeLiu et al. (1999). For instane, it is fairly lear what is a triangle in the Lobahevski geometryand when a point lies inside it|and this is all we need for a de�nition along the lines of Liu (1988,1990). We de�ne the loation-sale simpliial depth of (�; �) to be the number, divided by�n3�, of all triangles ontaining (�; �) whose verties are datapoints. The population version anbe de�ned aordingly. The transformation argument shows that this simpliial depth inherits allfavorable properties of the two-dimensional loation one, in partiular the qualitative propertiesof ontours and the U-statistial struture in the asymptotis, as eluidated by D�umbgen (1992)and Arones, Chen, and Gin�e (1994). The loation-sale simpliial depth ontours, for the samedataset used for Figures 2 and 12, are shown in Figure 6; unlike halfspae depth, the simpliialdepth assumes quite a large range of values|we outlined only about every tenth ontour.
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Figure 6. The loation-sale simpliial depth assumes quite a large range ofvalues|only every tenth ontour is shown. (The dataset is the same arti�ialone as used in Figure 2.)6. The M�obius equivariane and the Student medianThe de�nition of the loation-sale likelihood depth implies that it is loation and sale equi-variant: if we apply a transformation g(y) = ay + b on the datapoints, then the depth of thetransformed parameter (a�+ b; a�) is the same as that of (�; �). This translates to loation andsale equivariane of the deepest loation and sale, a property shared by many loation andsale estimators. However, the Student depth o�ers more: it is equivariant with respet to thelarger M�obius group group ontaining all rational transformations g(y) = (ay+ b)=(y+ d) with



13ad� b 6= 0. This fat may be utilized, for instane, when the transition to reiproal values mayour.We follow MCullagh (1996), who formulated and showed M�obius equivariane for the Cauhyloation-sale maximum likelihood estimators, also in the use of omplex numbers as a onvenientformalism. Our parametri spae, the Poinar�e plane, is quite naturally identi�ed with the upperomplex halfplane; we further extend it to the whole omplex plane adding the reetion alongthe horizontal axis and identifying omplex onjugates. The sample spae remains embedded asthe real line into the omplex plane. MCullagh (1996) alls a statisti T M�obius equivariant ifit is equivariant with respet to the M�obius group of the transformations: T (gy) = �gT (y), where�g is the transformation of the omplex plane given by the same formula as g, but interpreted inthe omplex domain, and equality is up to omplex onjugation; gy is understood as g appliedoordinate-wise on the olletion of datapoints onstituting y.Theorem 5. The Student depth satis�es, for any probability measure P and any g in theM�obius group,(12) d(�; �; P ) = d(��; ��; �P );where �P = P Æ g�1 denotes the transformation of P under g, and (��; ��) is, up to omplexonjugation, the image of (�; �) under �g.The proof uses the fat that the M�obius group is generated by linear transformations andthe reiproal transformation 1=y. The equivariane of the Student depth under linear transfor-mations is quite apparent; it is only the equivariane under the reiproal transformation thatneeds to be demonstrated. The latter follows by the transformation to the Poinar�e or Kleindisk, where 1=y ats as omplex onjugation|symmetry about horizontal oordinate line|andthen by the subsequent transformation bak. In the omplex notation, the isomorphisms betweenPoinar�e models are given by the formulas(13) PP ! PD : z 7! i z � iz + i = 1 + izi + z ; PD ! PP : z 7! i i + zi� z = iz � 1i� z :The formula for the mapping from PD to K D shows that the diretion is unhanged and altersonly the absolute value by a fator 2=(1 + jzj2); its inverse analogously multiplies the absolutevalue by (1� jzj)=jzj2:(14) PD ! K D : z 7! 2z1 + jzj2 = 2z1 + z�z ; K D ! PD : z 7! z(1� jzj)jzj2 = 1�pz�z�z :We an see in Figure 5 that the Poinar�e plane \in�nity line" � = 0 wraps on the boundingirumferene, with zero positioned at its lowermost point; approahing �1 and 1 in thePoinar�e plane means approahing, from left and right, respetively, the hollow uppermost pointin the image, the endpoint of the transformed dashed line from Figure 3.The M�obius equivariane of the Student depth entails the same equivariane for the maximumStudent depth estimator, whih we propose to be alled the Student median. It is de�ned as



