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ale DepthIvan Mizera and Christine H. M�ullerAbstra
t. The paper introdu
es a halfspa
e depth in the lo
ation-s
ale model, along the linesof the general theory given by Mizera on the basis of the idea by Rousseeuw and Hubert, 
omple-mented by a new likelihood-based prin
iple for designing 
riterial fun
tions. The most tra
tableversion of the proposed depth, the Student depth, turns out to be nothing but the bivariatehalfspa
e depth interpreted in the Poin
ar�e plane model of the Loba
hevski geometry. This fa
timplies many fortuitous theoreti
al and 
omputational properties, in parti
ular equivarian
e withrespe
t to the M�obius group and favorable time 
omplexities of algorithms. It also opens a wayto introdu
e some other depth notions in the lo
ation-s
ale 
ontext, for instan
e, lo
ation-s
alesimpli
ial depth. A maximum depth estimator of lo
ation and s
ale|the Student median|isintrodu
ed. Possible appli
ations of the proposed 
on
epts are investigated on data examples.1. Introdu
tionThis paper proposes a notion of depth in the univariate lo
ation-s
ale model and its possibleappli
ations. The new depth is introdu
ed in Se
tion 3 as an instan
e of the general theory ofhalfspa
e depth elaborated by Mizera (2002) on the basis of the idea outlined by Rousseeuw andHubert (1999). This theory is 
omplemented in Se
tion 2 by a likelihood-based prin
iple fordesigning of 
riterial fun
tions in various statisti
al models.The 
ore of the paper, starting with Se
tion 4, is devoted to the most tra
table version of thenew 
on
ept, the Student depth, and also to the maximum depth lo
ation and s
ale estimatorbased on it, the Student median. After Se
tion 4, a 
asual reader may go dire
tly to Se
tion 8whi
h 
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2to read se
tions in their normal order: Se
tion 5 explores the underlying hyperboli
 geometry|it turns out that the Student depth is nothing but the halfspa
e depth in the Poin
ar�e planemodel of the Loba
hevski geometry, inheriting all favorable properties of the bivariate lo
ationhalfspa
e depth; Se
tion 6 studies equivarian
e properties with respe
t to the M�obius group;Se
tion 7 surveys some further statisti
al (asymptoti
s, robustness) and 
omputational fa
ts.Con
lusions and future dire
tions are brie
y summarized in Se
tion 9; the Appendix 
ontains allproofs. 2. Depth via likelihood-based 
riterial fun
tionsThe de�nition of the depth in general models is motivated by theoreti
al 
onsiderations witha de
ision-theoreti
 
avor. Those are more thoroughly explained, together with details on theexamples 
onsidered below, by Mizera (2002); here we give only an a

elerated overview.Our starting point are data 
omposed of datapoints zi (as usual, i = 1; 2; : : : ; n). For everydatapoint zi, we 
onsider a 
riterial fun
tion Fi; given a �t represented by #, the 
riterialfun
tion Fi evaluates the la
k of �t of # to the parti
ular datapoint zi. That is, we 
onsider ~#�tting zi better than #, if Fi(~#) < Fi(#).Su
h 
riterial fun
tions may be derived from intuitive 
onsiderations. For instan
e, in linearregression with datapoints zi = (xi; yi), a natural 
hoi
e is Fi(#) = (yi � xTi #)2; or Fi(#) =jyi � xTi #j. Both 
hoi
es are equivalent, sin
e only the order on # imposed by Fi is essential.In the 
anoni
al example of the multivariate lo
ation model 
onsidered by Tukey (1975), the
riterial fun
tions may be either Fi(zi) = kzi � #k or their squares.General halfspa
e depth 
an be de�ned as a measure of data-analyti
 admissibility|the sim-plest version of this prin
iple, in the spirit of Rousseeuw and Hubert (1999), de�nes depth of #as the proportion of the datapoints whose omission 
auses # to be
ome a non�t, a �t than 
anbe uniformly dominated by another one. We refer again to Mizera (2002) for the more elabo-rate version of what is 
alled global depth therein, as well as for further te
hni
al details of itsproperties and in parti
ular its relationship to the more operational tangent depth, the result ofa transition from the optimality-based prin
iple to its �rst-order reformulation. A good anal-ogy is that of maximum likelihood pres
ription, and the related estimating equation(s) obtainedby taking derivatives and equating them to zero. The equations are often equivalent to theoriginal optimization problem, but even if they are not, they generally represent an interestingpres
ription of their own.Taking derivatives in the optimization problem explains why the following de�nition involvesgradients r#Fi(#), in #, of the 
riterial fun
tions. In this paper, we de�ne the (tangent) depthof a �t # to be(1) d(#) = infu6=0=kfi : uT r#Fi(#) � 0g;where =k stands for the relative proportion in the index set|its 
ardinality divided by n. Wesuppress the dependen
e on the data in the depth notation. Tukey (1975) and others 
onsider
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ardinalities instead of proportions; however, it is a minor di�eren
e whether depth assumesvalues 0, 1, 2, : : : , n or 0, 1=n, 2=n, : : : , 1, and relative proportions allow for the uni�edtreatment of population distributions later. For the same reason, we use in (1) less intuitive\inf" instead of equivalent \min".In the linear regression example, we may work our way from substituting 
riterial fun
tionsFi(#) = 12(yi � xTi #)2 into the formula (1) to the standard expressions of the regression depth,d(#) = infu6=0=kfi : � uTxi(yi � xTi #) � 0g= infu6=0=kfi : uTxi(yi � xTi #) � 0g= infu6=0=kfi : uTxi sgn(yi � xTi #) � 0g= infu6=0=kfi : sgn(uTxi) sgn(yi � xTi #) � 0g;as de�ned by Rousseeuw and Hubert (1999). (In the spirit of the equivalen
e of 
riterial fun
tionsmodulo the order they impose, the fa
tor 1=2 involved in Fi is merely a 
onvenien
e multiplier,to give the gradients a neat form �xi(yi � xTi #). The 
hoi
e Fi(#) = jyi � xTi #j yields the samedepth.)Similar 
al
ulations show the above-
onsidered 
riterial fun
tions in the multivariate lo
ationmodel lead to the standard de�nition of the halfspa
e depth: the minimal proportion of data-points lying in any 
losed halfspa
e whose boundary 
ontains #, or, equivalently, the minimalproportion of datapoints whose omission leaves # outside the 
onvex hull of the remaining ones.Note that in this spe
ial 
ase datapoints zi and �ts # live in the same spa
e; generally, however,formula (1) de�nes depth of �ts, not datapoints.The theoreti
al innovation brought by the present paper is the use of likelihood 
onsiderationsfor designing 
riterial fun
tions. As a motivating example, 
onsider again the linear regressionmodel. In this model with i.i.d. Gaussian disturban
es (for simpli
ity with a �xed known s
aleset equal to one), the standard expression for the negative log of the likelihood reads� logL(#) = nXi=1 �12(yi � xTi #)2 + logp2�� :Apart from the 
onstant logp2�, whi
h does not depend on # and hen
e may be omitted, weobtained the sum of fun
tions of #, ea
h of them dependent only on one datapoint. A
tually,they are identi
al with the 
riterial fun
tions we 
onsidered in the linear regression model.This suggests the following prin
iple: the negative log-likelihood for the i.i.d. model is al-ways a sum of 
ontributions ea
h involving one parti
ular datapoint; hen
e we may adopt these
ontributions for 
riterial fun
tions. The prin
iple not only gives some additional justi�
ationfor the instan
es already known, but provides a vehi
le to move beyond the limits of intuitive
onsiderations that typi
ally led to those. In this paper, we want to illustrate this thesis on a



4novel instan
e, the univariate lo
ation-s
ale model. For other appli
ations of this prin
iple, seeM�uller (2003). 3. Lo
ation-s
ale depthLet us think for a moment that datapoints yi are realizations of i.i.d. random variables witha density f , determined up to lo
ation parameter � and s
ale parameter �. The form of theresulting negative log-likelihood, nXi=1 �� log f�yi � �� � + log�� ;suggests, a

ording to the just formulated prin
iple, 
riterial fun
tions(2) Fi(�; �) = � log f�yi � �� �+ log �:To avoid te
hni
al 
ompli
ations, let us suppose that f(�) > 0 for all � , the assumption satis�edby most distributions used in modeling lo
ation-s
ale data. On substituting (2) into (1), weobtain the following expression for the depth:(3) d(�; �) = infu6=0=k 8>><>>:i : (u1; u2)0BB� (� log f)0�yi � �� ��� 1��(� log f)0�yi � �� ���yi � ��2 � + 1�1CCA � 09>>=>>; ;where the expression in the bra
es is interpreted in the spirit of formula (1) as the inner produ
tin matrix notation.We assumed � > 0 so far; to see what to do with � = 0, imagine all datapoints lying in a singlepoint 
; for typi
al instan
es of f , the formula (3) yields zero depth for all (�; �) with � > 0 insu
h a 
ase. The likelihood philosophy suggests that � = 
 and � = 0 provide the single best �tfor the data then|and when � approa
hes 0, then the values of the 
riterial fun
tion tend to 0too. Therefore, it is natural to assign depth n=n = 1 to (
; 0), and 0 to other values of (�; �).Let us introdu
e fun
tions  (�) = (� log f(�))0 = �f 0(�)=f(�) and �(�) = � (�), in analogywith M-estimation in lo
ation-s
ale models as presented by Huber (1981). Starting from (3), wearrive after some algebra to the following de�nition.Definition 1. The lo
ation-s
ale depth of (�; �) 2 R � [0;1), with respe
t to the data-points y1; y2; : : : ; yn from R, is(4) d(�; �) = infu6=0=k �i : (u1; u2)�  (�i)�(�i)� 1� � 0� ; for � > 0,= =kfi : yi = �g; for � = 0,where �i is a shorthand for (yi � �)=� and  and � depend on a �xed density f as spe
i�edabove.



