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Abstract: Trimmed likelihood estimators in linear models
are the least trimmed squares estimators and it is known that
they have high breakdown points. In particular their breakdown
points depend only on the trimming proportion and a quantity
N (X) introduced by Miiller (1995). Thus, the trimming propor-
tion which maximizes the breakdown point of trimmed likelihood
estimators in linear models depends on N'(X) as well. Now it has
turned out, that the same dependence holds also for trimmed
likelihood estimators in generalized linear models. The proof of
this result uses the concept of the fullness parameter of Vandev
(1993) and Vandev and Neykov (1998). For calculating trimmed
likelihood estimators, we propose a genetic algorithm.

1 Introduction

Assume that the distribution of the observations Y;, have densi-
ties f(yn,xn, B) given by a linear exponential family, that is

Fns 2, B) = exp{T(yn) " g(x, B) + c(z, B) + hlyn)},

where T : Y - R, g: R >R, c: R >R, and h:Y - RN
are known functions with Y C R?, z, e X C R, n=1,..., N,
are known explanatory variables and § € RP is unknown. The
observations Y7,..., Yy are independent. Let v := (y1,...,yn) "
the vector of all realized observations, X := (x1,...,zx)" the
design matrix,

ln(ana /8) = —log fn(ymxmﬂ)
= —T(yn)" g(x, B) — c(x, B) — h(yn),



the log-likelihood function. Maximum likelihood (ML) estima-
tors are maximizing the likelihood, i.e. minimzing
SN 1.(y, X, B). Trimming the least likely observations, i.e. the
observations with the largest I,,(y, X, ), leads to trimmed likeli-
hoods. Maximizing the trimmed likelihood provides the trimmed
likelihood estimators T'Ly,(y) given by

h
TLp(y) := arg min > (. X, B),
n=1

where NV — h observations are trimmed and I(1)(y, X, 3) < ... <
l(ny(y, X, B) are the ordered log-likelihoods.

In the case of normal distribution with known variance, the
trimmed likelihood estimators coincide with the least trimmed
squares (LTS) estimators of Rousseeuw (1984, 1985) and
Rousseeuw and Leroy (1987). Breakdown points of LTS estima-
tors for linear regression were derived in Rousseeuw (1984, 1985),
Rousseeuw and Leroy (1987), Vandev (1993), Vandev and Neykov
(1993), Coakley and Mili (1993), Hossjer (1994), Miiller (1995,
1997), Mili and Coakley (1996); and Hossjer (1994) showed also
consistency and asymptotic normality. Trimmed likelihood esti-
mators for normal distribution with unknown variance were re-
garded in Bednarski and Clarke (1993) who derived their asymp-
totic properties like Fisher consistency, asymptotic normality and
compact differentiability.

Up to now, not much is known about trimmed likelihood es-
timators for distributions different from the normal distribution.
There are approaches on robust and in particular high breakdown
point estimators for logistic regression and other generalized lin-
ear models given by Stefanski, Carroll, and Ruppert (1986), Co-
pas (1988), Kiinsch, Stefanski and Carroll (1989), Carroll and
Pederson (1993), Wang and Carroll (1993, 1995), Christmann
(1994), Hubert (1997), Christmann and Rousseeuw (1999). But
these approaches do not concern trimmed likelihood estimators.

Only Vandev and Neykov (1998) derived breakdown points



of trimmed likelihood estimators for logistic regression and expo-
nential linear models with unknown dispersion. Their approach
bases on the concept of d-fullness developed by Vandev (1993).
However, they could only derive breakdown points under the re-
striction that the explanatory variables x1,...,xy of the logis-
tic regression and the exponential linear model are in general
position. This restriction was also used in the approaches of
Rousseeuw (1984, 1985) and Rousseeuw and Leroy (1987) con-
cerning LTS estimators in linear models. Miiller (1995, 1997)
and Mili and Coakley (1996) dropped this restriction and showed
that then the breakdown point of LTS estimators is determined
by N (X) defined as

- DN e B
N(X) = Oi%zéépcard{n e{l,...,N}; xnﬁ—O}.
If the explanatory variables are in general position then N (X) =
p — 1 which is the minimum value for V'(X). In other cases
N (X) is much higher. These other cases appear mainly when
the explanatory variables are qualitative as in ANOVA models
or given by an experimenter in a designed experiment.

In Section 2 of this paper, we show that the quantity N(X)
determines the breakdown point not only of LTS estimators in
linear models but also of any trimmed likelihood estimator in
generalized linear models. In particular, we will show how the
fullness parameter of Vandev (1993) is connected with N(X).
Section 3 deals with the computation of trimmed likelihood esti-
mators.

2 Breakdown points

The breakdown point of an estimator B - YN — RP for § at the
sample y € YV is defined as (compare e.g. Donoho and Huber
1983, Hampel et al. 1986, p. 97)



(B, y) = + min {M; there exists no bounded set B
with {3(7); 7 € Yu(y)} € B},

where
Yu(y) = {? e VN card{n; y, #7,} < M}.

