
Detection of Linear and Circular Shapes

in Image Analysis∗

by Tim Garlipp and Christine H. Müller

Carl von Ossietzky University of Oldenburg

December 30, 2004

Abstract

To estimate linear and circular shapes in noisy images we propose a two step
algorithm. At first with a method originally introduced by Qiu (1997) and
extended by Garlipp and Müller (2004), we estimate those pixels which belong
to the edges of the shapes. Then, these edge points are regarded as coming
from a mixture of (linear or circular) regression functions and we estimate the
parameters of these functions.

In a simulation study, we demonstrate the immense advantage of using an
outlier robust estimator for the edge points.

Keywords: M-estimation, M-kernel estimation, regression cluster, edge detection.

AMS Subject classification: 62 G 05, 62 G 08, 62 G 35, 62 H 30, 62 H 35, 62 P 99

∗Research supported by the grant Mu 1031/4-1/2 of the Deutsche Forschungsgemeinschaft.

1

1 Introduction

For the detection of shapes in noisy images, there are various methods which estimate

so called edge points. To detect edge points a (black and white) image can be

regarded as two-dimensional intensity function. In areas with no edges, this intensity

(or regression) function will be smooth, whereas edges will appear as discontinuities.

For one-dimensional jump detection, Qiu et al. (1991), Müller (1992), and Wu and

Chu (1993) introduced similar estimators based on the difference of two one-sided

kernel estimates (DKE - Difference Kernel Estimators). For some of these DKEs,

results have been obtained about L2-consistency (Qiu et al., 1991), Lp-consistency

(Müller, 1992), and asymptotic normal distribution (Wu and Chu, 1993). A modi-

fication of the DKE introduced by Qiu (1994) can be used to estimate the number

of jump points.

For the two-dimensional case most considerations about estimation of jump locations

concern edge detection in image analysis where diverse methods are known. For

example, the so-called filter-methods, which, like many others, use the fact that the

derivative of the image function becomes very large in the vicinity of edges. Other

methods use statistical tests based on the representation of the image as a Markov

field. See Davis (1975) for an overview about some of the“classical”methods, or Peli

and Malah (1982) for a comparison. For some newer techniques see, for example,

Müller and Song (1994), Qiu and Yandell (1997), or Hou and Koh (2003).

As a generalisation of the one-dimensional DKE, Qiu introduced in 1997 the Ro-

tational Difference Kernel Estimators (RDKE). The most important difference be-

tween the two-dimensional and the one-dimensional case is that the distinction be-

tween “left” and “right” side has now to be done along a direction (see Figure 1).

To cope with this problem Qiu (1997) generalized this Difference Kernel Estimator

by using rotated kernel functions. Garlipp and Müller (2004) extended this idea to

K 1
K 2

K 1 K 2

Figure 1: difference of two asymmetric two-dimensional kernel estimations

robust RDKEs by using outlier robust M-kernel estimators, which were introduced

by Härdle and Gasser (1984). That way Garlipp and Müller obtained robust esti-

2

mators for the jump location and height and proved consistency of these estimators

in the case of one jump function. Thereby one jump function means that the dis-

continuities are given as one function of one coordinate. Maximizing in direction of

the other coordinate provides then the location of the jump.

However, real images do not consist of one jump function. Even if the image contains

only one object like a circle or triangle, the edges of the object cannot be described

by one jump function. And in more realistic situations, the images contain several

objects. Therefore, in this paper we extend the method of Qiu (1997) and Garlipp

and Müller (2004) to detect all pixels close to edges. For that we perform a statistical

test based on the RDKE for every pixel to decide whether it belongs to an edge or

not. For the RDKE of Qiu (1997) based on the mean, this can be done simply by

the classical t-test as already Qiu (2002) noted. But for the RDKE based on an

outlier robust location estimator an approximate test is needed which is described

in this paper.

Since statistical tests produce level one and level two errors, both methods do not

detect all true edge points and some of the detected edge points do not belong to true

edges. But, as we show in this paper, the robust RDKE method provides a much

smaller number of falsely detected edge points than the nonrobust RDKE method

based on the mean.

Nevertheless in both cases, the detected edge points do not provide contour lines for

the objects. Hence, we propose in this paper a second step to find the contour lines

of the objects. For this we assume, as a first approach, simple shapes of the objects

as circles and shapes given by lines. The lines and circles are found by a cluster

method based on the identified edge points.

Cluster methods are often used in image analysis (see e.g. Janowitz, 1984, Krishna-

puram and Freg, 1992, Granville et al., 1993, Höppner et al., 1999). Most of these

methods use all pixel values and positions to identify the clusters. Therefore, they

often use a certain distance, e.g. the Mahalanobis distance, which is not outlier ro-

bust. But even if robust distance measures are used, as it is done by Davies (1988),

Rousseeuw and Van Aelst (1999), or Jolion et al. (1991), these cluster methods

have the disadvantage, that shapes with similar gray or color values are assembled

in the same cluster. Moreover these methods do not provide explicit representations

of the borders of the shapes. These problems do not appear if regression clustering

methods are applied to the edge points identified by the robust or nonrobust RDKE

method.