14the set of � and � having the maximal depth for given data. Its M�obius equivariane impliesthat it always ontains the enter of symmetry whenever the distribution is symmetri. Sinethe (standard) Cauhy distribution is invariant under the reiproal transformation, its Studentmedian satis�es � = 0 and � = 1 (as on�rmed by the Cauhy panel of Figure 7). For randomsamples from the Cauhy distributions, the Student median estimates the same quantity as themaximum likelihood estimator: the enter of symmetry{median for �, and the median absolutedeviation (MAD) about the median � for �. For symmetri distributions, the MAD is equalto the semiinterquartile range|the probable error of MCullagh (1996), who gave losed-formformulas for the maximum Cauhy likelihood estimator when n = 3; 4; in those speial ases, thisestimator oinides with the Student median. On the basis of the formula for n = 4, MCullagh(1996) suggests that maximum Cauhy likelihood may be an appealing loation-sale estimatorfor very small data sets; this reommendation thus transfers to the Student median as well. Formore disussion on estimating loation and sale in very small datasets, see Hoaglin, Mosteller,and Tukey (1983) and Rousseeuw and Verboven (2002).The examples in Setion 8 suggest that the loation � of the Student median lies relatively loseto the sample median|in partiular for data exhibiting symmetry, onsistently with theoretialexpetations. For asymmetri unimodal distributions, we may observe that the Student medianloation � shrinks from the sample median toward the mode. We observed also that the Studentmedian sale � is usually shrunk down from the MAD. However, we have no exat justi�ationfor any of these laims; we an only prove that the maximal Student depth at the sample medianis never too low.Theorem 6. If � is a median of the probability measure P , then max� d(�; �) � 1=4.7. Theoretial and omputational propertiesThe notions introdued in the previous setions raise many theoretial questions whose detailedstudy is beyond the sope of this paper; we just try to survey properties that are either knownor do not require substantial tehnial e�ort. In aord with our philosophy stated above, weassume only a general probabilisti model for the data (if any): we onsider our datapointsto behave as outomes of independent random variables with the same distribution P . Thereare many properties that may hold beyond this simplest i.i.d. sampling model, but thoseextensions are not pursued here. Let Pn denote the orresponding empirial probabilities.Theorem 7. The Student depth satis�es, for any probability measure P : under the i.i.d.sampling model, d(�; �;Pn)! d(�; �; P ) uniformly in (�; �) almost surely.Theorem 7 implies the onvergene of depth ontours via Theorem 4.1 of Zuo and Sering(2000b), whih extends the results of He and Wang (1997). In partiular it holds almost surelythat DÆ+" � DÆn � DÆ�" for suÆiently large n, uniformly in Æ 2 [0; 1℄ for every " > 0; here DÆ =f(�; �); d(�; �; P ) � Æg and DÆn is de�ned similarly by replaing P by Pn. Another onsequene



15is the almost sure onvergene of the maximal depth and the maximum depth estimators. Thelatter holds under some regularity onditions on the depth funtion d(�; �; P ), for instane, theondition that the set of maximum depth is a singleton; see Theorem 2 in Mizera and Volauf(2002).The asymptoti distribution theory of maximum depth estimators is a topi still under intenseinvestigation|see He and Portnoy (1998), Bai and He (1999), Mass�e (2002, 2004). The standardpn rate of onvergene an be established in all known instanes|inluding the Student median(Benô�t Laine, personal ommuniation, Deember 2003). However, the exat expressions forthe asymptoti distributions and even asymptoti varianes are yet unknown (exept when thedimension of the parametri spae is one). Simulations, like those performed by He and Portnoy(1998), indiate reasonable eÆienies, at least for low-dimensional parametri spaes.The results of Mizera (2002) imply, in view of the enterpoint theorem for the Student depth,that the breakdown point of the Student median is not less than dn=3e. This means onsiderablerobustness (although ertainly not the highest possible). The inuene funtion in loation andregression ase was derived by Chen and Tyler (2002) and Van Aelst and Rousseeuw (2000); wedo not attempt the appliation of the similar tehniques, albeit we believe it possible.An important theoretial question, related to the use of the Student depth for investigatingdistributional properties, is whether every probability measure on a real line is haraterized byits Student depth funtion. Although the positive answer is likely, the problem is in generalopen. The transformation argument implies that the answer is positive for empirial and atomidistributions, via the results of Struyf and Rousseeuw (1999) and Koshevoy (2002); we believethat the tehnique of Koshevoy (2001) an be adapted to extend the haraterization for allabsolutely ontinuous distributions.Aording to Theorem 3, the omputation of the ontour with the depth Æ = k=n amounts to�nding an intersetion of all halfspaes ontaining at least n�k+1 points. In the Klein disk, thatmeans �nding the intersetion of n halfspaes whose boundary ontains i-th and (i+k)-th point,in the irular order. After onstruting the initial polygon, the update for a new halfspae isthe \stabbing of a onvex polygon" problem, as desribed in Setion 7.9.1 of O'Rourke (1998).Sine this needs O(logn) steps, the omputation of the whole ontour needs O(n logn) steps.In addition to the stabbing of the polygon, one has to determine the orret orientation of theintersetion, to identify the orret halfspae; however, this does not inrease the time omplexity.The time omplexity O(n logn) for one ontour translates trivially to that of O(n2 logn) for allontours (for graphial purposes this is overly pessimisti, sine the number of required ontoursis usually limited by the graphial resolution of the output devie). The reason why omplexitiesO(n logn) for one and O(n2 logn) for all ontours are better than O(n2 logn) and O(n3 logn),reported by Ruts and Rousseeuw (1996) for the bivariate loation depth, is that the data inour situation onsist entirely of datapoints that are extremal points of their onvex hull. Thisonsiderably simpli�es the algorithms for the bivariate loation depth.