5In order to elu
idate the dependen
e on f , let us assume that f is stri
tly unimodal withmode 0, the assumption again satis�ed by many distributions used in modeling lo
ation-s
aledata. Together with the requirement that f is everywhere positive, this assumption implies thatsgn( (�)) = sgn(�). Let �(�) = �= (�) for � 6= 0; for � = 0, set �(0) = lim inf�!0 �(�). (In allpra
ti
al 
ases � has a limit at 0; for what follows, it is important only that �(0) > 0.)Theorem 1. If sgn( (�)) = sgn(�) and �(0) > 0, then the lo
ation-s
ale depth is equal to(5) d(�; �) = infu6=0=k �i : (u1; u2)� �i� 2i � �(�i)� � 0� ; for � > 0,= =kfi : yi = �g; for � = 0,where �i has the same meaning as in De�nition 1 and � relates to  , � and f as spe
i�ed above.
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Figure 1. Illustration to Theorem 1: the plot of � 2 � �(�) against � for variousf : t (in
luding Gaussian), logisti
, slash, Lapla
e.The dependen
e on f still remains, but Theorem 1 redu
ed it to a single term � 2��(�), shownin Figure 1 for various f . The simplest form �(�) = 1 
orresponds to f equal to the standardGaussian density, as well as to all distributions from the t family; other 
hoi
es are f logisti
,slash, and Lapla
e (double-exponential). The slash version is plotted multiplied by two, whi
h
orresponds to a simple reparametrization � 7! �=2.Figure 2 shows the 
ontours of lo
ation-s
ale depth for f set equal to t, logisti
 and slashdensity, using the same dataset for all three plots. All three panels appear qualitatively similar,although this may not be always the 
ase; see Se
tion 9. The plots of depth 
ontours bear somevisual similarity to \Tukey's graphi
al method of 
omputing Hodges-Lehmann estimate"; seeFig. 13 of Fisher (1983) and the related referen
es therein.To gain �rst insights, we may look at simpli�ed models obtained by regarding one of theparameters as a 
onstant. In the �rst of those models, � is �xed and � free. After analogous
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µSlashFigure 2. Contours of the lo
ation-s
ale depth for di�erent f , using the samearti�
ial dataset. The 
ontours were obtained by 
omputing depth for a �ne gridof values; note qualitative similarity, but also possible di�eren
es.steps as above, we obtain that the lo
ation likelihood depth is, for given f ,(6) d�(�) = infu6=0=k �i : u �yi � �� � � 0� :For any stri
tly unimodal f , we have sgn( (t)) = sgn(t); this 
onverts (6) to the usual de�nitionof univariate lo
ation depth(7) infu6=0=kfi : u sgn(yi � �) � 0g = minf=kfi : yi � �g;=kfi : yi � �gg:Note that d�(�) does not depend on �.The se
ond simpli�ed model has � �xed and � free. The resulting s
ale depth isd�(�) = infu6=0=k �i : u ���yi � �� �� 1� � 0�= min�=k �i : ��yi � �� � � 1� ;=k �i : ��yi � �� � � 1�� :(8)If f is unimodal, then �(t) � 0. If, moreover, �(�) de
reases when � < 0 and in
reases when� > 0 (this often holds|always if  is monotone) and is symmetri
 (whi
h is the 
ase when f issymmetri
), then there is k su
h thatd�(�) = minf=kfi : jyi � �j � k�g;=kfi : jyi � �j � k�gg:When f is taken to be the density of standard Gaussian, t or Lapla
e distribution, then k = 1and � has depth zero if and only if [��; �℄ 
ontains either all datapoints or no datapoint. Thedepth depends on � now; the �t with maximal s
ale depth 
orresponds to the quantity knownas median absolute deviation (MAD) about the �xed lo
ation �.The extension of all the depth notions to general probabilities and even measures is straight-forward: the proportion of the sample points in a given set is repla
ed by the measure of this



7set. The de�nition for �nite samples is embedded into the general s
heme via empiri
al proba-bilities. For the spe
i�
 details of the appli
ation of this well-known prin
iple, see Mizera (2002)or Rousseeuw and Hubert (1999).Theorem 2. The lo
ation-s
ale, lo
ation (likelihood), and s
ale depths satisfy for all � and �,(9) d(�; �) � d�(�) and d(�; �) � d�(�);for any given measure P (in
luding any empiri
al probability supported by �nite-sample data).4. The Student depth and its appli
ationsOur approa
h to likelihood-based pro
edures is rather operational: we do not �rmly believe inthe postulated model, but rather use it as a guideline to derive a pro
edure possibly appli
able ina wider 
ontext. De�nition 1 introdu
es not one, but a family of depths, depending on the 
hoi
eof the underlying density f . Among these densities, all with similar unimodal shape, we favorthose possessing better tra
tability and 
omputability than others. It 
annot be said that wepay no attention to the modeling realism, but our fo
us is rather on the �nal result than initialpremises; on
e the pro
edure is derived, we tend to forget the initial parametri
 assumptions,and rather investigate its behavior in the broader 
ontext. Su
h an attitude is not new|justre
all the approa
h of Huber (1967) to maximum likelihood estimation, for instan
e.It is hardly that unexpe
ted that the most tra
table version of lo
ation-s
ale depth is thatinvolving the standard Gaussian density f . In su
h a 
ase,(10) d(�; �) = infu6=0=k �i : (u1; u2)� �i� 2i � 1� � 0� :It is tempting to think that what we deal here with is just the bivariate lo
ation depth withrespe
t to the datapoints lifted on a parabola|but one has to keep in mind that �i depend on� and �, so when the parameters 
hange, the position of lifted points 
hanges too.Interestingly, the same depth is obtained when f is taken to be the density of any t distributionwith � degrees of freedom:d(�; �) = infu6=0=k �i : (u1; u2)� �i��+1(� 2i � 1)� � 0� ;the equality to (10) follows after absorbing the 
onstant �=(�+1) into the u term. This suggeststhat we may view the standard Gaussian distribution as t with � =1 here.In fa
t, formula (10) allows for a uni�ed treatment of all �, without a need to 
onsider the
ase � = 0 separately. To this end, note that, still formally assuming � > 0, we 
an rewrite (10)as d(�; �) = infu6=0=k �i : �u1� ; u2�2�� (yi � �)(yi � �)2 � �2� � 0� :



8Definition 2. The Student depth of (�; �) 2 R � [0;1), with respe
t to a (probability)measure P on R is(11) d(�; �; P ) = inf(u1;u2)T 6=0P �y : u1(y � �) + u2 �(y � �)2 � �2� � 0	 :The Student depth with respe
t to the data y1; y2; : : : ; yn is obtained by applying the de�nitionto the empiri
al probability measure Pn supported by the datapoints.Although the de�nition is formulated for general measures this time, we may return ba
kto the more 
omprehensible sample notation, and also suppress the dependen
e on P or Pn inthe notation and write simply d(�; �), if no 
onfusion may arise. All theorems formulated forsamples remain valid in the more general setting, with proportions (here denoted by =k) repla
edby appropriate measures.What are the possible data-analyti
 uses of the new 
on
ept? The 
onstantly growing literatureon the subje
t re
ords numerous appli
ations of various brands of multivariate lo
ation depthand a growing number of the appli
ation of the regression depth. Thus, some �rst observations
an be made along the general lines.One important dire
tion are maximum depth estimators|deepest �ts. They 
an be 
onsideredas medians in the underlying models, sin
e in the univariate lo
ation 
ase, the deepest �t is thesample median. Starting from the Tukey median in the multivariate lo
ation model, it is quiteremarkable how the known instan
es �t the mosai
; for instan
e, the median 
hara
ter of thedeepest regression is quite evident from Rousseeuw and Hubert (1999), Van Aelst, Rousseeuw,Hubert, and Struyf (2002).Maximum depth estimators have a few handi
aps, possessed already by their univariate samplemedian prototype. There may be problems with the uniqueness of the deepest �t|formally it ismore appropriate to de�ne themaximum depth estimator as the set of all deepest �ts. In theunivariate 
ase, this ambiguity may be resolved by taking the midpoint of the median interval;analogous strategies in more sophisti
ated models are more demanding, but not prohibitively.Depth 
an also be used in various testing appli
ations, as those of Rousseeuw and Struyf (2002);a ni
e general perspe
tive in the multivariate lo
ation 
ontext was given by Chaudhuri andSengupta (1993). The maximal depth attained in the parti
ular setting often plays a prominentrole here, but this would require 
onsiderable theoreti
al development.What we �nd more appealing is that the very spe
ial feature of the present 
ontext|the two-dimensionality of our parametri
 spa
e|allows for graphi
al representation of depth 
ontours.For any Æ 2 [0; 1℄, we de�ne, abusing slightly the language, the depth 
ontour to be the setof (�; �) su
h that d(�; �) � Æ. Trivially, the 
ontours are nested: the 
ontour 
orresponding toÆ1 is 
ontained in that 
orresponding to Æ2 whenever Æ1 � Æ2. In the bivariate lo
ation model,the plot of depth 
ontours 
an be viewed as a generalization of quantile plotting|this line ofappli
ations a

ompanied depth from its very beginning, see Tukey (1975), Donoho and Gasko(1992), or Rousseeuw, Ruts, and Tukey (1999).
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Figure 3. Poin
ar�e plane: the horizontal axis 
orresponds to �, the verti
al to �,the solid line with datapoints is the line � = 0. The shaded areas 
ontain pointswith the Student depth 1=6 (lighter) and 2=6 (darker) for this arti�
ial datapoints.The sensitivity of depth 
ontours to the distribution of the data suggests using them as atool for assessing distributional assumptions. In the style of Chapter 6 of Chambers, Cleveland,Kleiner, and Tukey (1983), we tried to explore how mu
h the plots of the Student depth 
ontoursmight 
omplement and enhan
e the use of quantile plots, sharing with them the similar in
isive
hara
ter (
ompared to histograms and related methods) and the la
k of need for elaboratetuning (
ompared to density estimation). Some examples in this vein are studied in Se
tion 8.5. The Loba
hevski geometry of the Student depthIt turns out that the Student depth is nothing but the bivariate lo
ation halfspa
e depth inthe Poin
ar�e plane model of the Loba
hevski hyperboli
 geometry. To explain this adequately,we have to introdu
e several notions from non-Eu
lidean geometry; the reader wishing to getmore thorough understanding is advised to 
onsult, for instan
e, Greenberg (1980).What we will 
all the Poin
ar�e plane here is the halfplane PP = R � [0;1), the parametri
spa
e for (�; �). A Poin
ar�e line ` in PP is an obje
t whi
h is either a hal
ine � = 
onst,� � 0, or a hemi
ir
umferen
e whose 
enter lies on the line � = 0. The 
omplement of ` in PP
onsists of two 
onne
ted 
omponents; their respe
tive unions with ` form two (
losed) Poin
ar�ehalfspa
es with boundary `. The (Poin
ar�e) points are simply points in PP; we 
onsider themlying in a Poin
ar�e halfspa
e or on a Poin
ar�e line if they belong to them in the usual set-theoreti
sense. (For a 
onnoisseur, our version of the Poin
ar�e plane in
ludes also the ideal points on theline � = 0, but not the 1 endpoint of all verti
al Poin
ar�e lines.)Figure 3 demonstrates how the sample spa
e, the home of datapoints, is embedded into thePoin
ar�e plane, the home of parameters (�; �). The Poin
ar�e lines 
onne
ting the datapointsdelineate the 
orresponding Poin
ar�e halfspa
es; the shaded areas indi
ate 
ontours with thedepth 1=6 and 2=6. The dashed line shows the verti
al type of Poin
ar�e line; its � 
oordinate isthe midpoint of the interval of sample medians.Theorem 3. The Student depth of (�; �) is the minimal proportion (in�mum of measure Pin the general 
ase) of datapoints yi that lie in any Poin
ar�e halfspa
e with the point (�; �) on
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Figure 4. The Student depth 
an be 
al
ulated with a right-angle triangularruler only. The ruler revolves with the vertex pla
ed in the point whose depth is
omputed (arbitrary values of �, but only nonnegative values of � are 
onsidered);the number of points inside and outside is re
orded; the minimum of all thosedivided by n gives the value of depth.its boundary; or, equivalently, the minimal proportion of datapoints yi that lie in any Poin
ar�ehalfspa
e 
ontaining the point (�; �).The se
ond part of Theorem 3 establishes a link to the de�nition of the halfspa
e depthoriginally given by Tukey (1975). It turns out that the Loba
hevski geometry happens to bethe lu
ky 
hoi
e among the non-Eu
lidean ones: still possessing parallels, albeit possibly in anon-unique fashion. The rewarding out
ome is the 
hara
terization of 
ontours: a 
ontour onlevel Æ is the interse
tion of all Poin
ar�e halfspa
es whose measure P is greater than 1 � Æ; insample 
ases that means halfspa
es 
ontaining at least n� dnÆe + 1 datapoints yi.Figure 4 shows how the Student depth 
an be 
al
ulated (for smaller data sets, obviously) inthe spirit of Tukey (1977): just with the help of a right angle triangular ruler (and perhaps apen
il to re
ord the 
ounts). By the Thales theorem, the set of points on the line � = 0 lying inthe 
ir
le 
ir
ums
ribing (yi; 0), (yj; 0) and (�; �) is the same as the set of points lying in the rightangle with the vertex (�; �) and sides passing through (yi; 0) and (yj; 0). In view of Theorem 3,one has just to revolve the ruler with its right angle vertex positioned at (�; �), starting andending with the position when one leg is perpendi
ular to the line � = 0 
ontaining datapoints,
ount the number of points in and outside the angle (in
luding in both 
ases those lying on thesides), and eventually take the minimum of all 
ounts.It may be of some interest that the hyperboli
 geometry of the Student depth 
oin
ides withthe Riemannian geometry generated by the Fisher information matrix, the so-
alled informationgeometry introdu
ed by Rao (1945) and Je�reys (1946); see Kass and Voss (1997).
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Figure 5. The 
on�guration from Figure 3 transformed, as spe
i�ed by (13) and(14), to the Poin
ar�e (left) and Klein (right) disks.It is useful to invoke also other models of the Loba
hevski geometry. The right panel of Figure 5shows the Klein disk K D where lines are represented by 
hords of the boundary 
ir
umferen
e;this model allows for better thinking in usual Eu
lidean-geometri
 terms, without a need to 
he
kevery move from the axioms. The transitory model is the Poin
ar�e disk PD , shown in the leftpanel of Figure 5, whose lines are ar
s interse
ting the boundary 
ir
umferen
e in the right angle.After transforming data and parameters into the Klein disk, the Student depth redu
es to thestandard bivariate halfspa
e depth, with the added advantage that all datapoints are extremalpoints of their 
onvex hull.Theorem 4. The Student depth satis�es for any probability measure P :(i) for all (�; �), d(�; �) � (P (f�g) + 1)=2; in parti
ular, if P has 
ontinuous 
umulativedistribution fun
tion, then the depth never ex
eeds 1=2; also, if no two points in a sample 
oin
ide,then the upper bound on the depth is (n + 1)=(2n) for n odd, and 1=2 = n=(2n) for n even;(ii) all depth 
ontours are 
onne
ted and 
losed; they are 
ompa
t for Æ > 0;(iii) if P has 
onne
ted support and its 
umulative distribution fun
tion is 
ontinuous, thenthere is a unique (�; �) with the maximal depth;(iv) there is (�; �) su
h that d(�; �) � 1=3 (
enterpoint theorem).A word of 
aution is appropriate here. The Poin
ar�e lines and halfspa
es in the Klein disk
oin
ide with those in the ordinary Eu
lidean geometry sense; but this 
oin
iden
e does notextend to notions like length or volume. Congruent segments in hyperboli
 geometry may notpossess the same Eu
lidean length; in parti
ular, the hyperboli
 distan
e of any point on theboundary of the Klein disk to any point inside it is in�nite. This means that the realizationof the potential strategy \transform to Klein|
al
ulate depth|transform ba
k" may be farfrom obvious, if the depth notion in the middle step is based on the distan
e or volume|as, for



12instan
e, the Oja simpli
ial volume depth or Mahalanobis depth, both surveyed by Liu, Parelius,and Singh (1999), or the various L1 depth versions presented by Zuo and Ser
ing (2000a), Vardiand Zhang (2000), or Ser
ing (2002).The aforementioned strategy is, however, possible for depth notions that are, like the halfspa
edepth, independent of metri
 
on
epts. Su
h notions in
lude simpli
ial and majority depth; seeLiu et al. (1999). For instan
e, it is fairly 
lear what is a triangle in the Loba
hevski geometryand when a point lies inside it|and this is all we need for a de�nition along the lines of Liu (1988,1990). We de�ne the lo
ation-s
ale simpli
ial depth of (�; �) to be the number, divided by�n3�, of all triangles 
ontaining (�; �) whose verti
es are datapoints. The population version 
anbe de�ned a

ordingly. The transformation argument shows that this simpli
ial depth inherits allfavorable properties of the two-dimensional lo
ation one, in parti
ular the qualitative propertiesof 
ontours and the U-statisti
al stru
ture in the asymptoti
s, as elu
idated by D�umbgen (1992)and Ar
ones, Chen, and Gin�e (1994). The lo
ation-s
ale simpli
ial depth 
ontours, for the samedataset used for Figures 2 and 12, are shown in Figure 6; unlike halfspa
e depth, the simpli
ialdepth assumes quite a large range of values|we outlined only about every tenth 
ontour.
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Figure 6. The lo
ation-s
ale simpli
ial depth assumes quite a large range ofvalues|only every tenth 
ontour is shown. (The dataset is the same arti�
ialone as used in Figure 2.)6. The M�obius equivarian
e and the Student medianThe de�nition of the lo
ation-s
ale likelihood depth implies that it is lo
ation and s
ale equi-variant: if we apply a transformation g(y) = ay + b on the datapoints, then the depth of thetransformed parameter (a�+ b; a�) is the same as that of (�; �). This translates to lo
ation ands
ale equivarian
e of the deepest lo
ation and s
ale, a property shared by many lo
ation ands
ale estimators. However, the Student depth o�ers more: it is equivariant with respe
t to thelarger M�obius group group 
ontaining all rational transformations g(y) = (ay+ b)=(
y+ d) with



13ad� b
 6= 0. This fa
t may be utilized, for instan
e, when the transition to re
ipro
al values mayo

ur.We follow M
Cullagh (1996), who formulated and showed M�obius equivarian
e for the Cau
hylo
ation-s
ale maximum likelihood estimators, also in the use of 
omplex numbers as a 
onvenientformalism. Our parametri
 spa
e, the Poin
ar�e plane, is quite naturally identi�ed with the upper
omplex halfplane; we further extend it to the whole 
omplex plane adding the re
e
tion alongthe horizontal axis and identifying 
omplex 
onjugates. The sample spa
e remains embedded asthe real line into the 
omplex plane. M
Cullagh (1996) 
alls a statisti
 T M�obius equivariant ifit is equivariant with respe
t to the M�obius group of the transformations: T (gy) = �gT (y), where�g is the transformation of the 
omplex plane given by the same formula as g, but interpreted inthe 
omplex domain, and equality is up to 
omplex 
onjugation; gy is understood as g applied
oordinate-wise on the 
olle
tion of datapoints 
onstituting y.Theorem 5. The Student depth satis�es, for any probability measure P and any g in theM�obius group,(12) d(�; �; P ) = d(��; ��; �P );where �P = P Æ g�1 denotes the transformation of P under g, and (��; ��) is, up to 
omplex
onjugation, the image of (�; �) under �g.The proof uses the fa
t that the M�obius group is generated by linear transformations andthe re
ipro
al transformation 1=y. The equivarian
e of the Student depth under linear transfor-mations is quite apparent; it is only the equivarian
e under the re
ipro
al transformation thatneeds to be demonstrated. The latter follows by the transformation to the Poin
ar�e or Kleindisk, where 1=y a
ts as 
omplex 
onjugation|symmetry about horizontal 
oordinate line|andthen by the subsequent transformation ba
k. In the 
omplex notation, the isomorphisms betweenPoin
ar�e models are given by the formulas(13) PP ! PD : z 7! i z � iz + i = 1 + izi + z ; PD ! PP : z 7! i i + zi� z = iz � 1i� z :The formula for the mapping from PD to K D shows that the dire
tion is un
hanged and altersonly the absolute value by a fa
tor 2=(1 + jzj2); its inverse analogously multiplies the absolutevalue by (1� jzj)=jzj2:(14) PD ! K D : z 7! 2z1 + jzj2 = 2z1 + z�z ; K D ! PD : z 7! z(1� jzj)jzj2 = 1�pz�z�z :We 
an see in Figure 5 that the Poin
ar�e plane \in�nity line" � = 0 wraps on the bounding
ir
umferen
e, with zero positioned at its lowermost point; approa
hing �1 and 1 in thePoin
ar�e plane means approa
hing, from left and right, respe
tively, the hollow uppermost pointin the image, the endpoint of the transformed dashed line from Figure 3.The M�obius equivarian
e of the Student depth entails the same equivarian
e for the maximumStudent depth estimator, whi
h we propose to be 
alled the Student median. It is de�ned as



14the set of � and � having the maximal depth for given data. Its M�obius equivarian
e impliesthat it always 
ontains the 
enter of symmetry whenever the distribution is symmetri
. Sin
ethe (standard) Cau
hy distribution is invariant under the re
ipro
al transformation, its Studentmedian satis�es � = 0 and � = 1 (as 
on�rmed by the Cau
hy panel of Figure 7). For randomsamples from the Cau
hy distributions, the Student median estimates the same quantity as themaximum likelihood estimator: the 
enter of symmetry{median for �, and the median absolutedeviation (MAD) about the median � for �. For symmetri
 distributions, the MAD is equalto the semiinterquartile range|the probable error of M
Cullagh (1996), who gave 
losed-formformulas for the maximum Cau
hy likelihood estimator when n = 3; 4; in those spe
ial 
ases, thisestimator 
oin
ides with the Student median. On the basis of the formula for n = 4, M
Cullagh(1996) suggests that maximum Cau
hy likelihood may be an appealing lo
ation-s
ale estimatorfor very small data sets; this re
ommendation thus transfers to the Student median as well. Formore dis
ussion on estimating lo
ation and s
ale in very small datasets, see Hoaglin, Mosteller,and Tukey (1983) and Rousseeuw and Verboven (2002).The examples in Se
tion 8 suggest that the lo
ation � of the Student median lies relatively 
loseto the sample median|in parti
ular for data exhibiting symmetry, 
onsistently with theoreti
alexpe
tations. For asymmetri
 unimodal distributions, we may observe that the Student medianlo
ation � shrinks from the sample median toward the mode. We observed also that the Studentmedian s
ale � is usually shrunk down from the MAD. However, we have no exa
t justi�
ationfor any of these 
laims; we 
an only prove that the maximal Student depth at the sample medianis never too low.Theorem 6. If � is a median of the probability measure P , then max� d(�; �) � 1=4.7. Theoreti
al and 
omputational propertiesThe notions introdu
ed in the previous se
tions raise many theoreti
al questions whose detailedstudy is beyond the s
ope of this paper; we just try to survey properties that are either knownor do not require substantial te
hni
al e�ort. In a

ord with our philosophy stated above, weassume only a general probabilisti
 model for the data (if any): we 
onsider our datapointsto behave as out
omes of independent random variables with the same distribution P . Thereare many properties that may hold beyond this simplest i.i.d. sampling model, but thoseextensions are not pursued here. Let Pn denote the 
orresponding empiri
al probabilities.Theorem 7. The Student depth satis�es, for any probability measure P : under the i.i.d.sampling model, d(�; �;Pn)! d(�; �; P ) uniformly in (�; �) almost surely.Theorem 7 implies the 
onvergen
e of depth 
ontours via Theorem 4.1 of Zuo and Ser
ing(2000b), whi
h extends the results of He and Wang (1997). In parti
ular it holds almost surelythat DÆ+" � DÆn � DÆ�" for suÆ
iently large n, uniformly in Æ 2 [0; 1℄ for every " > 0; here DÆ =f(�; �); d(�; �; P ) � Æg and DÆn is de�ned similarly by repla
ing P by Pn. Another 
onsequen
e



15is the almost sure 
onvergen
e of the maximal depth and the maximum depth estimators. Thelatter holds under some regularity 
onditions on the depth fun
tion d(�; �; P ), for instan
e, the
ondition that the set of maximum depth is a singleton; see Theorem 2 in Mizera and Volauf(2002).The asymptoti
 distribution theory of maximum depth estimators is a topi
 still under intenseinvestigation|see He and Portnoy (1998), Bai and He (1999), Mass�e (2002, 2004). The standardpn rate of 
onvergen
e 
an be established in all known instan
es|in
luding the Student median(Benô�t Laine, personal 
ommuni
ation, De
ember 2003). However, the exa
t expressions forthe asymptoti
 distributions and even asymptoti
 varian
es are yet unknown (ex
ept when thedimension of the parametri
 spa
e is one). Simulations, like those performed by He and Portnoy(1998), indi
ate reasonable eÆ
ien
ies, at least for low-dimensional parametri
 spa
es.The results of Mizera (2002) imply, in view of the 
enterpoint theorem for the Student depth,that the breakdown point of the Student median is not less than dn=3e. This means 
onsiderablerobustness (although 
ertainly not the highest possible). The in
uen
e fun
tion in lo
ation andregression 
ase was derived by Chen and Tyler (2002) and Van Aelst and Rousseeuw (2000); wedo not attempt the appli
ation of the similar te
hniques, albeit we believe it possible.An important theoreti
al question, related to the use of the Student depth for investigatingdistributional properties, is whether every probability measure on a real line is 
hara
terized byits Student depth fun
tion. Although the positive answer is likely, the problem is in generalopen. The transformation argument implies that the answer is positive for empiri
al and atomi
distributions, via the results of Struyf and Rousseeuw (1999) and Koshevoy (2002); we believethat the te
hnique of Koshevoy (2001) 
an be adapted to extend the 
hara
terization for allabsolutely 
ontinuous distributions.A

ording to Theorem 3, the 
omputation of the 
ontour with the depth Æ = k=n amounts to�nding an interse
tion of all halfspa
es 
ontaining at least n�k+1 points. In the Klein disk, thatmeans �nding the interse
tion of n halfspa
es whose boundary 
ontains i-th and (i+k)-th point,in the 
ir
ular order. After 
onstru
ting the initial polygon, the update for a new halfspa
e isthe \stabbing of a 
onvex polygon" problem, as des
ribed in Se
tion 7.9.1 of O'Rourke (1998).Sin
e this needs O(logn) steps, the 
omputation of the whole 
ontour needs O(n logn) steps.In addition to the stabbing of the polygon, one has to determine the 
orre
t orientation of theinterse
tion, to identify the 
orre
t halfspa
e; however, this does not in
rease the time 
omplexity.The time 
omplexity O(n logn) for one 
ontour translates trivially to that of O(n2 logn) for all
ontours (for graphi
al purposes this is overly pessimisti
, sin
e the number of required 
ontoursis usually limited by the graphi
al resolution of the output devi
e). The reason why 
omplexitiesO(n logn) for one and O(n2 logn) for all 
ontours are better than O(n2 logn) and O(n3 logn),reported by Ruts and Rousseeuw (1996) for the bivariate lo
ation depth, is that the data inour situation 
onsist entirely of datapoints that are extremal points of their 
onvex hull. This
onsiderably simpli�es the algorithms for the bivariate lo
ation depth.



16Miller et al. (2003) developed an O(n2) algorithm for simultaneous 
omputing of all lo
ationhalfspa
e depth 
ontours. The transformation argument implies that via their algorithm we may
ompute all Student depth 
ontours in O(n2) time as well. We do not know yet whether this
omplexity 
an be improved in our spe
ial situation; note that O(n logn) is the best possible
omplexity if a problem requires initial sorting of the data.Thus, we may 
on
lude that the Student depth enjoys theoreti
al time 
omplexities of the sameor better order than all the 
ases mentioned above. While the transformation prin
iple providesa theoreti
al argument, it is better in pra
ti
al 
omputations to perform all ne
essary operationsdire
tly in the original Poin
ar�e plane, to avoid rounding errors arising in transforming to andfrom the Klein disk.It turns out that verti
al Poin
ar�e lines are not needed. An interse
tions of Poin
ar�e halfspa
es
an be a

omplished by taking maxima and minima of the hemi
ir
umferen
e fun
tions � =((�� y)(~y � �))1=2. Let y(1) � y(2) � � � � � y(n) denote the ordered datapoints. For � satisfyingy(k) � � � y(n�k+1), we de�ne
�k (�) = maxn�(�� y(i))(y(i+k) � �)�1=2 : i 2Mk(�)o ;(15) 
+k (�) = minn�(�� y(i))(y(n�k+i) � �)�1=2 : i = 1; 2; : : : ; ko ;(16)where i 2Mk(�) means that y(i) are the k largest datapoints su
h that y(i) < �.Theorem 8. Let y(1) � y(2) � � � � � y(n) be the ordered datapoints. For given Æ, the 
ontourof the Student depth is the set of all (�; �) su
h that for k = dnÆe,y(k) � � � y(n�k+1) and 
�k (�) � � � 
+k (�):Analogously, for general P with the 
umulative distribution fun
tion F (y) = P ((�1; y℄), wede�ne for � satisfying Æ � minfF (�); 1� F (�)g,
�Æ;P (�) = supn((�� q�)(qÆ+� � �))1=2 : � 2 (F (�)� Æ; F (�))o ;(17) 
+Æ;P (�) = inf n((�� q�)(q1�Æ+� � �))1=2 : � 2 (0; Æ)o ;(18)where q� = minfy 2 R : F (y) � �g is the �-quantile of P . Note that if P is an empiri
aldistribution, (17){(18) redu
e to (15){(16).Theorem 9. Let P be a probability measure with the 
umulative distribution fun
tion F . Forgiven Æ, the 
ontour of the Student depth is the set of all (�; �) su
h thatÆ � minfF (�); 1� F (�)g and 
�Æ;P (�) � � � 
+Æ;P (�):If the distribution is symmetri
 about �0, then the depth 
ontours are also symmetri
 about�0. If there is a unique deepest point (�; �), then � must be equal to �0, and Theorem 9 yieldsthat � = 
�Æ;P (�) = 
+Æ;P (�), where Æ is the depth of (�; �). A

ording to Theorem 4(iii), the



17deepest point is unique, for instan
e, if P has 
onne
ted support and its 
umulative distributionfun
tion is 
ontinuous.
8. Data examples: the Student depth in a
tionWe analyzed several univariate datasets to illustrate the dire
tions formulated at the end ofSe
tion 4. The 
entral obje
t of our analyses was the plot of the Student depth 
ontours. Forsmall datasets, we plotted also the original datapoints; this is not pra
ti
al for larger samples.A

ording to the visual desiderata formulated by Cleveland (1994), it may be desirable to plotonly sele
ted 
ontours. Indeed, a

ording to our limited experien
e, a smaller number of 
ontoursis often better; an extreme possibility is to 
onstru
t a kind of \Student boxplot" and plot onlythe 
ontours with the depth of approximately 1=4, 1=2 and 3=4 of the maximal one (and possiblyalso the �rst depth 
ontour by a dotted line or so). Another possibility is to render prin
ipal
ontours by thi
ker lines and several other ones by thinner ones, or indi
ate the intermediate
ontours just by shading. The position of the Student median is indi
ated by \�"; we alsoreport the maximal attained depth. We are still in the pro
ess of experimenting what graphi
alappearan
e would be ideal for the Student depth plots; to help our readers to form their ownpreferen
es, we do not present our plots in a uniform style, but rather with minor alterations.We also plot some additional information. The dashed line indi
ates the s
ale � with themaximal depth among (�; �) for a �xed �. The dotted line plots the median absolute deviationfrom � against this �; the spe
ial 
ase when � is the sample median is marked by \+".Chambers et al. (1983) analyze the distribution of their datasets by the quantile plots of theoriginal and transformed data, a well-known te
hnique now|the empiri
al quantiles are plottedagainst the quantiles from various theoreti
al distributions, most prominently the Gaussian;this allows for penetrating 
omparisons of observed and theoreti
al distributions. Lo
ation-s
aledepth 
ontours plots do not possess a spare dimension, hen
e our 
omparison strategy shouldbe di�erent: we 
ompare the observed Student depth 
ontours visually to the theoreti
al onesplotted for the hypothesized distribution. Due to the lo
ation and s
ale equivarian
e, we do nothave to estimate lo
ation and s
ale parameters|this is an advantage to quantile plots, where,ex
ept for the Gaussian 
ase, some value of the s
ale has to be spe
i�ed.To obtain an initial sampler of theoreti
al depth 
ontours, we plotted them for sele
ted dis-tributions; the results 
an be seen in Figures 7 and 8. (In future implementations, we hope topossess an ability to 
reate \model shapes" intera
tively.) Note that, in parti
ular, the Cau
hydistribution is the only one among the displayed distributions with the maximal depth equal to1=2 (the maximal depth 1=2 
an be easily proved for the Cau
hy distribution rigorously, via The-orem 9). The pi
tures indi
ate that di�erent distributions 
reate di�erent 
hara
teristi
 shapes.The �rst question is how far those will reveal themselves in the sampled data.
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20Example 1. Simulated Gaussian/Cau
hy mixtures. To assess this, we start by anarti�
ial example. Two Gaussian/Cau
hy mixtures were simulated: the �rst 
ontained 35 data-points generated from the Gaussian and 10 from the Cau
hy distribution; the se
ond 10 Gaussianand 35 Cau
hy datapoints. Thus, the mixing proportions are the same, only the �rst sampleis majority Gaussian and the se
ond majority Cau
hy. The 
ontour plots for both samples aredisplayed in the left and right sides of Figure 9, respe
tively.Normal quantile-quantile plots are added in the middle of the �rst row, to be 
ompared withthe 
ontour plots in terms of visual impression. The latter is, in our opinion, quite similar forboth samples; they exhibit outliers and/or heavier tails. In a real situation, we would not haveany a priori information about the s
ale, so the di�erent slope of the line is not de
isive. Theonly 
lue is perhaps that the outliers of the majority Cau
hy sample are 
onsiderably wilder andperhaps slightly more transparent. The latter appears also to be more linear in the middle ofthe sample.The �rst row exhibits also the Student depth 
ontours of the sampling distribution mixtures.It is surprising how a majority of approximately 2/3 dominates the shapes of the 
ontours. The
ontour shapes of the leftmost resemble the Gaussian ones from Figure 7; those in the rightmostthe Cau
hy ones.The se
ond row of Figure 9 shows the Student depth 
ontours for the simulated data. In theraw form they are not very informative; it is mu
h better to look at the deeper 
ontours undersome magni�
ation. (The ability of 
onvenient res
aling, as well as of 
ontrolling the aspe
t ofaxes, may be an important requirement for the potential routine use of these plots.) The resultsare shown in the third row of Figure 9. The samples exhibit 
onsiderable reprodu
tion of thetheoreti
al pattern of the �rst line for a relatively small sample size, in parti
ular the majoritydistribution pattern (Gaussian and Cau
hy, respe
tively) is revealed.Of 
ourse, the question is whether all the plots are not merely an artifa
ts of the simulation.This is hard to dispute: due to spa
e 
onstraints, we 
annot show a large number of simulations,and a quantitative measure of overall similarity is not available. Nevertheless, the last row ofFigure 9 presents, as a kind of 
ompromise, the (inner) Student depth 
ontours of three additionalsimulations from ea
h mixture. (We observed mu
h better agreement for the doubled samplesizes 70 and 20.)A possible obje
tion to any methodology like this one is that it requires a 
onsiderable training.We do not deny this, we only remark that the amount of the required investment may be in theeye of beholder. In parti
ular, our tea
hing experien
e reminds us often that even seeminglyobvious pro
edures like quantile plots are not per
eived ne
essarily as su
h by beginners.Example 2. Seeded rainfall data. In this example, we 
reate a sequel to the story begunby Chambers et al. (1983). They end by the 
on
lusion that rather than the gamma distributionfor the datapoints yi, proposed by the earlier authors 
ited therein, the better �t is a
hieved



21by the Gaussian distribution �tting y0:12i . This 
on
lusion is drawn from the straightness of the
orresponding normal quantile-quantile plot, shown in the left panel of Figure 10.Chambers, Cleveland, Kleiner, and Tukey did not routinely use the standard method of �t-ting the line to the quantile-quantile plot through the quartile points (they have only one ortwo pi
tures with it in their book), sin
e probably they would see then that the plot indi
atessomewhat heavier tails than Gaussian. Apparently, the power transformation symmetrizes, butnot ne
essarily normalizes the data.
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Figure 9. 35:10 and 10:35 Gaussian/Cau
hy mixtures. Patterns or artifa
ts?



22Alternatives 
oming to mind are the t distributions, but also several others. We 
ould try a
ouple of quantile plots; instead, a faster way is to 
ompare the Student 
ontour plot, in themiddle panel of Figure 10, with Figure 7. This 
omparison turns our attention to the Lapla
edistribution|from all available models this appears as most a

eptable, be
ause the inner 
on-tours are somewhat more stret
hed downwards. A
tually, after inspe
ting several quantile plots,the one for the Lapla
e distribution �ts best; see the right panel of Figure 10. In fa
t, this plotis almost the same as for the t distribution with � = 3; using only quantile plots, we would notbe able to distinguish between this t and the Lapla
e distribution in this example.We have to remark that even the Lapla
e �t may be felt not yet 
ompletely satisfa
tory; thusour story, ending at this point, may have another sequel elsewhere. And after all, the sample sizeis indeed small. We tried also the Student depth 
ontours for the original untransformed data;our 
on
lusions in this 
ase support those of Chambers et al. (1983) regarding the gamma �ts.Example 3. Intervals between earthquakes. In our last example, we will analyze thedata whose distribution is beyond any doubt asymmetri
. Re
all that our philosophy is 
onsistentwith applying a method derived from symmetri
 likelihoods to asymmetri
 distributions|on
ethe method was derived, we assess its validity in a nonparametri
 broader 
ontext, withoutreferring to the original working assumptions.The datapoints are the periods between earthquakes, re
orded as number of days betweensu

essive serious earthquakes worldwide. For more details and the original sour
e of the dataset,see Hand, Daly, Lunn, M
Conway, and Ostrowski (1994), who 
omment on their Dataset 255that \if earthquakes o

ur at random, an exponential model for these data should provide areasonable �t." To assess this graphi
ally, we may try the kernel density situation, as given inthe leftmost panel of Figure 11, but this is slightly inappropriate in this situation|we know thatthe data are positive|and thus would require further adjustments. The next possibility is thequantile-quantile plot, as shown in the rightmost panel of Figure 11, with the rate � estimated by
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Figure 10. Seeded rainfall data. Peaked or heavy-tailed?



231=mean and on the log s
ale as re
ommended by Chambers et al. (1983) to avoid the 
lutteringof points near the origin. The plot supports the hypothesis of exponentiality.
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Figure 11. Intervals between earthquakes. Are they exponentially distributed?The left panel shows the kernel density estimate, the right panel the quantile-quantile plot on the logarithmi
 s
ale. The middle panel shows the 
ontours of theStudent depth; note the shift of the Student median lo
ation from the median tothe mode.The plot of the Student depth 
ontours in the middle panel supports it too, ex
ept for thedashed 
urve of maximal depth � is des
ending rather than as
ending; the right-side 
ontoursare somewhat 
loser ea
h to other than those in the model plot in Figure 8. However, theseobservations may be mere artifa
ts; 
on�den
e bands, or some other exa
t means, would beneeded to 
on
lude whether the dashed 
urve really des
ents; it is quite likely that any su
h bandobtained, say, by resampling, would be wider that the amount of des
ent. Nevertheless, the plotis intended primarily as an exploratory tool here; and in this 
apa
ity it is quite informative,albeit its analysis requires some training. In any 
ase, the sample size 62 does not allow forde�nitive 
on
lusions.Summarizing our limited experien
e, we 
an say that the Student depth plots easily revealasymmetry, in
luding that present in the 
ore of the data, rather than just in the tails; butthey are 
apable of dete
ting heavy-tailed behavior too. To get more out of plots, it is betterto look rather on deeper 
ontours|whi
h may need some magni�
ation of the 
entral part ofthe plot. The maximal Student depth 
ontour marks the lo
ation of the Student median andthus also gives an idea about the lo
ation and s
ale of data. The 
ontours exhibit di�erent
hara
teristi
 shapes for di�erent distributions, and therefore they may suggest something aboutthe distribution of the data.



249. Con
lusion and open problemsThe lo
ation-s
ale depth is not only a non-trivial, novel instan
e for the general theory ofMizera (2002), but its most tra
table version, the Student depth, enjoys remarkable theoreti
aland 
omputational properties. The maximum depth estimator based on it, the Student median,
onstitutes a lo
ation-s
ale estimator of median type. Plots of the Student depth 
ontours havesome potential to be
ome a graphi
al tool of exploratory data analysis|although mu
h moreexperien
e has to be gathered yet. Some information about the distribution of the data is alsoprovided by the maximal depth. The whole methodology is 
onsiderably robust.
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Figure 12. The Lapla
e version of the lo
ation-s
ale depth has un
ertainproperties|stemming from the fa
t that instead of 
ir
les we obtain re
tangles.Our paper leaves several dire
tions open for the future resear
h. De�nition 1 leads to variousversions of lo
ation-s
ale depth, depending on the 
hoi
e of the normalized density f . It ispossible, as suggested by Figure 2, that they are similar in some sense|perhaps some of themare equivalent up to a reparametrization. However, we do not possess any formal insights inthis dire
tion; the situation may be not that simple, as indi
ated by Figure 12 showing thelo
ation-s
ale depth for the Lapla
e f .A rather minor dire
tion, in our opinion, 
on
erns exploring the approa
h that de�ned sim-pli
ial depth, in Se
tion 5, to de�ne other notions of lo
ation-s
ale depth. We already indi
atedthat su
h a task may be formidable if attempted in a 
on
eptually 
lean way. Of 
ourse, there isalways a tempting possibility to simply ignore the hyperboli
 geometry in the Klein disk and 
on-sider the ordinary Eu
lidean geometry instead; we believe that this would lead to unpredi
table
onsequen
es. Su
h a move, however, may provide a good lo
al approximation|for instan
e, asa 
omputational short
ut for �nding a 
enter of gravity of the deepest 
ontour.The more promising dire
tions for the future resear
h in
lude deeper theoreti
al investigationof the Student median, a straightforward but te
hni
ally somewhat demanding extension ofthe Student depth to the multivariate lo
ation-s
ale model, and likelihood-based prin
iples fordesigning 
riterial fun
tions, resulting halfspa
e depths and their properties in various models ofdata analysis.
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s, 28, 483{499.AppendixProof of Theorem 1. As there is nothing to prove when � = 0, we may assume that � > 0.Then the theorem is proved by showing thatu1 (�i) + u2(�i (�i)� 1) � 0is equivalent to u1�i + u2(� 2i � �(�i)) � 0;whi
h is done either when �i 6= 0 by algebrai
 manipulations, using the assumption sgn( (�)) =sgn(�), or when �i = 0 by observing that this 
ase means �u2 � 0 whi
h is equivalent to�u2 �(�i) � 0 whenever �(0) > 0. �Proof of Theorem 2. The inequalities follow from the observation that (4) in De�nition 1minimizes over sets that 
ontain all those appearing in (6), for u2 = 0, and all those appearingin (8), for u1 = 0. �



28Proof of Theorem 3. The starting point is (11) from De�nition 2, rewritten as follows:d(�; �) = infu6=0=k �i : u1�i + u2(� 2i � 1) � 0	 = infu6=0=k �i : u1�i + u2 �12(� 2i � 1)� � 0	 :It is enough to take the inf in the last expression just over kuk = 1, that is, over u =(
os 2�; sin 2�) with � 2 [0; �):(19) d(�; �) = inf� =kfi : yi 2 H�g;where H� is the set of all y su
h that(20) (
os 2�) y � �� + (sin 2�)�(y � �)22�2 � 12� � 0:On solving the quadrati
 inequality (20) for y, we obtain that(21) H� = 8>><>>:��1; �� � 
os�sin� i [ ��+ � sin�
os�;1� ; for � 2 [0; 12�);��+ � sin�
os�; �� � 
os�sin�� for � 2 [12�; �):In both 
ases, the boundary is the interse
tion of the line � = 0 with the 
ir
umferen
e 
enteredat (� � �(
os 2�)=(sin 2�); 0), with radius �=j sin 2�j; a straightforward veri�
ation shows thatalso point (�; �) lies on this 
ir
umferen
e. This 
on
ludes the proof of the �rst part, in view of(19).For the se
ond part, we have just to show that given any Poin
ar�e halfspa
e 
ontaining (�; �),there is another Poin
ar�e halfspa
e 
ontained in the �rst one and su
h that (�; �) lies on itsboundary. On
e this holds, the in�mum of the 
ardinality (or measure) of the points 
ontainedin a halfspa
e taken over all halfspa
es with (�; �) on their boundary is not smaller than thattaken over all halfspa
es 
ontaining (�; �). And the 
onverse inequality is trivial, sin
e anyhalfspa
e with (�; �) on its boundary 
ontains (�; �).As already mentioned in the main text, the desired property follows from the behavior ofparallels in the Loba
hevski geometry. Given a halfspa
e ~H and a point (�; �), either this pointlies on the Poin
ar�e line ~̀ forming the boundary of ~H, and then the property holds trivially, orthe point (�; �) does not lie on ~̀ and then there exists a Poin
ar�e line ` through this point notinterse
ting ~̀. Consequently, there is a Poin
ar�e halfspa
e H � ~H with boundary ` 
ontaining(�; �). �Proof of Theorem 4. All the properties follow by transformation to the Klein disk, thenby applying some property of the halfspa
e depth, and then by applying the inverse transfor-mation, if ne
essary. For (i), see Proposition 5.10 of Mizera (2002). Part (ii) follows from the
onvexity of the depth 
ontours in the Klein disk; sin
e the isomorphism to Poin
ar�e plane is
ontinuous, their 
onne
tedness is preserved. The assumptions of (iii) assert that the distributionfun
tion is stri
tly in
reasing and P assigns a positive probability to any nonempty open inter-val; 
onsequently, the transform of P assigns a nonzero probability to any strip with nonempty



29interior in the Klein disk; Proposition 7 of Mizera and Volauf (2002) then implies (iii); see alsoProposition 3.5 of Mass�e and Theodores
u (1994). The 
enterpoint theorem (iv) for the Studentdepth 
ould be proved also via results of Mizera (2002), but here it follows by the transformationargument more dire
tly, as the 
orollary of the standard 
enterpoint theorem in the bivariatelo
ation model. �Proof of Theorem 5. The M�obius group is generated by the linear (aÆne) transformationsand the re
ipro
al transformation. The equivarian
e under linear transformations is obvious fromthe de�nition; hen
e it remains only to prove the theorem for gy = 1=y.We do this by straightforward veri�
ation. Given data y, we transform them into the Poin
ar�edisk. If the datapoint is z = x+0i, then simple algebra using left part of the formula (13) showsthat its transformation, 2xx2 + 1 + ix2 � 1x2 + 1 ;is the 
omplex 
onjugate of the transformation of 1=x. That is, in the Poin
ar�e disk, the dat-apoints 
orresponding to 1=y are those 
ipped about the real line. It follows that parametersfrom the inside of the Poin
ar�e disk retain their depth when 
ipped in the same way: in otherwords, the depth of a+ ib in the Poin
ar�e disk is with respe
t to the original data y the same asthe depth of a� ib under 1=y.Now we have to 
al
ulate what does this mean in the original Poin
ar�e plane. If a parameter� + i� transforms to a + ib (beware: the formula makes sense only for the original Poin
ar�e,that is, upper halfplane, so we have to start with � > 0 at this point), then under the inversetransformation, expressed by the right part of the formula (13), it transforms ba
k to itself;while a � ib transforms to (� + i�)=(�2 + �2). A simple veri�
ation shows that 1=(� + i�) =(�� i�)=(�2 + �2), the same parametri
 value up to 
omplex 
onjugation. �Proof of Theorem 6. The theorem follows from Theorem 9, via the elementary inequalities�1 � �2 and 1� Æ+ �1 � �2+ Æ, holding whenever Æ � 1=4, 0 � �1 � Æ, and 1=2� Æ � �2 � 1=2.Consequently, �� q�1 � �� q�2 and q1�Æ+�1 � � � qÆ+�2 � �; this results in 
+Æ;P (�) � 
�Æ;P (�) if� = q1=2, in view of (17){(18). �Proof of Theorem 7. A

ording to Theorem 3, the Student depth is 
omputed as thein�mum of measures of 
ertain intervals in the real line. Under the i.i.d. sampling model, thealmost sure uniform 
onvergen
e of the measures of those intervals follows from the Glivenko-Cantelli theorem; the almost sure uniform 
onvergen
e of the in�ma follows. �



30For notational simpli
ity, we assume in the proofs of Theorems 8 and 9 that y1 � y2 � : : : yn.It is 
onvenient to represent the Student depth for � > 0 in the vein of (20) asn d(�; �) = inf�2[��;�℄ 
ard(i : sin(�)�yi � �� �+ 
os(�) �yi � �� �2 � 1! � 0)= inf�2[��;�℄Xyi<� 1fsin(�) + 
os(�)ai(�; �) � 0g+Xyi=� 1f� 
os(�) � 0g+Xyi>� 1fsin(�) + 
os(�)ai(�; �) � 0g
= 8>>>>>>><>>>>>>>:

Pyi<� 1f� tan(�) � ai(�; �)g+Pyi>� 1f� tan(�) � ai(�; �)g;if 
os(�) < 0Pyi<� 1f� tan(�) � ai(�; �)g+ 
ardfi : yi = �g+Pyi>� 1f� tan(�) � ai(�; �)g;if 
os(�) > 0Pyi<� 1fsin(�) � 0g+ 
ardfi : yi = �g+Pyi>� 1fsin(�) � 0g;if 
os(�) = 0where(22) ai(�; �) = a�;�(yi) = yi � �� � �yi � �and 1f: : :g abbreviates the indi
ator fun
tion 1f:::g(�). The following lemma follows from routinealgebrai
 
al
ulations.Lemma 1.(a) If y < ~y and (�� y)(~y � �) < 0, then a�;�(y) S a�;�(~y)() (�� y)(~y � �) S �2:(b) If y < ~y and (�� y)(~y � �) > 0, then a�;�(y) S a�;�(~y)() (�� y)(~y � �) T �2:Lemma 2. Let l be a nonnegative integer, a1 � a2 � : : : � am, am+l+1 � am+l+2 � : : : � an,k � minfm;n�m� lg and letd�(�) = mXn=1 1fsin(�) � � 
os(�) aig+ l 1f� 
os(�) � 0g+ nXn=m+1+l 1fsin(�) � � 
os(�) aig:(a) Then min�2[��;�℄ d�(�) � minfm;n�m� lg.(b) If ai � ak+i for all i = m � k + l + 1; : : : ; m and ai � an�k+i for all i = 1; : : : ; k, thenmin�2[��;�℄ d�(�) � k:(
) If ai < ak+i for some i, then min�2[��;�℄ d�(�) < k:(d) If ai > an�k+i for some i, then min�2[��;�℄ d�(�) < k:



31Proof of Lemma 2. First, note thatd�(�) = 8<: Pmi=1 1f� tan(�) � aig+Pni=m+l+1 1f� tan(�) � aig; if 
os(�) < 0;Pmi=1 1f� tan(�) � aig+Pni=m+l+1 1f� tan(�) � aig+ l; if 
os(�) > 0;Pmi=1 1fsin(�) � 0g+Pni=m+l+1 1fsin(�) � 0g+ l; if 
os(�) = 0:(a) For � with � tan(�) < minfa1; am+l+1g, we have d�(�) = n � m � l for 
os(�) < 0 andd�(�) = m+ l for 
os(�) > 0. If � tan(�) > maxfam; ang then we have d�(�) = m for 
os(�) < 0and d�(�) = n� (m+ l) + l = n�m for 
os(�) > 0.(b) For � with 
os(�) = 0 we have d�(�) � minfm + l; n �mg � k. Now regard any � with
os(�) 6= 0.If a1 � ai � � tan(�) � ai+1 � am and 
os(�) < 0, then there are two possibilities. Onepossibility is that n� k + i + 1 � n so that � tan(�) � ai+1 � an�k+i+1 whi
h implies d�(�) �i+n� (n�k+ i) = k. The other possibility is that n�k+ i+1 > n so that i � k whi
h impliesd�(�) � i � k.If a1 � ai � � tan(�) � ai+1 � am and 
os(�) > 0, then there are also two possibilities.One possibility is that i � m � k + 1 + l so that ak+i � ai � � tan(�) whi
h implies d�(�) �m� i+ (k + i)� (m + l) + l = k. The other possibility is that i < m� k + 1 + l whi
h impliesd�(�) � m� i+ l � k.If am+l+1 � am+i � � tan(�) � am+i+1 � an and 
os(�) < 0, then again there are twopossibilities. One possibility is that m + i � n � k + 1 so that m + i = n � k + ~i and thusam+i�n+k = a~i � an�k+~i = am+i � � tan(�). This implies d�(�) � m+ i� n+ k+ n� (m+ i) =k. The other possibility is that m + i < n � k + 1 so that i � n � m � k whi
h impliesd�(�) � n� (m+ i) � k.If am+l+1 � am+i � � tan(�) � am+i+1 � an and 
os(�) > 0, then one possibility is thatm+ i+1 � m+k so that m+ i+1 = k+~i and thus � tan(�) � am+i+1 = ak+~i � a~i = am+i+1�k.This implies d�(�) � m � (m + i � k) + (m + i) � (m + l) + l = k. The other possibility ism+ i + 1 > m+ k so that i � k whi
h implies d�(�) � (m+ i)� (m+ l) + l � k.If � tan(�) =2 (minfa1; am+l+1g;maxfam; ang), then d�(�) � k follows from a).(
) If ai < ak+i then there exists � with ak+i > � tan(�) > ai and 
os(�) > 0 so thatd�(�) � m� i+ (k + i� 1)� (m+ l) + l = k � 1.(d) If ai > an�k+i then there exists � with ai > � tan(�) > an�k+i and 
os(�) < 0 so thatd�(�) � i� 1 + n� (n� k + i) = k � 1. �Proof of Theorem 8. Set m = 
ardfi : yi < �g and l = 
ardfi : yi = �g. If 0 = � 2[
�k (�); 
+k (�)℄ then (�� yi)(yk+i � �) = 0 for i = m� k + 1; : : : ; m whi
h impliesn d(�; �) = inf(u1;u2)6=0 
ard�i : u1(yi � �) + u2((yi � �)2 � �2) � 0	 � l � k:If 0 = � =2 [
�k (�); 
+k (�)℄ then l < k so that with u1 = 0 and u2 = �1n d(�; �) � 
ard�i : �(yi � �)2 � 0	 = l < k:



32Now let � > 0. Set ai = ai(�; �). Lemma 1(a) asserts that ai < aj if yi < yj < � or � < yi < yj,sin
e in both 
ases (��yi)(yj��) < 0 < �2 is always satis�ed. Hen
e the assumptions of Lemma2 are satis�ed and therefore n d(�; �) = min�2[��;�℄ d�(�), where d�(�) is the fun
tion 
onsideredin Lemma 2.If � 2 [
�k (�); 
+k (�)℄, then�2 � (�� yi)(yk+i � �) for all i = m� k + 1; : : : ; m;�2 � (�� yi)(yn�k+i � �) for all i = 1; : : : ; k:This is equivalent to ak+i � ai for all k = m�k+1+ l; : : : ; m and ai � an�k+i for all i = 1; : : : ; ka

ording to Lemma 1(b). Hen
e Lemma 2(b) yields n d(�; �) � k.Now let � =2 [
�k (�); 
+k (�)℄. Then there exists k with(�� yi)(yk+i � �) > �2 or �2 > (�� yi)(yn�k+i � �):A

ording to Lemma 1(b), this is equivalent toak+i > ai or ai > an�k+i;so that Lemma 2(
) and 2(d) gives n d(�; �) < k. �Proof of Theorem 9. We prove the theorem only for distributions whose density has 
on-ne
ted support. However, a 
ombination of this of its proof and that of Theorem 8 for thesample 
ase yields the theorem for any general distribution P . In what follows, b stands forF (�) = P ((�1; �℄).If 0 = � 2 [
�Æ;P (�); 
+Æ;P (�)℄, then Æ = 0 � d(�; �; P ) sin
e a 
ontinuous distribution means
�Æ;P (�) > 0 for Æ > 0. If 0 = � =2 [
�Æ;P (�); 
+Æ;P (�)℄ then Æ > 0 and with u1 = 0 and u2 = �1 weobtain d(�; �; P ) � P ��y : � (y � �)2 � 0	� = 0 < Æ:Let � > 0 and de�ned�(�) = 8>>>>>>><>>>>>>>:
P (fy 2 (�1; �) : � tan(�) � a�;�(y)g)+ P (fy 2 (�;1) : � tan(�) � a�;�(y)g) ; if 
os(�) < 0;P (fy 2 (�1; �) : � tan(�) � a�;�(y)g)+ P (fy 2 (�;1) : � tan(�) � a�;�(y)g) ; if 
os(�) > 0;P (fy 2 (�1; �) : sin(�) � 0g)+ P (fy 2 (�;1) : sin(�) � 0g) ; if 
os(�) = 0;where a�;�(y) was de�ned in (22). Then we have d(�; �; P ) = min�2[��;�℄ d�(�).Let � 2 [
�Æ;P (�); 
+Æ;P (�)℄. First, note that for � with 
os(�) = 0 we have d�(�) � minfb; 1�bg �Æ. Now 
onsider � with 
os(�) 6= 0. The 
ondition on � provides(�� q�)(q1�Æ+� � �) � �2 for � 2 (0; Æ) ;(�� q�)(qÆ+� � �) � �2 for � 2 (b� Æ; b) :



33This is equivalent to(�� q��1+b+Æ)(qb+� � �) � �2 for � 2 (1� b� Æ; 1� b) ;(�� q�+b�Æ)(qb+� � �) � �2 for � 2 (0; Æ) :Using Lemma 1(b) we obtaina�;�(q��1+b+Æ) � a�;�(qb+�) for � 2 (1� b� Æ; 1� b) ;(23) a�;�(q�+b�Æ) � a�;�(qb+�) for � 2 (0; Æ) :(24)For y 2 (�1; �) we have (�� y)(q��1+b+Æ � �) < 0 < �2 so that Lemma 1(a) impliesa�;�(q��1+b+Æ) S a�;�(y)() q��1+b+Æ S y:The same holds for q�+b�Æ and an analogous result holds for y 2 (�;1) and qb+�. Now let � anyvalue with � tan(�) = a�;�(qb+�) for some � 2 (0; 1� b). If 
os(�) < 0 and � > 1 � b � Æ weobtain with (23)d�(�) = P (fy 2 (�1; �) : a�;�(qb+�) � a�;�(y)g)+ P (fy 2 (�;1) : a�;�(qb+�) � a�;�(y)g)� P (fy 2 (�1; �) : a�;�(q��1+b+Æ) � a�;�(y)g)(25) + P (fy 2 (�;1) : a�;�(qb+�) � a�;�(y)g)= P (fy 2 (�1; �) : q��1+b+Æ � yg) + P (fy 2 (�;1) : qb+� � yg)= (� � 1 + b + Æ) + 1� (b+ �) = Æ:If 
os(�) < 0 and � � 1� b� Æ we obtaind�(�) � 0 + P (fy 2 (�;1) : a�;�(qb+�) � a�;�(y)g)= 1� (b + �) = 1� b� � � Æ:Analogously, if 
os(�) > 0 and � < Æ we obtain with (24)d�(�) = P (fy 2 (�1; �) : a�;�(qb+�) � a�;�(y)g)+ P (fy 2 (�;1) : a�;�(qb+�) � a�;�(y)g)� P (fy 2 (�1; �) : a�;�(q�+b�Æ) � a�;�(y)g)(26) + P (fy 2 (�;1) : a�;�(qb+�) � a�;�(y)g)= P (fy 2 (�1; �) : q�+b�Æ � yg) + P (fy 2 (�;1) : qb+� � yg)= b� (� + b� Æ) + b + � � b = Æ:If 
os(�) < 0 and � � Æ we obtain similarlyd�(�) � 0 + P (fy 2 (�;1) : a�;�(qb+�) � a�;�(y)g) = b + � � b � Æ:



34Note that lim�#0 a�;�(qb+�) = �1. If the support of P has no upper bound, thenlim�"1�b a�;�(qb+�) = 1 so that for every � there exists � 2 (0; 1� b) with � tan(�) =a�;�(qb+�) sin
e the support is 
onne
ted. Hen
e in this 
ase, we 
an 
on
lude d(�; �; P ) =min�2[��;�℄ d�(�) � Æ. If the support of P has an upper bound, then for every � with� tan(�) � a�;�(q1) we have with (23)d�(�) = P (fy 2 (�1; �) : � tan(�) � a�;�(y)g)� P (fy 2 (�1; �) : a�;�(qb+1�b) � a�;�(y)g)� P (fy 2 (�1; �) : a�;�(q1�b�1+b+Æ) � a�;�(y)g) = Æfor 
os(�) < 0 and d�(�) � P (fy 2 (�;1) : � tan(�) � a�;�(y)g) � 1� bfor 
os(�) > 0. Hen
e, also for bounded support, we have d(�; �; P ) = min�2[��;�℄ d�(�) � Æ.If � =2 [
�Æ;P (�); 
+Æ;P (�)℄ then there exists � 2 (1�b�Æ; 1�b) with (��q��1+b+Æ)(qb+���) < �2or � 2 (0; Æ) with (�� q�+b�Æ)(qb+� � �) > �2. A

ording to Lemma 1(b) this meansa�;�(q��1+b+Æ) > a�;�(qb+�) or a�;�(q�+b�Æ) < a�;�(qb+�):Sin
e a0�;�(y) = 1� + �(y��)2 > 0 the fun
tion a�;� is stri
tly in
reasing in y. Hen
e fora�;�(q��1+b+Æ) > a�;�(qb+�); we have using � with � tan(�) = a�;�(qb+�) and 
os(�) < 0d�(�) = P (fy 2 (�1; �) : a�;�(qb+�) � a�;�(y)g)(27) + P (fy 2 (�;1) : a�;�(qb+�) � a�;�(y)g)< P (fy 2 (�1; �) : a�;�(q��1+b+Æ) � a�;�(y)g)+ P (fy 2 (�;1) : a�;�(qb+�) � a�;�(y)g)= P (fy 2 (�1; �) : q��1+b+Æ � yg) + P (fy 2 (�;1) : qb+� � yg)= (� � 1 + b+ Æ) + 1� (b+ �) = Æ:Thereby the stri
t inequality holds sin
e the support of the distribution is 
onne
ted. Analogouslyfor a�;�(q�+b�Æ) < a�;�(qb+�) we have using � with � tan(�) = a�;�(qb+�) and 
os(�) > 0d�(�) = P (fy 2 (�1; �) : a�;�(qb+�) � a�;�(y)g)+ P (fy 2 (�;1) : a�;�(qb+�) � a�;�(y)g)< P (fy 2 (�1; �) : a�;�(q�+b�Æ) � a�;�(y)g)+ P (fy 2 (�;1) : a�;�(qb+�) � a�;�(y)g)= b� (� + b� Æ) + (b+ �)� b = Æ: �


