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Summary. New design criteria are derived by minimizing the tolerance regions
in linear models. Since the regions usually are not completely ordered a complete
ordering is provided by regarding the volume, the longest axis or the sum of the axes
of the region as design criteria leading to TD-, TE- and TA-optimal designs. It is
shown that the TE- and the TA-optimal designs coincide with the classical E- and
A-optimal designs. However, the TD-optimal designs and D-optimal designs can be
different which is shown by an example.
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1 Introduction

For the vector Y = (Y1. . . . , YN )> of observations we assume a general linear
model of the form

Y = Xγ + σ ε with ε ∼ N (0N , IN×N ),

where ε = (ε1, . . . , εN ) is the vector of errors, γ ∈ <r the unknown parameter
vector, σ ∈ <+ an unknown scale parameter, X = (x1, . . . , xN )> ∈ <N×r the
known design matrix, briefly also called design, and N (0N , IN×N ) is the nor-
mal distribution with mean vector 0N of zeros and covariance matrix IN×N ,
the identity matrix. Given a realization y of Y , the aim is to construct a region
R(X, y) ⊂ <M in which the vector V of future observations V1, . . . , VM will fall
with a high probability. For that we assume that the vector V = (V1, . . . , VM )>

of future observations will follow the same probability law as Y , namely

V = Wγ + σ ε0 with ε0 ∼ N (0M , IM×M ),
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where W is the design matrix of the future observations. Hence, the distribu-
tion of V is given by the same parameter θ = (γ, σ) ∈ Ω := <r × <+ as the
distribution of Y . Given θ, Y and V shall be independent.

It is impossible to construct a region R(X, y) so that V lies in R(X, y)
with high probability for all θ and all realizations y of Y , i.e., PV |θ(R(X, y))
is large for all θ and y. One compromise are β-expectation tolerance regions
or mean coverage tolerance regions where R(X, y) shall satisfy

∫
PV |θ(R(X, y)) fY |θ(y) dy = β (1)

for all θ ∈ <r ×<+ (see e.g. [AD75], [Gut81], [Jil81], [JA89]). But this means
that R(X, y) is also a prediction region (see [Pau43]) since

∫
PV |θ(R(X, y)) fY |θ(y) dy = P(Y,V )|θ({(y, v); v ∈ R(X, y)}).

By standard arguments used in linear models, it is easy to see that R(X, y)
is given by

R(X, y) =
{

v ∈ <M ;
1

σ̂(X, y)2
(2)

· (v −Wγ̂(X, y))> S(X)−1 (v −Wγ̂(X, y)) ≤ M

N − r
FM,N−r,β

}
,

where

S(X) := IM×M + W (X>X)−1W>,

γ̂(X, y) := (X>X)−1X>y,

σ̂(X, y)2 := (y −Xγ̂(X, y))>(y −Xγ̂(X, y)),

and FM,N−r,β is the β quantile of the F distribution with M and N−r degrees
of freedom. But R(X, y) given by (2) is also a β-expectation tolerance region
with respect to θ in a Bayesian sense as studied in [HR76], i.e., it satisfies

β = PV |Y =y(R(X, y)) =
∫

R(X,y)

fV |Y =y(v) dv (3)

=
∫

Ω

∫

R(X,y)

fV |Θ=θ(v) dv fΘ|Y =y(θ) dθ =
∫

Ω

PV |Θ=θ (R(X, y)) PΘ|Y =y(dθ)

for all y ∈ <N . This has the advantage that the mean coverage property holds
for all y. Property (3) can be seen by the structural approach of [Fra68]. A
modern derivation bases on invariant measures and is given in Section 2.

In Section 3 we investigate designs X that minimize the β-expectation
tolerance regions of form (2). In particular, we study design criteria for mini-
mizing R(X, y) and compare the new design criteria with the classical criteria
based on minimizing confidence regions for Wγ.
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2 β-expectation Bayesian tolerance regions

At first note the following representation of S(X)−1.

Lemma 1. S(X)−1 = IM×M −W (X>X + W>W )−1W>.

Proof. Set L := X>X. Then we have

(L + W>W )−1 = L−1 − L−1W>(IM×M + W L−1W>)−1W L−1.

This implies

IM×M −W (L + W>W )−1W>

= IM×M −W L−1W>

+W L−1W>(IM×M + W L−1W>)−1W L−1W>

= IM×M −W L−1W>(IM×M + W L−1W>)−1 (IM×M + W L−1W>)
+W L−1W>(IM×M + W L−1W>)−1W L−1W>

= IM×M −W L−1W>(IM×M + W L−1W>)−1

= (IM×M + W L−1W>) (IM×M + W L−1W>)−1

− W L−1W>(IM×M + W L−1W>)−1

= (IM×M + W L−1W>)−1 = S(X)−1.ut

The structural inference, as described by [Fra68], bases on the under-
lying group structures of the parameter space Ω = <r × <+ and the set
of transformations of the observations. If we define the operator ◦ on Ω as
θ ◦ θ∗ = (γ, σ) ◦ (γ∗, σ∗) := (γ + σ γ∗, σ σ∗) then (Ω, ◦) is a non-abelian group.
Let

Aθ = A(γ,σ) :=
(

Ir×r γ
01×r σ

)

and gθ : <N×r ×<N → <N×r ×<N be defined by

gθ(X, y) := (X, y)Aθ = (X, Xγ + σy).

Then G := {gθ; θ ∈ Ω} with the composition ◦ of functions is also a group.
Since Xγ + σY ∼ N (X(γ + σ γ∗), σ2 σ2

∗ IN×N ) if Y ∼ N (Xγ∗, σ2
∗ IN×N ) the

linear model is invariant with respect to (G, ◦) and (Ω, ◦). Then, taking the
right invariant measure (right Haar measure) on Ω as prior distribution the
posterior distribution has a simple form (see [Fra68], p. 127). Note, that the
right Haar measure ρ on Ω is given by ρ(d(γ,σ))

d(γ,σ) = 1
σ 1(0,∞)(σ).
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Lemma 2. Let the right Haar measure ρ the prior distribution of Θ. Then
the posterior distribution of Θ given Y = y has a Lebesgue density of the form

fΘ|Y =y(θ) (4)

∝ exp
{
− 1

2σ2

[
(γ̂(X, y)− γ)>X>X(γ̂(X, y)− γ)− σ̂(X, y)2

]}

· σ̂(X, y)N−r

(
1
σ

)N+1

1(0,∞)(σ),

where ∝ means equality with the exception of constants.

Proof. Set

T (X, y) := (γ̂(X, y), σ̂(X, y)) ∈ <r ×<+,

U(X, y) := σ̂(X, y)−1 (Y −Xγ̂(X, y)) ∈ U := <N ,

W (X, y) := (T (X, y), U(X, y)),

where the mapping W maps the observation space <N×r×<N into Ω×U . The
mapping T : <N×r × <N → Ω is equivariant, i.e. T (gθ(X, y)) = θ ◦ T (X, y),
and the mapping U : <N×r×<N → U is invariant, i.e. U(gθ(X, y)) = U(X, y).
The transformations T and U together with ε ∼ N (0N , IN×N ) provide the
structural linear model (see [Fra68]).

Moreover, T (X,Y ) and U(X, Y ) are independent according to the theorem
of Basu since T is a complete sufficient statistic, and also γ̂(X,Y ) and σ̂(X, Y )
are independent (see e.g. [Sch95]). If Θ = θ = (γ, σ) then γ̂(X, Y ) has a
N (γ, σ2X>X) distribution and 1

σ2 σ̂(X, Y )2 has a χ2 distribution with N − r
degrees of freedom. Hence PW (X,Y )|Θ=θ has a Lebesgue density of the form
fW (X,Y )|Θ=θ(γ̂, σ̂, û) = fγ̂(X,Y )|Θ=θ(γ̂) · fσ̂(X,Y )|Θ=θ(σ̂) · fU(X,Y )(û), where

fγ̂(X,Y )|Θ=θ(γ̂) ∝
(

1
σ

)r

exp
{
− 1

2σ2
(γ̂ − γ)>X>X(γ̂ − γ)

}

and

fσ̂(X,Y )|Θ=θ(σ̂) ∝
(

σ̂

σ

)N−r−1

exp

{
−1

2

(
σ̂

σ

)2
}

1
σ

1(0,∞)(σ̂).

Since the left Haar measure (or left invariant measure) λ on Ω = <r ×<+

has a Lebesgue-density of the form λ(d(γ̂,σ̂))
d(γ̂,σ̂) = 1

σ̂r+1 1(0,∞)(σ̂) we can express

the Lebesgue density fγ̂(X,Y )|Θ=θ · fσ̂(X,Y )|Θ=θ also as a density f̃γ̂(X,Y )|Θ=θ ·
f̃σ̂(X,Y )|Θ=θ with respect to the left Haar measure λ. Let ν be the Lebesgue
measure on <N ; then f̃W (X,Y )|Θ=θ(γ̂, σ̂, û) = f̃γ̂(X,Y )|Θ=θ(γ̂) · f̃σ̂(X,Y )|Θ=θ(σ̂) ·
fU(X,Y )(û) is the λ ⊗ ν density of W (X, Y ) given Θ = θ. The right Haar
measure which is related to λ is the prior distribution ρ. Hence the conditions
of Assumption 6.58 in [Sch95], p. 368/369, are satisfied so that Lemma 6.65
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on p. 371 in [Sch95] holds which provides the posterior distribution of Θ given
W (X, Y ) = (γ̂, σ̂, û). In particular, using the relation between λ and ρ, we
have

∫
f̃T (X,Y )|Θ=θ(γ̂, σ̂)ρ(dθ) = σ̂r

so that f̃W (X,Y )(γ̂, σ̂, û) = σ̂r fU(X,Y )(û) is the marginal density. Then Bayes
theorem provides that the posterior distribution has a density with respect to
ρ of the form

f̃Θ|W (X,Y )=(γ̂,σ̂,û)(θ)

=
f̃W (X,Y )|Θ=θ(γ̂, σ̂, û)

σ̂r fU(X,Y )(û)
=

1
σ̂r

f̃γ̂(X,Y )|Θ=θ(γ̂) f̃σ̂(X,Y )|Θ=θ(σ̂).

Using the relations of the Haar measures ρ and λ to the Lebesgue measure on
<r ×<+ we see that the posterior distribution has a Lebesgue density of the
form

fΘ|W (X,Y )=(γ̂,σ̂,û)(θ) =
1
σ̂r

fγ̂(X,Y )|Θ=θ(γ̂) fσ̂(X,Y )|Θ=θ(σ̂) σ̂r+1 1
σ

∝ exp
{
− 1

2σ2

[
(γ̂ − γ)>X>X(γ̂ − γ)− σ̂2

]}
σ̂N−r

(
1
σ

)N+1

1(0,∞)(σ).

Note that fΘ|W (X,Y )=(γ̂,σ̂,û) = fΘ|Y =y if γ̂ = γ̂(X, y), σ̂ = σ̂(X, y), û =
U(X, y), since W is an injective mapping. Hence the assertion is proved. ut

From the posteriori density, we can deduce the β-expectation tolerance
region as proposed by [HR76].

Theorem 1. The region R(X, y) ⊂ <M given by (2) is a β-expectation toler-
ance region in the sense of (3), i.e., it satisfies PV |Y =y (R(X, y)) = β for all
y ∈ <N .

Proof. Since V given Θ = θ has aN (Wγ, σ2IM×M ) distribution the Lebesgue
density of V given Y = y is with (4)

fV |Y =y(v) =
∫

Ω

fV |Θ=θ(v) fΘ|Y =y(θ) dθ

∝
∫

Ω

exp
{
− 1

2σ2

[
(γ̂ − γ)>X>X(γ̂ − γ) + (v −Wγ)>(v −Wγ)

]}

· exp
{
− 1

2σ2
σ̂2

}
σ̂N−r

(
1
σ

)N+M+1

dθ.

Set

h(X, y, v) := (X>X + W>W )−1(X>X γ̂ + W>v).
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Then we have with Lemma 1

(γ̂ − γ)>X>X(γ̂ − γ) + (v −Wγ)>(v −Wγ)
= (γ − h(X, y, v))>(X>X + W>W )(γ − h(X, y, v))

+ (v −Wγ̂)> S(X)−1 (v −Wγ̂)

which implies by integration of the density of the normal and χ2 distribution

fV |Y =y(v)

∝
∫

<+

[∫

<r

(
1
σ

)r

exp
{
− 1

2σ2

[
(γ − h(X, y, v))>(X>X

+ W>W )(γ − h(X, y, v))
]}

dγ
] ·

exp
{
− 1

2σ2

[
(v −Wγ̂)> S(X)−1 (v −Wγ̂) + σ̂2

]}
σ̂N−r

(
1
σ

)N−r+M+1

dσ

∝ (
1 + σ̂−2 (v −Wγ̂)>S(X)−1(v −Wγ̂)

)−(N−r+M)/2
σ̂−M .

This means that
√

N−r
σ̂ (V − Wγ̂)>S(X)−1/2 given Y = y has a multi-

variate T distribution with N − r degrees of freedom. Thus N−r
M

1
σ̂2 (V −

Wγ̂)>S(X)−1(V −Wγ̂) given Y = y has an F distribution with M and N −r
degrees of freedom (see [TG65]). Hence, the assertion follows. ut

3 Optimal designs

Optimal designs for β-expectation tolerance regions will be those designs that
provide that R(X, y) given by (2) is as small as possible. The best situation
is that a design X∗ provides a region R(X∗, y) with R(X∗, y) ⊂ R(X, y) for
all other designs X and all y ∈ <N . This means that S(X∗) ≤ S(X) for all
X in the positive-semidefinite sense (i.e., A ≤ B iff c>Ac ≤ c>B c for all
c ∈ <M ). Such designs are called uniform optimal for β-expectation tolerance
regions, shortly TU-optimal. But as in classical design theory such designs
do not exist except in degenerate cases since S(X) and thus R(X, y) are not
completely ordered. To get a complete ordering we can regard the volume
of the region R(X, y) which is a function of det(S(X)), the determinant of
S(X). Since R(X, y) is an ellipsoid we can also consider the sum of the axes
of the ellipsoid expressed by tr(S(X)), the trace of S(X), or the longest axis
expressed by λmax(S(X)), the maximum eigenvalue of S(X).

Definition 1. Let ∆ be a set of competing designs. A design X∗ ∈ ∆ is called
(i) TU-optimal if S(X∗) ≤ S(X) for all X ∈ ∆,
(ii) TD-optimal if det(S(X∗)) ≤ det(S(X)) for all X ∈ ∆,
(iii) TA-optimal if tr(S(X∗)) ≤ tr(S(X)) for all X ∈ ∆,
(iv) TE-optimal if λmax(S(X∗)) ≤ λmax(S(X)) for all X ∈ ∆.
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We will compare the new design criteria with the classical design crite-
ria which are motivated by minimizing the confidence region for Wγ. The
confidence region for Wγ is given by

C(X, y) =
{

v ∈ <M ;
1

σ̂(X, y)2

· (v −Wγ̂(X, y))> (W (X>X)−1W>)−1 (v −Wγ̂(X, y)) ≤ M

N − r
FM,N−r,β

}

(see e.g. [Chr87]). Hence minimizing the set C(X, y), the volume, the sum of
the axes, or the longest axis of C(X, y) leads to the classical design criteria of
U-, D-, A-, and E-optimality based on W (X>X)−1W>, det(W (X>X)−1W>),
tr(W (X>X)−1W>), and λmax(W (X>X)−1W>) (see e.g. [Paz86] or [Puk93]).

From the form of S(X) it is clear that the tolerance regions are always
larger than the confidence regions which is due to the variability of the future
observations. Nevertheless almost all new design criteria are equivalent to the
classical criteria.

Theorem 2. Let ∆ be a set of competing designs and X∗ ∈ ∆. Then we have:
(i) X∗ is TU-optimal if and only if X∗ is U-optimal.
(ii) X∗ is TA-optimal if and only if X∗ is A-optimal.
(iii) X∗ is TE-optimal if and only if X∗ is E-optimal.

Proof. Assertion (i) is obvious. Now let λ1, . . . , λM be the eigenvalues of
W (X>X)−1W>. Then 1 + λ1, . . . , 1 + λM are the eigenvalues of S(X). This
implies (iii). Since the trace of a matrix is the sum of its eigenvalues also (ii)
follows. ut

Theorem 2 shows that the TU-, TA-, and TE- optimal designs can be
constructed via the methods which were developed for the classical criteria
(see e.g. [Paz86] or [Puk93]). The only exception is the TD-criterium.

Although the determinant of a matrix is the product of the eigenval-
ues of the matrix the proof of Theorem 2 cannot be adapted for the D-
criterium. Namely, if λ1, . . . , λM are the eigenvalues of W (X>X)−1W> then
det(W (X>X)−1W>) =

∏M
m=1 λm and det(S(X)) =

∏M
m=1(1 + λm). Hence,

a minimum of
∏M

m=1 λm is not equivalent to a minimum of det(S(X)) =∏M
m=1(1 + λm). The following example shows that there are really situations

where the D- and TD-optimal designs are different.

Example. Consider a simple linear regression model where any observation
yn has the form yn = (1, tn)γ + σεn with tn ∈ < and γ ∈ <2. Every future
observation vm follows the same linear regression model, i.e. vm = (1, um)γ +
σε0m with um ∈ <. Assume that we have α N observations at tn = 1 and
(1 − α) N observations at tn = 0 so that the design matrix depends on α
and shall be denoted by Xα. The proportion α shall be chosen so that the
tolerance region for two future observations V1 and V2, one at u1 = 2 and the
other at u2 = 3, is as small as possible. Then we have
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W (X>
α Xα)−1W> =

(
1 2
1 3

) (
N αN
αN αN

)−1 (
1 2
1 3

)>

so that

det(W (X>
α Xα)−1W>) =

1
N2

1
α(1− α)

(5)

and

det(S(Xα)) = det(I2×2 + W (X>
α Xα)−1W>) (6)

=
1

N2

1
α− α2

(
N2(α− α2) + N(13− 8α) + 1

)
.

Quantity (5) is minimized by α = 0.5 while the minimum of quantity (6)
depends on N and is minimized, for example, by α = 0.616 for N = 10 and
by α = 0.617 for N = 50. Hence, the TD-optimal designs are different from
the classical D-optimal designs if ∆ is the set of all designs with observations
at 0 and 1, i.e. tn ∈ {0, 1}. The TD-optimal design puts more observations at
1 than the D-optimal design. The same holds if the set of competing designs
is ∆∗, the set of all designs with tn ∈ [0, 1].
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