16Miller et al. (2003) developed an O(n2) algorithm for simultaneous omputing of all loationhalfspae depth ontours. The transformation argument implies that via their algorithm we mayompute all Student depth ontours in O(n2) time as well. We do not know yet whether thisomplexity an be improved in our speial situation; note that O(n logn) is the best possibleomplexity if a problem requires initial sorting of the data.Thus, we may onlude that the Student depth enjoys theoretial time omplexities of the sameor better order than all the ases mentioned above. While the transformation priniple providesa theoretial argument, it is better in pratial omputations to perform all neessary operationsdiretly in the original Poinar�e plane, to avoid rounding errors arising in transforming to andfrom the Klein disk.It turns out that vertial Poinar�e lines are not needed. An intersetions of Poinar�e halfspaesan be aomplished by taking maxima and minima of the hemiirumferene funtions � =((�� y)(~y � �))1=2. Let y(1) � y(2) � � � � � y(n) denote the ordered datapoints. For � satisfyingy(k) � � � y(n�k+1), we de�ne�k (�) = maxn�(�� y(i))(y(i+k) � �)�1=2 : i 2Mk(�)o ;(15) +k (�) = minn�(�� y(i))(y(n�k+i) � �)�1=2 : i = 1; 2; : : : ; ko ;(16)where i 2Mk(�) means that y(i) are the k largest datapoints suh that y(i) < �.Theorem 8. Let y(1) � y(2) � � � � � y(n) be the ordered datapoints. For given Æ, the ontourof the Student depth is the set of all (�; �) suh that for k = dnÆe,y(k) � � � y(n�k+1) and �k (�) � � � +k (�):Analogously, for general P with the umulative distribution funtion F (y) = P ((�1; y℄), wede�ne for � satisfying Æ � minfF (�); 1� F (�)g,�Æ;P (�) = supn((�� q�)(qÆ+� � �))1=2 : � 2 (F (�)� Æ; F (�))o ;(17) +Æ;P (�) = inf n((�� q�)(q1�Æ+� � �))1=2 : � 2 (0; Æ)o ;(18)where q� = minfy 2 R : F (y) � �g is the �-quantile of P . Note that if P is an empirialdistribution, (17){(18) redue to (15){(16).Theorem 9. Let P be a probability measure with the umulative distribution funtion F . Forgiven Æ, the ontour of the Student depth is the set of all (�; �) suh thatÆ � minfF (�); 1� F (�)g and �Æ;P (�) � � � +Æ;P (�):If the distribution is symmetri about �0, then the depth ontours are also symmetri about�0. If there is a unique deepest point (�; �), then � must be equal to �0, and Theorem 9 yieldsthat � = �Æ;P (�) = +Æ;P (�), where Æ is the depth of (�; �). Aording to Theorem 4(iii), the



17deepest point is unique, for instane, if P has onneted support and its umulative distributionfuntion is ontinuous.
8. Data examples: the Student depth in ationWe analyzed several univariate datasets to illustrate the diretions formulated at the end ofSetion 4. The entral objet of our analyses was the plot of the Student depth ontours. Forsmall datasets, we plotted also the original datapoints; this is not pratial for larger samples.Aording to the visual desiderata formulated by Cleveland (1994), it may be desirable to plotonly seleted ontours. Indeed, aording to our limited experiene, a smaller number of ontoursis often better; an extreme possibility is to onstrut a kind of \Student boxplot" and plot onlythe ontours with the depth of approximately 1=4, 1=2 and 3=4 of the maximal one (and possiblyalso the �rst depth ontour by a dotted line or so). Another possibility is to render prinipalontours by thiker lines and several other ones by thinner ones, or indiate the intermediateontours just by shading. The position of the Student median is indiated by \�"; we alsoreport the maximal attained depth. We are still in the proess of experimenting what graphialappearane would be ideal for the Student depth plots; to help our readers to form their ownpreferenes, we do not present our plots in a uniform style, but rather with minor alterations.We also plot some additional information. The dashed line indiates the sale � with themaximal depth among (�; �) for a �xed �. The dotted line plots the median absolute deviationfrom � against this �; the speial ase when � is the sample median is marked by \+".Chambers et al. (1983) analyze the distribution of their datasets by the quantile plots of theoriginal and transformed data, a well-known tehnique now|the empirial quantiles are plottedagainst the quantiles from various theoretial distributions, most prominently the Gaussian;this allows for penetrating omparisons of observed and theoretial distributions. Loation-saledepth ontours plots do not possess a spare dimension, hene our omparison strategy shouldbe di�erent: we ompare the observed Student depth ontours visually to the theoretial onesplotted for the hypothesized distribution. Due to the loation and sale equivariane, we do nothave to estimate loation and sale parameters|this is an advantage to quantile plots, where,exept for the Gaussian ase, some value of the sale has to be spei�ed.To obtain an initial sampler of theoretial depth ontours, we plotted them for seleted dis-tributions; the results an be seen in Figures 7 and 8. (In future implementations, we hope topossess an ability to reate \model shapes" interatively.) Note that, in partiular, the Cauhydistribution is the only one among the displayed distributions with the maximal depth equal to1=2 (the maximal depth 1=2 an be easily proved for the Cauhy distribution rigorously, via The-orem 9). The pitures indiate that di�erent distributions reate di�erent harateristi shapes.The �rst question is how far those will reveal themselves in the sampled data.
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20Example 1. Simulated Gaussian/Cauhy mixtures. To assess this, we start by anarti�ial example. Two Gaussian/Cauhy mixtures were simulated: the �rst ontained 35 data-points generated from the Gaussian and 10 from the Cauhy distribution; the seond 10 Gaussianand 35 Cauhy datapoints. Thus, the mixing proportions are the same, only the �rst sampleis majority Gaussian and the seond majority Cauhy. The ontour plots for both samples aredisplayed in the left and right sides of Figure 9, respetively.Normal quantile-quantile plots are added in the middle of the �rst row, to be ompared withthe ontour plots in terms of visual impression. The latter is, in our opinion, quite similar forboth samples; they exhibit outliers and/or heavier tails. In a real situation, we would not haveany a priori information about the sale, so the di�erent slope of the line is not deisive. Theonly lue is perhaps that the outliers of the majority Cauhy sample are onsiderably wilder andperhaps slightly more transparent. The latter appears also to be more linear in the middle ofthe sample.The �rst row exhibits also the Student depth ontours of the sampling distribution mixtures.It is surprising how a majority of approximately 2/3 dominates the shapes of the ontours. Theontour shapes of the leftmost resemble the Gaussian ones from Figure 7; those in the rightmostthe Cauhy ones.The seond row of Figure 9 shows the Student depth ontours for the simulated data. In theraw form they are not very informative; it is muh better to look at the deeper ontours undersome magni�ation. (The ability of onvenient resaling, as well as of ontrolling the aspet ofaxes, may be an important requirement for the potential routine use of these plots.) The resultsare shown in the third row of Figure 9. The samples exhibit onsiderable reprodution of thetheoretial pattern of the �rst line for a relatively small sample size, in partiular the majoritydistribution pattern (Gaussian and Cauhy, respetively) is revealed.Of ourse, the question is whether all the plots are not merely an artifats of the simulation.This is hard to dispute: due to spae onstraints, we annot show a large number of simulations,and a quantitative measure of overall similarity is not available. Nevertheless, the last row ofFigure 9 presents, as a kind of ompromise, the (inner) Student depth ontours of three additionalsimulations from eah mixture. (We observed muh better agreement for the doubled samplesizes 70 and 20.)A possible objetion to any methodology like this one is that it requires a onsiderable training.We do not deny this, we only remark that the amount of the required investment may be in theeye of beholder. In partiular, our teahing experiene reminds us often that even seeminglyobvious proedures like quantile plots are not pereived neessarily as suh by beginners.Example 2. Seeded rainfall data. In this example, we reate a sequel to the story begunby Chambers et al. (1983). They end by the onlusion that rather than the gamma distributionfor the datapoints yi, proposed by the earlier authors ited therein, the better �t is ahieved