Vandev and Neykov (1998) connected the notion of break-
down point of trimmed likelihood estimators with the notion of
d-fullness which is based on the concept of sub-compact func-
tions. If the parameter space is P, then every compact set is
included in a bounded set and vice versa. Hence, in the case of
estimating 6 € RP, we can use boundeness instead of compact-
ness so that we have the following specifications of the definitions
of Vandev and Neykov (see also Miiller and Neykov 2000).

Definition 1 A function v : RP — R is called sub-bounded if the
set {8 € RP; v(B) < C} is bounded for all C' € R.

Definition 2 A finite set ' = {~, : RP - R; n=1,...,N} of
functions is called d-full if for every {ni,...,nqg} C {1,...,N}
the function v given by v(B3) := max{y,, (8); k = 1,...,d} is
sub-bounded.

The following theorem presents the connection between the
breakdown point of trimmed likelihood estimators and the d-
fullness parameter.

Theorem 1 If {l,,(y,X,:); n=1,...,N} is d-full, then

1
e (TLp,y) > N min{N —h+1,h —d+ 1}.



This theorem holds for general models and not only for gen-
eralized linear models (see Miiller and Neykov 2000). However,
for generalized linear model the d-fullness parameter can be given
more explicitly by the quantity A(X).

Theorem 2 If the function v, given by v.(0) = —T(z) g(0) —
c(0)—h(z) is sub-bounded for all z € Y then the family {1, (y, X, -);
n=1,...,N} is N(X)+1-full for ally € YN and all X € XN,

For logistic and log-linear regression models it can be easily
seen that the function , is sub-bounded. Setting y = (s,t) with
t = (t1,...,tn)" and s = (s1,...,sy5)", we have for logistic
regression

ln(anaﬁ) = ln(S,t,X,ﬁ)
— a8+t log(L+ exp(a 8) ~og (( )
Vsntn (xr—zrﬁ)

The function v, , given by v,.,(0) = —uf + v log(1 + exp(d)) —
log <( g )) is sub-bounded as soon as 0 < u < v so that the

set {ln(y, X, ); n=1,...,N}is N(X)+1-fullify € Y := {y =
(s,t); 0 < sp <ty for m =1,...,N}. The log-linear regression
model is given by

n(y, X, B) = —yn x,) B+ exp(z,) B) + log(yn)).

The function v, given by v,(0) = —z6 + exp(f) + log(z!) is sub-
bounded as soon as z > 0 so that the set {l,(y,X,); n =
L,...,N}is N(X)+1-full for all y € ¥ = {y € RY; y, > 0
foralln=1,...,N}.

Since for logistic regression and log-linear models a lower
bound for the breakdown point can proved as well (see Miiller
and Neykov 2000) we have for both models the following result.



Theorem 3 The breakdown point of a trimmed likelihood esti-
mator T Ly, for a logistic regression model or a log-linear model
satisfies

o 1
min ¢ (TLp,y,X) = N min{N —h+1,h — N(X)}.

The mazimum breakdown point is attained for for h satisfying
LN-%—N%X)-HJ <h< {N+N§X)+2J and equals % LN—NéX)-HJ'

Theorem 3 shows that the maximum breakdown point value
for logistic regression and for log-linear models is the same as for
linear models. Also the optimal trimming proportion h coincides.
See Miiller (1995, 1997).

3 Calculation of the estimators

Trimmed likelihood estimators can be calculated as the LTS esti-
mators for linear models. We implemented two algorithms. One,
useful for small data sets, is an exact algorithm and is based on
the idea of Agull6 (1996) using a branch and bound algorithm. If
the data set is large, then a genetic algorithm like that of Burns
(1992) used in S-PLUS is only applicable. Our genetic algorithm
is based on an old population of w subsets with h elements and a
new population of v randomly generated subsets. Recombination
of all subsets within the old population and recombination of the
subsets of the old population with those of the new population
provides a population of @ + wv + w + v subsets. From this
population the w best subsets (that with smallest log-likelihood)
are chosen as old population for the next step. We applied this
algorithm with w = 7 = v to the eggs data of O’Hara Hines
and Carter (1993, p.13) with N = 46 observations (observations
32 and 40 were dropped because of zero response). A logistic
regression model given by

logit(p/(1 —p)) = [+ Pox WH + (3 *log;(Concentration)
+ B4 * logy(Concentration)?



was used. Then the breakdown point maximizing trimming pro-
portion is h = 36. We obtained TLss(y,X) =
(7.36,—0.12,-9.29,2.16) " as trimmed likelihood estimator for
B = (B, B2, 33,4) ", and the trimmed observations were 13, 14,
20, 21, 38, 39, 41, 42, 43, 44 (see Miiller and Neykov 2000).
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