For regression clustering also several methods are known (see e.g. Späth, 1979, De-

3

Sarbo and Cron, 1988, Wedel and Steenkamp 1991, Klesse, 1995). Morgenthaler

(1990) and Meer and Tyler (1998) proposed to use M-estimators with redescend-

ing score functions to detect different regression clusters. Usually the redescending

M-estimators have the disadvantage that the objective function has several local

maxima (or minima, respectively). But to identify substructures in the data this is

an advantage since each local maximum may correspond to a substructure. Based

on this idea, Müller and Garlipp (2005) introduced a cluster method for several

linear regression models including orthogonal regression and classical least squares

regression and proved consistency of the method. They also shortly demonstrated

without details how the method for orthogonal regression can be applied on the edge

points identified by the nonrobust RDKE method of Qiu (1997).

Here we describe the method in more detail. Moreover, we apply it not only on edge

points identified by the nonrobust RDKE method but also on the points identified

by the robust RDKE method of Garlipp and Müller (2004) and compare the results.

Since the robust method provides a much smaller number of falsely detected edge

points, only the correct edge lines are found. This is not the case for the nonrobust

RDKE method: due to many falsely detected edge points, many false lines are found.

Additionally, we show how the cluster method of Müller and Garlipp (2005) can be

extended for finding circular structures. Although it is based on the same idea as

in Müller and Garlipp for finding regression lines, it is conceptional different. For

example, there exists no consistency proof for this up to now. Also the computation

is more difficult.

The paper is organized as follows. In Section 2, we describe the methods: Thereby,

Section 2.1 is devoted to the robust and nonrobust RDKEs and the corresponding

tests for identifying edge points. Section 2.2 describes the second step and provides

the cluster methods for finding linear and circular edges. It shows in particular

that the problems of finding regression lines and circles are very similar. In Section

3, simulations and applications are presented. Section 3.1 provides a simulation

study for the problem of finding the edges of a triangle. This simulation study

demonstrates clearly the superiority of the robust RDKE method. Section 3.2 deals

with an application in biology. The problem is to find the circular borders of fungi

colonies. It is shown that this is well done by the RDKE method for circular edges.

Section 4 contains the pseudo codes of all described methods and a link to the web

page with the R library of the programs.

4

2 Method

2.1 Identification of edge points

We consider n1 · n2 independent observations Zij = m(xij) + εij ∈ R at equidistant

design points xij =
(
j
n2
, i
n1

)>
(1 ≤ i ≤ n1, 1 ≤ j ≤ n2).

Let K1(x) and K2(x) be two one-sided, continuous kernel functions which fulfill the

following conditions:

(i) K∗1(x) = 0 for x /∈
[
−1

2
, 1

2

]
×[−1, 0] and

K∗2(x) = 0 for x /∈
[
−1

2
, 1

2

]
× [0, 1]

1

−1

1/2−1/2

(ii)
∫

[−1,1]2
K∗j (x)dx = 1, j ∈ {1, 2}

(iii) K∗j (x) ≥ 0, j ∈ {1, 2}.

With a1θ := (cos θ,− sin θ)>, a2θ := (sin θ, cos θ)>, Aθ := (a1θ, a2θ)
> =

(
cos θ
sin θ

− sin θ
cos θ

)
,

and H :=
(
h1

0
0
h2

)
, let

Kj(θ, x) :=
1

h1h2

K∗j (H−1Aθx), θ

h 2

−h 2

h 1−h 1

for j ∈ {1, 2}, where h1 and h2 are the bandwidths.

The rotated asymmetric M-kernel estimators m̂j(θ, x) are now defined as zeros of

the objective functions Hj (z; θ, x) with

Hj (z; θ, x) :=
∑n

i=1 α
(j)
i (θ, x)ψ(Zi − z),

and
m̂j(θ, x) ∈ {z ∈ R : Hj(z; θ, x) = 0},

where ψ : R→ R is a score function and α
(j)
i (θ, x) are rotated asymmetric Gasser-

Müller weights

α
(j)
i (θ, x) :=

∫
∆i

Kj (θ, u− x) du.

Then, with

M(θ, x) := m̂2(θ, x)− m̂1(θ, x),

5

|M(θ, x)| can be used as estimator for the jump height at x along the direction

described by θ. It seems plausible, that |M(θ, x)| will be close to zero independently

of θ for x lying in a smooth region of the regression function. But for x lying on

an edge |M(θ, x)| will be close to the jump height, if the direction described by θ

corresponds with the direction of the edge. Therefore, the jump height at a point x

can be estimated by

Ĉ(x) = |M(θ̂(x), x)|

where θ̂(x) is the maximizing angle

θ̂(x) ∈ argmax
θ∈[−π2 ,

π
2]
|M(θ, x)|.

For some asymptotic properties of these estimators see Garlipp and Müller (2004).

Since the mean as special unrobust M-kernel estimator and the median as special

robust M-kernel estimator both are asymptotically normally distributed, we can

perform a test for equal expectations in both windows for a fixed angle. Therefore,

it is possible to decide for every pixel if it belongs to an edge by using a multiple

test for a number of different angles.

According to the Bonferoni test procedure we can reject the global hypothesis –

equal expectations in both windows for every angle – at the level of α, if at least

one of the single hypotheses – equal expectations in both windows for one particular

angle – can be rejected at the level of α/K, where K is the number of tested angles.

For a similar method concerning only the unrobust RDKE, see also Qiu (2002).

Since we use equidistant designs points, we have an equal number of observations

within the two windows, denoted by N . Let Z11, . . . , Z1N and Z21, . . . , Z2N denote

the observations within the windows.

In the unrobust case we estimate the variance by the mean of the empirical variances

within the windows

S2
N =

1

2N − 2

(
N∑
i=1

(
Z1i − Z1.

)2
+

N∑
i=1

(
Z2i − Z2.

)2

)
.

Thus, we use the test statistic of the unpaired student t-test

TN =
Z1. − Z2.

SN

√
N

2
(1)

with a critical value of t2N−2;1−α/(2K), where tn;α is the α quantile of the t-distribution

with n degrees of freedom.

6

In the robust case we need the further assumption that the distribution function F

of Zjn (j = 1, 2, n = 1, . . . , N) is differentiable at F−1(1/2) with F ′ (F−1(1/2)) > 0.

For j = 1, 2 let FjN denote the empirical distribution function of Zjn and

RjN = F−1
jN (1/2)− F−1(1/2)− FjN (F−1(1/2))− 1/2

F ′ (F−1(1/2))
.

Then,
√
NRjN vanishes in probability (see for example Ghosh, 1971). Further, with

QN := F1N

(
F−1(1/2)

)
− F2N

(
F−1(1/2)

)
=

1

N

N∑
i=1

(
1(−∞,F−1(1/2))(Z1i)− 1(−∞,F−1(1/2))(Z2i)

)
=:

1

N

N∑
i=1

Yi

we have VarYi = 1/2 and hence, the central limit theorem provides

√
N

QN√
1/2

=

∑N
i=1(Yi − EYi)√
NVarYi

L−→ Z ∼ N (0, 1).

As with
√
NRjN also

√
N(R1N −R2N) vanishes in probability, we have

√
N (med (X11, . . . , X1N)−med (X21, . . . , X2N))

=
√
N
(
F−1

1N (1/2)− F−1
2N (1/2)

)
=

√
N (R1N −R2N) +

√
N

QN

F ′ (F−1(1/2))

L−→ Z ∼ N
(

0,
1/2

(F ′ (F−1(1/2)))2

)
.

Assuming for example normally distributed observations, this means
√
N (med (X11, . . . , X1N)−med (X21, . . . , X2N))

L−→ Z ∼ N (0, πσ2).

Estimating the variances within the windows by the consistent median absolute

deviations Mjn = MAD (Xj1, . . . , XjN), by Slutzky’s theorem, we finally get

UN :=
√
N

med (X11, . . . , X1N)−med (X21, . . . , X2N)√
π
2

(M2
1N +M2

2N)
(2)

=

√
π
2

(σ2 + σ2)√
π
2

(M2
1N +M2

2N)
·
√
N (med (X11, . . . , X1N)−med (X21, . . . , X2N))√

πσ2

L−→ Z ∼ N (0, 1).

Therefore, we can perform an asymptotical Gaussian test with test statistic UN and

the 1− α/(2K) quantile of the standard normal distribution as critical value.

7

2.2 Clustering of edge points

The detected edge points, now denoted by z1, . . . , zN , are assumed as coming from

an error-in-variable model. This means that they are realizations of

Zi =

(
Xi

Yi

)
+

(
E1i

E2i

)
,

where Xi, Yi, E1i, and E2i are independently identically distributed.

2.2.1 Linear

Considering a mixture of L regression lines with parameters (αl, βl) ∈ [−π, π]×R,

the coordinates of Zi fulfill

a>l

(
Xi

Yi

)
= βl almost sure,

if Zi is coming from the l-th regression, where al = (cos(αl), sin(αl))
>.

Now, the set of parameters (α, β) ∈ [−π, π]×R, for which

H(α, β) =
1

N

N∑
i=1

1

s
ρ

(

cos(α)
sin(α)

)>
zi − β

s

has a local maximum, can be used as estimation for the regression parameters

(αl, βl), where ρ is a redescending score function measuring the distance of the ob-

servations zi to the regression line with parameter (α, β), and s is a scale parameter

(see Müller and Garlipp, 2004).

For computing all local maxima of H, Müller and Garlipp (2005) proposed to use the

Newton-Raphson method using every line through any two observations as starting

values. But due to the large number of edge points, this would result in huge

computation times. In order to avoid this, we used the fact that the testing method

from the first step provides not only the edge points zi themselves but also the

direction θ̂(zi) of the edge. Thereby, we have a dedicated line through each edge

point providing a merely linear number of very accurate starting values.

2.2.2 Circular

In the case of circular regressions the coordinates now fulfill∣∣∣∣∣∣∣∣(Xi

Yi

)
−
(
a1l

a2l

)∣∣∣∣∣∣∣∣ = rl almost sure,

8

if Zi is coming from the l-th regression, where al = (a1l, a2l)
> is the center and rl is

the radius of the l-th circle.

Corresponding to the linear case, we now use an objective function

H (a, r) =
1

N

N∑
i=1

1

s
ρ

(
||zi − a|| − r

s

)
,

where the distance of the observations zi to a circle with center a and radius r is

measured by the score function. Then, the local maxima of H(a, r) can be used as

estimates for the parameters of the regression circles.

For the computation of these local maxima, we again used the Newton-Raphson

method. The choice of the starting values has to be carried out very carefully. The

obvious idea is to use a sufficient number of starting values so that all local maxima of

H are found. A heuristic method to get these starting values is the following: Use a

sufficiently fine grid of equidistant center points and a number of radii corresponding

to the assumed sizes of the circles.

3 Simulation and application

3.1 Linear edges

Both multiple tests of Section 2.1 were applied to a 100×100 - pixel image displayed

in Figure 2 showing a triangle bounded by the regression lines rj (x1) = ajx1 + bj
(j = 1, 2, 3) where (a1, b1) = (0, 0.3), (a2, b2) =

(
−10

7
, 1

7

)
, and (a3, b3) =

(
10
7
, 11

7

)
and

blurred by 30% uniformly distributed outliers.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 2: Original image m(x) (left) and noisy observations Zi (right) with true regression
lines

9

If the size of the structures that are to be detected is known, the bandwidths can

be chosen with respect to this size. If the bandwidth is too small, the tests have too

low power to detect the edges. On the other hand, with windows too large, small

structures cannot be detected, since for all design points with a distance to an edge

less than the window size, the hypothesis of equal expectations in both windows does

not hold. This means that we get many rejections not only exactly at the edges but

in a whole environment of the edges, which therefore should be smaller than the

structures that are to be identified. In this example we chose h1 = h2 = 0.05, which

is approximately 1/4 of the radius of the inscribed circle of the triangle.

With these bandwidths, for every design point with sufficient distance to the mar-

gins, we performed a multiple test with 32 different angles for the global hypothesis

of equal expectations in both windows. The pixels for which the global hypothesis

is rejected at a 10% level with the two test statistics from (1) and (2) are shown in

Figure 3. Table 1 shows type I and II errors, where the type I error concerns only

pixels outside the 0.05 environment of the true edges, and for calculating the type II

error pixels are regarded “true” edge points, if their distance to an edge is less than

the resolution of the image, which is 0.01.

As expected, the robust test performs significantly better, what has considerable

effects for the estimation of the regression lines in the next step.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 3: Detected edge points, unrobust (left) and robust (right) with true regression
lines

unrobust robust

falsely detected 100 3

Type I error 0.024 0.001

not detected 1 1

Type II error 0.028 0.028

Table 1: Type I and II errors of the unrobust and robust version of the multiple test

10

For the cluster method we used the density of the standard normal distribution as

score function and chose the scale parameter s with respect to the bandwidths hj of

the previous step in such a way, that points within a hj environment of a regression

line get 90% of the weight, that is s = h
u0.95
≈ 0.03.

Figure 4 shows again the estimated edge points from the first step but now together

with the estimated regression lines. Table 2 presents their estimated parameters.

Obviously, the occurrence of falsely detected edge points results in a high number of

falsely detected regression lines. Thus, the robust test method provides significantly

better initial values for the cluster method.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 4: Estimated regression lines with edge points from Figure 3 as observations

true robust unrobust

j aj bj aj bj aj bj
1 0.0000 0.0300 0.0017 0.2981 −0.0069 0.3041

2 −1.4286 0.1429 −1.4715 1.5918 −1.4708 1.5886

3 1.4286 1.5714 1.3934 0.1478 1.3949 0.1454

4 −2.9639 1.3488

5 −1.7269 2.0991

6 −0.2751 0.8101

7 0.0109 0.5702

8 0.1611 0.4515

9 0.5187 0.2483

10 2.1645 −1.2885

Table 2: True and estimated parameters of the regression lines

11

3.2 Circular edges

In the following example originated from the biological research on the growth of

fungi under different conditions (see e.g. Sterflinger and Krumbein, 1995), the aim

is to estimate the size of colonies of black fungi on a marble surface (see Figure 5).

Since these colonies grow approximately with the same rate in each direction, this

is to find circles within an image of the surface and to estimate their diameter.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5: 272 × 271 pixel image, showing a marble surface inhabited by colonies of black fungi
(taken from Sterflinger and Krumbein, 1995).

Since the noise of the image is less dominated by outliers but more an additive noise,

we used the unrobust version of our tests from Section 2, which has a better power

in this case. The estimated edge points, found with a window size of 5 × 5 pixels

(with an image size of 272×271 pixels that is h1 ≈ h2 ≈ 0.007), and using 4 different

angles are shown in Figure 6.

As already mentioned, the choice of the starting values for the cluster method is

very important for the computation time and proper results. It is evident that not

only those circles are found that represent real clusters, but for example also some

larger ones, which coincide with a large number of edge points from different true

circles (see Figure 6).