21by the Gaussian distribution �tting y0:12i . This onlusion is drawn from the straightness of theorresponding normal quantile-quantile plot, shown in the left panel of Figure 10.Chambers, Cleveland, Kleiner, and Tukey did not routinely use the standard method of �t-ting the line to the quantile-quantile plot through the quartile points (they have only one ortwo pitures with it in their book), sine probably they would see then that the plot indiatessomewhat heavier tails than Gaussian. Apparently, the power transformation symmetrizes, butnot neessarily normalizes the data.
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Figure 9. 35:10 and 10:35 Gaussian/Cauhy mixtures. Patterns or artifats?



22Alternatives oming to mind are the t distributions, but also several others. We ould try aouple of quantile plots; instead, a faster way is to ompare the Student ontour plot, in themiddle panel of Figure 10, with Figure 7. This omparison turns our attention to the Laplaedistribution|from all available models this appears as most aeptable, beause the inner on-tours are somewhat more strethed downwards. Atually, after inspeting several quantile plots,the one for the Laplae distribution �ts best; see the right panel of Figure 10. In fat, this plotis almost the same as for the t distribution with � = 3; using only quantile plots, we would notbe able to distinguish between this t and the Laplae distribution in this example.We have to remark that even the Laplae �t may be felt not yet ompletely satisfatory; thusour story, ending at this point, may have another sequel elsewhere. And after all, the sample sizeis indeed small. We tried also the Student depth ontours for the original untransformed data;our onlusions in this ase support those of Chambers et al. (1983) regarding the gamma �ts.Example 3. Intervals between earthquakes. In our last example, we will analyze thedata whose distribution is beyond any doubt asymmetri. Reall that our philosophy is onsistentwith applying a method derived from symmetri likelihoods to asymmetri distributions|onethe method was derived, we assess its validity in a nonparametri broader ontext, withoutreferring to the original working assumptions.The datapoints are the periods between earthquakes, reorded as number of days betweensuessive serious earthquakes worldwide. For more details and the original soure of the dataset,see Hand, Daly, Lunn, MConway, and Ostrowski (1994), who omment on their Dataset 255that \if earthquakes our at random, an exponential model for these data should provide areasonable �t." To assess this graphially, we may try the kernel density situation, as given inthe leftmost panel of Figure 11, but this is slightly inappropriate in this situation|we know thatthe data are positive|and thus would require further adjustments. The next possibility is thequantile-quantile plot, as shown in the rightmost panel of Figure 11, with the rate � estimated by
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Figure 10. Seeded rainfall data. Peaked or heavy-tailed?



231=mean and on the log sale as reommended by Chambers et al. (1983) to avoid the lutteringof points near the origin. The plot supports the hypothesis of exponentiality.
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Figure 11. Intervals between earthquakes. Are they exponentially distributed?The left panel shows the kernel density estimate, the right panel the quantile-quantile plot on the logarithmi sale. The middle panel shows the ontours of theStudent depth; note the shift of the Student median loation from the median tothe mode.The plot of the Student depth ontours in the middle panel supports it too, exept for thedashed urve of maximal depth � is desending rather than asending; the right-side ontoursare somewhat loser eah to other than those in the model plot in Figure 8. However, theseobservations may be mere artifats; on�dene bands, or some other exat means, would beneeded to onlude whether the dashed urve really desents; it is quite likely that any suh bandobtained, say, by resampling, would be wider that the amount of desent. Nevertheless, the plotis intended primarily as an exploratory tool here; and in this apaity it is quite informative,albeit its analysis requires some training. In any ase, the sample size 62 does not allow forde�nitive onlusions.Summarizing our limited experiene, we an say that the Student depth plots easily revealasymmetry, inluding that present in the ore of the data, rather than just in the tails; butthey are apable of deteting heavy-tailed behavior too. To get more out of plots, it is betterto look rather on deeper ontours|whih may need some magni�ation of the entral part ofthe plot. The maximal Student depth ontour marks the loation of the Student median andthus also gives an idea about the loation and sale of data. The ontours exhibit di�erentharateristi shapes for di�erent distributions, and therefore they may suggest something aboutthe distribution of the data.