There exist several methods to recognize the true circles afterwards, but to reduce

computation time, we tried to reduce the number of unsuitable circles already during

computation. To achieve this, we aborted the maximization when the radius left

the interval [0.02, 0.15] or if the center point gets out of the image. Furthermore, if

we start with a small radius within a true circle, it is reasonable that the Newton-

Raphson methods converges to the true circle. Hence, it is sufficient to start with

only one value for the radius, provided it is smaller than the smallest colony and the

12

grid of center points is fine enough. Therefore, we used 25 × 25 equidistant center

points within [0, 1]2 and r = 0.03 as starting values.

The smaller the scale parameter is, the more circles are found. But with a larger

scale parameter the deviation of the estimated circles becomes larger (see also Müller

and Garlipp, 2005, for the case of regression lines). We chose a scale parameter with

which at least all true circles are found (s = 0.025). Since generally also some false

circles are detected (see Figure 6) the “good” estimates are determined afterwards.

There exists several methods to do this. E.g. a usual method is to select those cluster

to which most of the points belong to. In the case of circular regression clusters, this

should be done in relation to the estimated radius. Beside these general applicable

procedures, our cluster method provides two other criteria. Especially if the number

of true clusters is small, it is very accurate to choose those clusters with the largest

local maxima of the objective function H. The second criterion is based on the fact,

that the number of starting values is much larger than the number of clusters, so

that each cluster is found several times. So it is plausible to choose the true clusters

by counting, how often each cluster is reached by the maximization process. Figure

7 shows all circles which are reached more than once, which are exactly those, which

describe the fungi colonies. Again, the used score function ρ was the density of the

standard normal distribution.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 6: Estimated edge points with an
example for an falsely detected circle

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 7: Original image with estimated
circles

13

4 Pseudo codes

All programs can be found in the R library“edci”, which is available at http://cran.r-

project.org/.

4.1 Computational details

The observations Zij are assumed to be stored in a two-dimensional array data[i,j]

of the size of nrow*ncol. Ĉ(x) is only computed for x lying on the grid of the

design points. Therefore, xij − x takes only values on the grid
{(

l
ncol

, k
nrow

)>
, k =

−nrow, . . . , nrow, l = −ncol, . . . , ncol
}

and since for every θ the Kernel functions

Kj(θ, xij − x) are zero for xij − x /∈
[
−
√
h2

1 + h2
2,
√
h2

1 + h2
2

]2

, it is sufficient

to calculate Kj

(
θ,
(

l
ncol

, k
nrow

)>)
for (k, l) ∈ {−w1, . . . , w1} × {−w2, . . . , w2} with

w1 =
⌈√

h2
1 + h2

2 · nrow
⌉
, w2 =

⌈√
h2

1 + h2
2 · ncol

⌉
. Note, that this is independent of

x. Additionally, only a fixed number of angles θt (t ∈ {1, . . . , nang}) is used, what

means, that all occurring weights have to be computed only once and can be stored

in a three-dimensional array of the size of (2*w1+1)*(2*w2+1)*nang.

To reduce computation time, the two kernel functions K∗1 and K∗2 , which have dis-

joint supports, are summed, so that only one kernel function K(x) - and thus only

one array alpha[k,l,t] - has to be used. The distinction, if a certain observa-

tion belongs to the one window or the other, is done via the x2-coordinate of the

corresponding (rotated and scaled) design point, which has to be stored in another

three-dimensional array dpx2[k,l,t]. Although this needs still two arrays the con-

catenation of the two kernel functions is effective, since this reduces the number of

summations to the half.

The coordinates and weights are computed by the following short routine, where K

is the kernel function and rot1 and rot2 are functions calculating the rotation.

for (k,l) in {-w1,...,w1} x {-w2,...,w2} do

for t in {1,...,nang} do

theta := -Pi/2 + Pi*t/nang

x1 := rot1(theta, l/ncol, k/nrow)/h1

x2 := rot2(theta, l/ncol, k/nrow)/h2

dpx2[k+w1,l+w2,t] := x2

alpha[k+w1,l+w2,t] := K(x1,x2)

14

For all minimizations (described later in 4.3.ii, 4.5, 4.6) Armijo’s Rule (see Armijo,

1966) is used for damping the step size of the Newton-Raphson method.

4.2 List of variables and functions

• Detecting edge points (4.3–4.4)

nrow Number of rows of the data

ncol Number of columns of the data

data[i,j] Two-dimensional array of the size nrow× ncol containing

the observations Zij.

nang Number of equidistant angles for computing C̃n(xi)

h1, h2 bandwidths h1 and h2

w1, w2 window size

w1 =
⌈√

h2
1 + h2

2 · ncol
⌉
, w2 =

⌈√
h2

1 + h2
2 · nrow

⌉
alpha Three-dimensional array of the size

(2*w1+1)*(2*w2+1)*nang containing the kernel weights

dpx2 Three-dimensional array of the size

(2*w1+1)*(2*w2+1)*nang containing the x2-coordinates of

the transformed design points

rho(z) score function

drho(z) first order derivative of rho

ddrho(z) second order derivative of rho

pnorm(x) distribution function of the standard normal distribution

pt(x,n) distribution function of the t-distribution with n degrees of

freedom

• Clustering (4.5–4.6)

n Number of detected edge points

x, y vectors of length n containing the coordinates of the

detected edge points

alpha vector of length n containing the angles θ̂
(
(x[i], y[i])>

)
rho(z) score function

s scale parameter

nx, ny number of starting coordinates for circular regression

clustering

startradius initial radius for circular regression clustering

15

4.3 Calculation of Ĉ and θ̂

The results for Ĉ
(

j

ncol
, i
nrow

)>
and θ̂

(
j

ncol
, i
nrow

)>
are stored in the two-dimensional

arrays M[i,j] and T[i,j].

(i) Kernel estimators

for (i,j) in {w1+1,...,nrow-w1} x {w2+1,...,ncol-w2} do

for t in {1,...,nang} do

m1 := 0 m2 := 0 // estimates in the windows

wsum1 := 0 wsum2 := 0 // sums of the weights

for (k,l) in {-w1,...,w1} x {-w2,...,w2} do

x2 := dpx2[k+w1,l+w2,t]

a := alpha[k+w1,l+w2,t]

if a != 0 then

if x2 < 0 then

m1 := m1 + a*data[i+k,j+l]

wsum1 := wsum1 + a

if x2 > 0 then

m2 := m2 + a*data[i+k,j+l]

wsum2 := wsum2 + a

diff := |m2/wsum2 - m1/wsum1|

if diff > M[i,j] or t = 1 then

M[i,j] := diff

T[i,j] := -Pi/2 + Pi*t/nang

(ii) M-kernel estimators

DFAC := 0.7 // factor for damping (Armijo’s Rule)

for (i,j) in {w1+1,...,nrow-w1} x {w2+1,...,ncol-w2} do

for t in {1,...,nang} do

// calculate medians as starting values

n1 := 0 n2 := 0

for (k,l) in {-w1,...,w1} x {-w2,...,w2} do

x2 := dpx2[k+w1,l+w2,t]

a := alpha[k+w1,l+w2,t]

if a != 0 then

16

if x2 < 0 then

n1 := n1 + 1

window1[n1] := data[i+k,j+l]

if x2 > 0 then

n2 := n2 + 1

window2[n2] := data[i+k,j+l]

z1 := median(window1[1],...,window1[n1])

z2 := median(window2[1],...,window2[n2])

// calculate M-esitmates simultanously in both windows

// by the Newton-Raphson method

step1 := 0 step2 := 0

repeat

// value of the objective functions and their first

// and second order derivatives at z1 and z2 resp.

h1 := 0 dh1 := 0 ddh1 := 0

h2 := 0 dh2 := 0 ddh2 := 0

for (k,l) in {-w1,...,w1} x {-w2,...,w2} do

x2 := dpx2[k+w1,l+w2,t]

a := alpha[k+w1,l+w2,t]

if a != 0 then

if x2 < 0 then

h1 := h1 + a * rho(z1-data[i+k,j+l])

dh1 := dh1 + a * drho(z1-data[i+k,j+l])

ddh1 := ddh1 + a * ddrho(z1-data[i+k,j+l])

if x2 > 0 then

h2 := h2 + a * rho(z2-data[i+k,j+l])

dh2 := dh2 + a * drho(z2-data[i+k,j+l])

ddh2 := ddh2 + a * ddrho(z2-data[i+k,j+l])

// direction and step size in window 1

if ddh1 <= 0 then // h1 concav

if dh1 > 0 then

step1 := -stepsize

else

step1 := stepsize

else // h1 convex => Newton

step1 := -dh1/ddh1

17

// Armijo’s Rule

fac1 := 1

repeat

fac1 := fac1*DFAC

hnew := 0

for (k,l) in {-w1,...,w1} x {-w2,...,w2} do

x2 := dpx2[k+w1,l+w2,t]

a := alpha[k+w1,l+w2,t]

if a != 0 and x2 < 0 then

hnew := hnew + a*rho(z1+step1*fak1-data[i+k,j+l])

until hnew - (h1 + 0.5*fac1*dh1^2) <= 0.00001

// direction and step size in window 2 as above

z1 := z1 + step1*fac1

z2 := z2 + step2*fac2

until |fac1*step1| <= 0.00001 and |fac2*step2| <= 0.0001

diff := |z2 - z1|

if diff > M[i,j] or t = 1 then

M[i,j] := diff

T[i,j] := -Pi/2 + Pi*t/nang

4.4 Multiple Tests

Only the code for the Student t-test is given. For the asymptotical Gaussian test

replace the mean and the empirical variance by the median and MAD and calculate

the p-value by

pvalue := (1-pnorm(sqrt((n1+n2)/2)*|median1-median2|

/sqrt(Pi/2*(var1^2+var2^2)),n1+n2-2))

*nang*2

The p-values for every pixel
(

j

ncol
, i
nrow

)>
and the values of θ̂

(
j

ncol
, i
nrow

)>
are stored

in the two-dimensional arrays P[i,j] and T[i,j].

18

for (i,j) in {w1+1,...,nrow-w1} x {w2+1,...,ncol-w2} do

for t in {1,...,nang} do

n1 := 0 n2 := 0

for (k,l) in {-w1,...,w1} x {-w2,...,w2} do

x2 := dpx2[k+w1,l+w2,t]

a := alpha[k+w1,l+w2,t]

if a != 0 then

if x2 < 0 then

n1 := n1 + 1

window1[n1] := data[i+k,j+l]

if x2 > 0 then

n2 := n2 + 1

window2[n2] := data[i+k,j+l]

mean1 := mean(window1[1],...,window1[n1])

mean2 := mean(window2[1],...,window2[n2])

if |mean1-mean2| = 0 then

pvalue := 1

else

var1 := var(window1[1],...,window1[n1])

var2 := var(window2[1],...,window2[n2])

if var1+var2 = 0 then

pvalue := 0

else

pvalue := (1-pt(|((mean1-mean2)/sqrt((var1+var2)/2))

*sqrt((n1*n2)/(n1+n2))|,n1+n2-2))

*nang*2

if pvalue < P[i,j] or t = 1 then

P[i,j] := pvalue

T[i,j] := -Pi/2 + Pi*t/nang

19

4.5 Linear regression clustering

DFAC := 0.7 // factor for damping (Armijo’s Rule)

set_of_solutions := empty_set

for i in {1,...,n} do

a = alpha[i]

b = cos(a)*x[i]+sin(a)y[i]

repeat

// value of the objective functions and their first

// and second order derivatives

h := 0

dh := zero_vector(2)

ddh := zero_matrix(2,2)

for j in {1,...,n} do

z := (cos(a)*x[j]+sin(a)*y[j]-b)/s

h := h + rho(z)

dh := dh + grad(rho(z))

ddh := ddh + hesse(rho(z))

det = determinant(ddh)

if det > 0 and ddh[1,1] > 0 then // Newtow

stepa = -(ddh[2,2]/det*dh[1]-ddh[1,2]/det*dh[2])

stepb = -(ddh[1,1]/det*dh[2]-ddh[1,2]/det*dh[1])

else // Steepest Descent

stepa = -dh[1]

stepb = -dh[2]

// Armijo’s Rule

fac := 1

repeat

fac := fac*DFAC

hnew := 0

for k in {1,...,n} do

z := (cos(a+fac*stepa)*x[k]+sin(a+fac*stepa)*y[k]

-(b+fac*stepb))/s

hnew := hnew + rho(z)

until hnew - (h + 0.5*fac*(dh[1]^2+dh[2]^2)) <= 0.00001

until fak*(|stepa|+|stepb|) <= 0.00001

insert (a,b) into set_of_solutions

20

4.6 Circular regression clustering

DFAC := 0.7 // factor for damping (Armijo’s Rule)

set_of_solutions := empty_set

for (i,j) in {1,...,nx} x {1,...,ny} do

a1 := i/nx

a2 := j/ny

r := startradius

repeat

// objective funct. and their 1st & 2nd order derivatives

h := 0

dh := zero_vector(3)

ddh := zero_matrix(3,3)

for k in {1,...,n} do

z := (sqrt((x[k]-a1)^2+(y[k]-a2)^2)-b)/s

h := h + rho(z)

dh := dh + grad(rho(z))

ddh := ddh + hesse(rho(z))

det = determinant(ddh)

det2 = ddh[1,1]*ddh[2,2]-ddh[1,2]*ddh[2,1]

if det > 0 and det2 > 0 then // Newtow

stepa1 := (-ddh^(-1)*dh)[1]

stepa2 := (-ddh^(-1)*dh)[2]

stepr := (-ddh^(-1)*dh)[3]

else // Steepest Descent

stepa1 = -dh[1]

stepa2 = -dh[2]

stepr = -dh[3]

// Armijo’s Rule

fac := 1

repeat

fac := fac*DFAC

hnew := 0

for k in {1,...,n} do

z := (sqrt((x[k]-(a1+fac*stepa1))^2+

(y[k]-(a2+fac*stepa2))^2)-(b+fac*stepb))/s

hnew := hnew + rho(z)

until hnew - (h + 0.5*fac*(dh[1]^2+dh[2]^2+dh[3]^2)) <= 0.00001

until fak*(|stepa1|+|stepa2|+|stepr|) <= 0.00001

insert (a1,a2,r) into set_of_solutions

21

References

[1] Armijo, L. (1962), Minimization of functions having Lipschitz continous first

part derivatives, Pacific Journal of Mathematics 16, 1–3.

[2] Desarbo, W. S. and Cron, W. L. (1988), A maximum likelihood methodology

for clusterwise linear regression, Journal of Classification 5, 249–282.

[3] Davis, L. (1975), A Survey of Edge Detection Techniques, Computer Graphics

and Image Processing 4, 248–270.

[4] Davies, P. L. (1988), Consistent estimates for finite mixtures of well separated

elliptical distributions. In: Classification and Related Methods of Data Analysis,

Bock, H.-H. (Ed.), Elsevier Science Publishers, Amsterdam, 195–202.

[5] Garlipp, T., Müller, C. H. (2004), Robust Jump Detection in Regression Sur-

face, Submitted.

[6] Granville, V. Krivánek M., Rasson, J.-P. (1993), Clustering, calssification and

image segmentation on the grid, Computational Statistics and Data Analysis

15 No. 2.

[7] Härdle, W., Gasser, T. (1984), Robust Nonparametric Function Fitting, Journal

of the Royal Statistical Society, Series B 46, 42–51.

[8] Höppner, F., Klawonn, F., Kruse, R., Runkler, T. (1999), Fuzzy cluster anal-

ysis. Methods for classification, data analysis and image recognition, Wiley,

Chinchester.

[9] Hou, Z., Koh, T. S. (2003), Robust edge detection, Pattern Recognition 36,

2083–2091.

[10] Janowitz, M.F. (1984), A cluster analysis program for image segmentation,

Statistical signal processing, Statistics, textbooks and monographs, 53, 399–

410.

[11] Jolion, J.-M., Meer, P., Bataouche, S. (1991), Robust Clustering with Applica-

tions in Computer Vision, IEEE Transactions on Pattern Analysis and Machine

Intelligence 13, 791-802

[12] Klesse, G. M. (1995), Neue Versuche der Entwicklung robuster Regressionss-

chätzer – Mediangerade und Cluster-Regression Dissertation, Universität Karl-

sruhe.

22

[13] Krishnapuram, R., Freg, C.-P. (1992), Fitting an unknown number of lines and

planes to image data through compatible cluster merging, Pattern Recognition

25, 385–400.

[14] Meer, P. and Tyler, D. E. (1998), Smoothing the gap between statistics and

image understanding. Comments on the paper Edge-preserving smoothers for

image processing, Chu, C. K., Glad, I. K., Godtliebsen, F., Marron, J. S., J.

Amer. Statist. Assoc. 93, 526-541.

[15] Morgenthaler, S. (1990), Fitting redescending M-estimators in regression. In:

Robust Regression, Lawrence, H. D. and Arthur, S. (Eds.), Dekker, New York,

105-128.

[16] Müller, H.-G. (1992), Change-Points in Nonparametric Regression Analysis,

Annals of Statistics 20, 737–761.

[17] Müller, C. H., Garlipp, T. (2005), Simple consistent cluster methods based on

redescending M-estimators with an application to edge identification in images,

Journal of Multivariate Analysis 92/2, 359–385.

[18] Müller, H.-G., Song, K.-S. (1994), Maximin estimation of multidimensional

boundaries, Journal of Multivariate Analysis 50, 265–281.

[19] Peli, T., Malah, D. (1982), A Study of Edge Detection Algorithms, Computer

Graphics and Image Processing 20, 1–21.

[20] Qiu, P. (1994), Estimation of the Number of Jumps of the Regression Functions,

Communications in Statistics - Theory and Methods 23, 2141–2155.

[21] Qiu, P. (1997), Nonparametric Estimation of Jump Surface, Sankhya: The

Indian Journal of Statistics, Series A 59, 268–294.

[22] Qiu, P. (2002), A nonparametric procedure to detect jumps in regression sur-

faces, Journal of Computational and Graphical Statistics 11, 799–822.

[23] Qiu, P., Asano, C., Li, X. (1991), Estimation of Jump Regression Function,

Bulletin of Informatics and Cybernetics 24, 197–212.

[24] Qiu, P., Yandell, B. (1997), Jump Detection in Regression Surfaces, Journal of

Computational and Graphical Statistics 6, 332–354.

[25] Rousseeuw, P. J. and Van Aelst, S. (1999), Positive-breakdown robust methods

in computer vision. In: Computing Science and Statistics, Vol 31, (edited by K.

Berk and M. Pourahmadi, eds.), Interface Foundation of North America, Inc.,

Fairfax Station, VA, 451-460

23

[26] Späth, H. (1979), Clusterwise linear regression, Computing 22, 367–373.

[27] Sterflinger, K., Krumbein, W. E. (1995), Multiple Stress Factors affecting

Growth of Rock-inhabiting Black Fungi, Botanica Acta 108, 490–496.

[28] Wedel, M., Steenkamp, J.-B. E. M. (1991), A clusterwise regression method

for simultaneous fuzzy market structuring and benefit segmentation, Journal of

Marketing Research 28, 385–396.

[29] Wu, J. S. Wu, Chu, C. K. (1993), Kernel Type Estimators of Jump Points and

Values of a Regression Function, Annals of Statistics 21, 1545–1566.

24

	Title
	1 Introduction
	2 Method
	2.1 Identification of edge points
	2.2 Clustering of edge points
	2.2.1 Linear
	2.2.2 Circular

	3 Simulation and application
	3.1 Linear edges
	3.2 Circular edges

	4 Pseudo codes
	4.1 Computational details
	4.2 List of variables and functions
	4.3 Calculation of "0362C and "0362
	4.4 Multiple Tests
	4.5 Linear regression clustering
	4.6 Circular regression clustering

	References