249. Conlusion and open problemsThe loation-sale depth is not only a non-trivial, novel instane for the general theory ofMizera (2002), but its most tratable version, the Student depth, enjoys remarkable theoretialand omputational properties. The maximum depth estimator based on it, the Student median,onstitutes a loation-sale estimator of median type. Plots of the Student depth ontours havesome potential to beome a graphial tool of exploratory data analysis|although muh moreexperiene has to be gathered yet. Some information about the distribution of the data is alsoprovided by the maximal depth. The whole methodology is onsiderably robust.
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Figure 12. The Laplae version of the loation-sale depth has unertainproperties|stemming from the fat that instead of irles we obtain retangles.Our paper leaves several diretions open for the future researh. De�nition 1 leads to variousversions of loation-sale depth, depending on the hoie of the normalized density f . It ispossible, as suggested by Figure 2, that they are similar in some sense|perhaps some of themare equivalent up to a reparametrization. However, we do not possess any formal insights inthis diretion; the situation may be not that simple, as indiated by Figure 12 showing theloation-sale depth for the Laplae f .A rather minor diretion, in our opinion, onerns exploring the approah that de�ned sim-pliial depth, in Setion 5, to de�ne other notions of loation-sale depth. We already indiatedthat suh a task may be formidable if attempted in a oneptually lean way. Of ourse, there isalways a tempting possibility to simply ignore the hyperboli geometry in the Klein disk and on-sider the ordinary Eulidean geometry instead; we believe that this would lead to unpreditableonsequenes. Suh a move, however, may provide a good loal approximation|for instane, asa omputational shortut for �nding a enter of gravity of the deepest ontour.The more promising diretions for the future researh inlude deeper theoretial investigationof the Student median, a straightforward but tehnially somewhat demanding extension ofthe Student depth to the multivariate loation-sale model, and likelihood-based priniples fordesigning riterial funtions, resulting halfspae depths and their properties in various models ofdata analysis.
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28Proof of Theorem 3. The starting point is (11) from De�nition 2, rewritten as follows:d(�; �) = infu6=0=k �i : u1�i + u2(� 2i � 1) � 0	 = infu6=0=k �i : u1�i + u2 �12(� 2i � 1)� � 0	 :It is enough to take the inf in the last expression just over kuk = 1, that is, over u =(os 2�; sin 2�) with � 2 [0; �):(19) d(�; �) = inf� =kfi : yi 2 H�g;where H� is the set of all y suh that(20) (os 2�) y � �� + (sin 2�)�(y � �)22�2 � 12� � 0:On solving the quadrati inequality (20) for y, we obtain that(21) H� = 8>><>>:��1; �� � os�sin� i [ ��+ � sin�os�;1� ; for � 2 [0; 12�);��+ � sin�os�; �� � os�sin�� for � 2 [12�; �):In both ases, the boundary is the intersetion of the line � = 0 with the irumferene enteredat (� � �(os 2�)=(sin 2�); 0), with radius �=j sin 2�j; a straightforward veri�ation shows thatalso point (�; �) lies on this irumferene. This onludes the proof of the �rst part, in view of(19).For the seond part, we have just to show that given any Poinar�e halfspae ontaining (�; �),there is another Poinar�e halfspae ontained in the �rst one and suh that (�; �) lies on itsboundary. One this holds, the in�mum of the ardinality (or measure) of the points ontainedin a halfspae taken over all halfspaes with (�; �) on their boundary is not smaller than thattaken over all halfspaes ontaining (�; �). And the onverse inequality is trivial, sine anyhalfspae with (�; �) on its boundary ontains (�; �).As already mentioned in the main text, the desired property follows from the behavior ofparallels in the Lobahevski geometry. Given a halfspae ~H and a point (�; �), either this pointlies on the Poinar�e line ~̀ forming the boundary of ~H, and then the property holds trivially, orthe point (�; �) does not lie on ~̀ and then there exists a Poinar�e line ` through this point notinterseting ~̀. Consequently, there is a Poinar�e halfspae H � ~H with boundary ` ontaining(�; �). �Proof of Theorem 4. All the properties follow by transformation to the Klein disk, thenby applying some property of the halfspae depth, and then by applying the inverse transfor-mation, if neessary. For (i), see Proposition 5.10 of Mizera (2002). Part (ii) follows from theonvexity of the depth ontours in the Klein disk; sine the isomorphism to Poinar�e plane isontinuous, their onnetedness is preserved. The assumptions of (iii) assert that the distributionfuntion is stritly inreasing and P assigns a positive probability to any nonempty open inter-val; onsequently, the transform of P assigns a nonzero probability to any strip with nonempty



29interior in the Klein disk; Proposition 7 of Mizera and Volauf (2002) then implies (iii); see alsoProposition 3.5 of Mass�e and Theodoresu (1994). The enterpoint theorem (iv) for the Studentdepth ould be proved also via results of Mizera (2002), but here it follows by the transformationargument more diretly, as the orollary of the standard enterpoint theorem in the bivariateloation model. �Proof of Theorem 5. The M�obius group is generated by the linear (aÆne) transformationsand the reiproal transformation. The equivariane under linear transformations is obvious fromthe de�nition; hene it remains only to prove the theorem for gy = 1=y.We do this by straightforward veri�ation. Given data y, we transform them into the Poinar�edisk. If the datapoint is z = x+0i, then simple algebra using left part of the formula (13) showsthat its transformation, 2xx2 + 1 + ix2 � 1x2 + 1 ;is the omplex onjugate of the transformation of 1=x. That is, in the Poinar�e disk, the dat-apoints orresponding to 1=y are those ipped about the real line. It follows that parametersfrom the inside of the Poinar�e disk retain their depth when ipped in the same way: in otherwords, the depth of a+ ib in the Poinar�e disk is with respet to the original data y the same asthe depth of a� ib under 1=y.Now we have to alulate what does this mean in the original Poinar�e plane. If a parameter� + i� transforms to a + ib (beware: the formula makes sense only for the original Poinar�e,that is, upper halfplane, so we have to start with � > 0 at this point), then under the inversetransformation, expressed by the right part of the formula (13), it transforms bak to itself;while a � ib transforms to (� + i�)=(�2 + �2). A simple veri�ation shows that 1=(� + i�) =(�� i�)=(�2 + �2), the same parametri value up to omplex onjugation. �Proof of Theorem 6. The theorem follows from Theorem 9, via the elementary inequalities�1 � �2 and 1� Æ+ �1 � �2+ Æ, holding whenever Æ � 1=4, 0 � �1 � Æ, and 1=2� Æ � �2 � 1=2.Consequently, �� q�1 � �� q�2 and q1�Æ+�1 � � � qÆ+�2 � �; this results in +Æ;P (�) � �Æ;P (�) if� = q1=2, in view of (17){(18). �Proof of Theorem 7. Aording to Theorem 3, the Student depth is omputed as thein�mum of measures of ertain intervals in the real line. Under the i.i.d. sampling model, thealmost sure uniform onvergene of the measures of those intervals follows from the Glivenko-Cantelli theorem; the almost sure uniform onvergene of the in�ma follows. �



30For notational simpliity, we assume in the proofs of Theorems 8 and 9 that y1 � y2 � : : : yn.It is onvenient to represent the Student depth for � > 0 in the vein of (20) asn d(�; �) = inf�2[��;�℄ ard(i : sin(�)�yi � �� �+ os(�) �yi � �� �2 � 1! � 0)= inf�2[��;�℄Xyi<� 1fsin(�) + os(�)ai(�; �) � 0g+Xyi=� 1f� os(�) � 0g+Xyi>� 1fsin(�) + os(�)ai(�; �) � 0g
= 8>>>>>>><>>>>>>>:

Pyi<� 1f� tan(�) � ai(�; �)g+Pyi>� 1f� tan(�) � ai(�; �)g;if os(�) < 0Pyi<� 1f� tan(�) � ai(�; �)g+ ardfi : yi = �g+Pyi>� 1f� tan(�) � ai(�; �)g;if os(�) > 0Pyi<� 1fsin(�) � 0g+ ardfi : yi = �g+Pyi>� 1fsin(�) � 0g;if os(�) = 0where(22) ai(�; �) = a�;�(yi) = yi � �� � �yi � �and 1f: : :g abbreviates the indiator funtion 1f:::g(�). The following lemma follows from routinealgebrai alulations.Lemma 1.(a) If y < ~y and (�� y)(~y � �) < 0, then a�;�(y) S a�;�(~y)() (�� y)(~y � �) S �2:(b) If y < ~y and (�� y)(~y � �) > 0, then a�;�(y) S a�;�(~y)() (�� y)(~y � �) T �2:Lemma 2. Let l be a nonnegative integer, a1 � a2 � : : : � am, am+l+1 � am+l+2 � : : : � an,k � minfm;n�m� lg and letd�(�) = mXn=1 1fsin(�) � � os(�) aig+ l 1f� os(�) � 0g+ nXn=m+1+l 1fsin(�) � � os(�) aig:(a) Then min�2[��;�℄ d�(�) � minfm;n�m� lg.(b) If ai � ak+i for all i = m � k + l + 1; : : : ; m and ai � an�k+i for all i = 1; : : : ; k, thenmin�2[��;�℄ d�(�) � k:() If ai < ak+i for some i, then min�2[��;�℄ d�(�) < k:(d) If ai > an�k+i for some i, then min�2[��;�℄ d�(�) < k:



31Proof of Lemma 2. First, note thatd�(�) = 8<: Pmi=1 1f� tan(�) � aig+Pni=m+l+1 1f� tan(�) � aig; if os(�) < 0;Pmi=1 1f� tan(�) � aig+Pni=m+l+1 1f� tan(�) � aig+ l; if os(�) > 0;Pmi=1 1fsin(�) � 0g+Pni=m+l+1 1fsin(�) � 0g+ l; if os(�) = 0:(a) For � with � tan(�) < minfa1; am+l+1g, we have d�(�) = n � m � l for os(�) < 0 andd�(�) = m+ l for os(�) > 0. If � tan(�) > maxfam; ang then we have d�(�) = m for os(�) < 0and d�(�) = n� (m+ l) + l = n�m for os(�) > 0.(b) For � with os(�) = 0 we have d�(�) � minfm + l; n �mg � k. Now regard any � withos(�) 6= 0.If a1 � ai � � tan(�) � ai+1 � am and os(�) < 0, then there are two possibilities. Onepossibility is that n� k + i + 1 � n so that � tan(�) � ai+1 � an�k+i+1 whih implies d�(�) �i+n� (n�k+ i) = k. The other possibility is that n�k+ i+1 > n so that i � k whih impliesd�(�) � i � k.If a1 � ai � � tan(�) � ai+1 � am and os(�) > 0, then there are also two possibilities.One possibility is that i � m � k + 1 + l so that ak+i � ai � � tan(�) whih implies d�(�) �m� i+ (k + i)� (m + l) + l = k. The other possibility is that i < m� k + 1 + l whih impliesd�(�) � m� i+ l � k.If am+l+1 � am+i � � tan(�) � am+i+1 � an and os(�) < 0, then again there are twopossibilities. One possibility is that m + i � n � k + 1 so that m + i = n � k + ~i and thusam+i�n+k = a~i � an�k+~i = am+i � � tan(�). This implies d�(�) � m+ i� n+ k+ n� (m+ i) =k. The other possibility is that m + i < n � k + 1 so that i � n � m � k whih impliesd�(�) � n� (m+ i) � k.If am+l+1 � am+i � � tan(�) � am+i+1 � an and os(�) > 0, then one possibility is thatm+ i+1 � m+k so that m+ i+1 = k+~i and thus � tan(�) � am+i+1 = ak+~i � a~i = am+i+1�k.This implies d�(�) � m � (m + i � k) + (m + i) � (m + l) + l = k. The other possibility ism+ i + 1 > m+ k so that i � k whih implies d�(�) � (m+ i)� (m+ l) + l � k.If � tan(�) =2 (minfa1; am+l+1g;maxfam; ang), then d�(�) � k follows from a).() If ai < ak+i then there exists � with ak+i > � tan(�) > ai and os(�) > 0 so thatd�(�) � m� i+ (k + i� 1)� (m+ l) + l = k � 1.(d) If ai > an�k+i then there exists � with ai > � tan(�) > an�k+i and os(�) < 0 so thatd�(�) � i� 1 + n� (n� k + i) = k � 1. �Proof of Theorem 8. Set m = ardfi : yi < �g and l = ardfi : yi = �g. If 0 = � 2[�k (�); +k (�)℄ then (�� yi)(yk+i � �) = 0 for i = m� k + 1; : : : ; m whih impliesn d(�; �) = inf(u1;u2)6=0 ard�i : u1(yi � �) + u2((yi � �)2 � �2) � 0	 � l � k:If 0 = � =2 [�k (�); +k (�)℄ then l < k so that with u1 = 0 and u2 = �1n d(�; �) � ard�i : �(yi � �)2 � 0	 = l < k:



32Now let � > 0. Set ai = ai(�; �). Lemma 1(a) asserts that ai < aj if yi < yj < � or � < yi < yj,sine in both ases (��yi)(yj��) < 0 < �2 is always satis�ed. Hene the assumptions of Lemma2 are satis�ed and therefore n d(�; �) = min�2[��;�℄ d�(�), where d�(�) is the funtion onsideredin Lemma 2.If � 2 [�k (�); +k (�)℄, then�2 � (�� yi)(yk+i � �) for all i = m� k + 1; : : : ; m;�2 � (�� yi)(yn�k+i � �) for all i = 1; : : : ; k:This is equivalent to ak+i � ai for all k = m�k+1+ l; : : : ; m and ai � an�k+i for all i = 1; : : : ; kaording to Lemma 1(b). Hene Lemma 2(b) yields n d(�; �) � k.Now let � =2 [�k (�); +k (�)℄. Then there exists k with(�� yi)(yk+i � �) > �2 or �2 > (�� yi)(yn�k+i � �):Aording to Lemma 1(b), this is equivalent toak+i > ai or ai > an�k+i;so that Lemma 2() and 2(d) gives n d(�; �) < k. �Proof of Theorem 9. We prove the theorem only for distributions whose density has on-neted support. However, a ombination of this of its proof and that of Theorem 8 for thesample ase yields the theorem for any general distribution P . In what follows, b stands forF (�) = P ((�1; �℄).If 0 = � 2 [�Æ;P (�); +Æ;P (�)℄, then Æ = 0 � d(�; �; P ) sine a ontinuous distribution means�Æ;P (�) > 0 for Æ > 0. If 0 = � =2 [�Æ;P (�); +Æ;P (�)℄ then Æ > 0 and with u1 = 0 and u2 = �1 weobtain d(�; �; P ) � P ��y : � (y � �)2 � 0	� = 0 < Æ:Let � > 0 and de�ned�(�) = 8>>>>>>><>>>>>>>:
P (fy 2 (�1; �) : � tan(�) � a�;�(y)g)+ P (fy 2 (�;1) : � tan(�) � a�;�(y)g) ; if os(�) < 0;P (fy 2 (�1; �) : � tan(�) � a�;�(y)g)+ P (fy 2 (�;1) : � tan(�) � a�;�(y)g) ; if os(�) > 0;P (fy 2 (�1; �) : sin(�) � 0g)+ P (fy 2 (�;1) : sin(�) � 0g) ; if os(�) = 0;where a�;�(y) was de�ned in (22). Then we have d(�; �; P ) = min�2[��;�℄ d�(�).Let � 2 [�Æ;P (�); +Æ;P (�)℄. First, note that for � with os(�) = 0 we have d�(�) � minfb; 1�bg �Æ. Now onsider � with os(�) 6= 0. The ondition on � provides(�� q�)(q1�Æ+� � �) � �2 for � 2 (0; Æ) ;(�� q�)(qÆ+� � �) � �2 for � 2 (b� Æ; b) :



33This is equivalent to(�� q��1+b+Æ)(qb+� � �) � �2 for � 2 (1� b� Æ; 1� b) ;(�� q�+b�Æ)(qb+� � �) � �2 for � 2 (0; Æ) :Using Lemma 1(b) we obtaina�;�(q��1+b+Æ) � a�;�(qb+�) for � 2 (1� b� Æ; 1� b) ;(23) a�;�(q�+b�Æ) � a�;�(qb+�) for � 2 (0; Æ) :(24)For y 2 (�1; �) we have (�� y)(q��1+b+Æ � �) < 0 < �2 so that Lemma 1(a) impliesa�;�(q��1+b+Æ) S a�;�(y)() q��1+b+Æ S y:The same holds for q�+b�Æ and an analogous result holds for y 2 (�;1) and qb+�. Now let � anyvalue with � tan(�) = a�;�(qb+�) for some � 2 (0; 1� b). If os(�) < 0 and � > 1 � b � Æ weobtain with (23)d�(�) = P (fy 2 (�1; �) : a�;�(qb+�) � a�;�(y)g)+ P (fy 2 (�;1) : a�;�(qb+�) � a�;�(y)g)� P (fy 2 (�1; �) : a�;�(q��1+b+Æ) � a�;�(y)g)(25) + P (fy 2 (�;1) : a�;�(qb+�) � a�;�(y)g)= P (fy 2 (�1; �) : q��1+b+Æ � yg) + P (fy 2 (�;1) : qb+� � yg)= (� � 1 + b + Æ) + 1� (b+ �) = Æ:If os(�) < 0 and � � 1� b� Æ we obtaind�(�) � 0 + P (fy 2 (�;1) : a�;�(qb+�) � a�;�(y)g)= 1� (b + �) = 1� b� � � Æ:Analogously, if os(�) > 0 and � < Æ we obtain with (24)d�(�) = P (fy 2 (�1; �) : a�;�(qb+�) � a�;�(y)g)+ P (fy 2 (�;1) : a�;�(qb+�) � a�;�(y)g)� P (fy 2 (�1; �) : a�;�(q�+b�Æ) � a�;�(y)g)(26) + P (fy 2 (�;1) : a�;�(qb+�) � a�;�(y)g)= P (fy 2 (�1; �) : q�+b�Æ � yg) + P (fy 2 (�;1) : qb+� � yg)= b� (� + b� Æ) + b + � � b = Æ:If os(�) < 0 and � � Æ we obtain similarlyd�(�) � 0 + P (fy 2 (�;1) : a�;�(qb+�) � a�;�(y)g) = b + � � b � Æ:



34Note that lim�#0 a�;�(qb+�) = �1. If the support of P has no upper bound, thenlim�"1�b a�;�(qb+�) = 1 so that for every � there exists � 2 (0; 1� b) with � tan(�) =a�;�(qb+�) sine the support is onneted. Hene in this ase, we an onlude d(�; �; P ) =min�2[��;�℄ d�(�) � Æ. If the support of P has an upper bound, then for every � with� tan(�) � a�;�(q1) we have with (23)d�(�) = P (fy 2 (�1; �) : � tan(�) � a�;�(y)g)� P (fy 2 (�1; �) : a�;�(qb+1�b) � a�;�(y)g)� P (fy 2 (�1; �) : a�;�(q1�b�1+b+Æ) � a�;�(y)g) = Æfor os(�) < 0 and d�(�) � P (fy 2 (�;1) : � tan(�) � a�;�(y)g) � 1� bfor os(�) > 0. Hene, also for bounded support, we have d(�; �; P ) = min�2[��;�℄ d�(�) � Æ.If � =2 [�Æ;P (�); +Æ;P (�)℄ then there exists � 2 (1�b�Æ; 1�b) with (��q��1+b+Æ)(qb+���) < �2or � 2 (0; Æ) with (�� q�+b�Æ)(qb+� � �) > �2. Aording to Lemma 1(b) this meansa�;�(q��1+b+Æ) > a�;�(qb+�) or a�;�(q�+b�Æ) < a�;�(qb+�):Sine a0�;�(y) = 1� + �(y��)2 > 0 the funtion a�;� is stritly inreasing in y. Hene fora�;�(q��1+b+Æ) > a�;�(qb+�); we have using � with � tan(�) = a�;�(qb+�) and os(�) < 0d�(�) = P (fy 2 (�1; �) : a�;�(qb+�) � a�;�(y)g)(27) + P (fy 2 (�;1) : a�;�(qb+�) � a�;�(y)g)< P (fy 2 (�1; �) : a�;�(q��1+b+Æ) � a�;�(y)g)+ P (fy 2 (�;1) : a�;�(qb+�) � a�;�(y)g)= P (fy 2 (�1; �) : q��1+b+Æ � yg) + P (fy 2 (�;1) : qb+� � yg)= (� � 1 + b+ Æ) + 1� (b+ �) = Æ:Thereby the strit inequality holds sine the support of the distribution is onneted. Analogouslyfor a�;�(q�+b�Æ) < a�;�(qb+�) we have using � with � tan(�) = a�;�(qb+�) and os(�) > 0d�(�) = P (fy 2 (�1; �) : a�;�(qb+�) � a�;�(y)g)+ P (fy 2 (�;1) : a�;�(qb+�) � a�;�(y)g)< P (fy 2 (�1; �) : a�;�(q�+b�Æ) � a�;�(y)g)+ P (fy 2 (�;1) : a�;�(qb+�) � a�;�(y)g)= b� (� + b� Æ) + (b+ �)� b = Æ: �


