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We provide further results for the block implementation in Section 1, more details for the
proofs in Section 2, and further simulation results in Section 3. We repeat some parts of
the main article to improve the readability. As an overview, the following details were
added to each section:

• Most of Section 1 is copied from the main article. The only new details concern
Remark 1. It now also covers the linear implementation for K = 4 to showcase how
the idea can be generalized from K = 3 to arbitrary K.

• Section 2 contains all theorems, lemmas and other statements from the main article
and added a full proof to each statement. It also contains a proof to the conjecture
for the special case K = 3 as well as a short summary of the missing gaps to prove
it for K ≥ 4.

• Finally, Section 3 contains additional simulation results such as a quadratic regres-
sion model, an AR(2)-model, a nonlinear AR(1)-model and some more results on
the multiple regression model from the main article.

Before presenting these extended results, first recall that we consider residuals
R1(θ), . . . , RN(θ) from a parametric model and assume that these residuals satisfy for
every possible model parameter θ ∈ Θ and every n = 1, . . . , N that

Pθ(Rn(θ) > 0) =
1

2
= Pθ(Rn(θ) < 0). (1)
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Also recall that the K-depth of a vector (r1, . . . , rN) ∈ RN is defined as

dK(r1, . . . , rN) :=
1(
N
K

) ∑
1≤n1<n2<...<nK≤N

( K∏
k=1

1
{

(−1)krnk
> 0
}

+
K∏
k=1

1
{

(−1)krnk
< 0
})

.

(2)

1 The block implementation

Let r := (r1, . . . , rN) be a vector of residuals and let ψ (x) denote the sign of a real number
x, i.e. ψ (x) := 1{x > 0}−1{x < 0}. The vector r is decomposed into blocks by letting a
new block start at index j if and only if rj−1 and rj have different signs. More formally,
we define the number B(r) of blocks and their starting positions s1(r), . . . , sB(r)(r) via
s1(r) := 1 and

B(r) := 1 +
N∑
n=2

1 {ψ (rn−1) 6= ψ (rn)} ,

sb(r) := min {` > sb−1(r); ψ (r`) 6= ψ (r`−1)} , b = 2, . . . , B(r).

For convenience, we define sB(r)+1(r) := N + 1. The block sizes are defined as

qb(r) := sb+1(r)− sb(r), b = 1, . . . , B(r).

Example 1. The vector r = (1, 2, 6,−1, 3, 2,−5, 2) consists of B(r) = 5 blocks

( 1, 2, 6︸ ︷︷ ︸
block 1

, −1︸ ︷︷ ︸
block 2

, 3, 2︸︷︷︸
block 3

, −5︸ ︷︷ ︸
block 4

, 2︸ ︷︷ ︸
block 5

).

The block sizes are q1(r) = 3, q3(r) = 2 and qj(r) = 1 for j = 2, 4, 5.

We say that the nth residual rn belongs to block j if and only if sj(r) ≤ n < sj+1(r). The
sign of block j is defined as the sign of the first (and thus any) element rsj(r) belonging to
that block. Blocks j1 < . . . < jk are called alternating if and only if the signs of the blocks
are alternating, i.e. the signs of block ji and ji+1 are different for all i = 1, . . . , k−1. Note
that two blocks j1 and j2 have different signs if and only if j1 is even and j2 is odd or
vice versa. In particular, the blocks j1 < . . . < jk are alternating if and only if ji+1 − ji
is odd for all i = 1, . . . , k − 1.

Example 2. Consider the block decomposition for the vector r from Example 1. In this
decomposition, blocks 1, 3, 5 have positive signs and blocks 2, 4 have negative signs. Hence
if A denotes the set of alternating triples of blocks then

A = {(1, 2, 3), (1, 2, 5), (1, 4, 5), (2, 3, 4), (3, 4, 5)} .

Since a triple (ri, rj, rk), i < j < k, of entries from r is alternating if and only if they
belong to an alternating triple of blocks, we may count the number of triples in r with
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alternating signs by counting the corresponding combinations of elements from alternating
blocks, i.e. in our example with r of length N = 8,

d3(r) =
1(
8
3

) ∑
(i,j,k)∈A

qi(r)qj(r)qk(r) =
6 + 3 + 3 + 2 + 2(

8
3

) =
4

14
.

More generally, we have the following alternative representation of (2):

Lemma 1. Let O := 2N0 + 1 denote the set of all odd positive integers and let

AK,B :=
{

(i1, . . . , iK) ∈ {1, . . . , B}K ; ik − ik−1 ∈ O for k = 2, . . . , K
}
,

dK,N,B(q1, . . . , qB) :=
1(
N
K

) ∑
(i1,...,iK)∈AK,B

K∏
k=1

qik , B ∈ N, q1, . . . , qB > 0.

Let q1(r), . . . , qB(r)(r) be the block sizes of a vector r = (r1, . . . , rN). Then

dK(r1, . . . , rN) = dK,N,B(r)(q1(r), . . . , qB(r)(r)). (3)

Remark 1. Note that the size of AK,B is Θ(BK). Also note that the effort to compute
the block sizes q1(r), . . . , qB(r)(r) of a vector r = (r1, . . . , rN) is Θ(N). Hence, a naive
algorithm based on the expression in Lemma 1 has computational complexity Θ(N+BK)
if B = B(r) is the number of blocks in r. With some additional effort, the computational
costs can even be reduced to Θ(N + B) by properly storing all relevant terms during
the computation. For simplicity, we first consider the implementation for K ∈ {3, 4}. For
K = 3, consider d3,N,B(q1, . . . , qB) from Lemma 1 and note that factoring out the length
qi2 of the second block yields

d3,N,B(q1, . . . , qB) =
1(
N
3

) ∑
(i1,i2,i3)∈A3,B

qi1qi2qi3

=
1(
N
3

) B−1∑
i2=2

qi2

 i2−1∑
i1=1

i2−i1 odd

qi1


 B∑

i3=i2+1
i3−i2 odd

qi3

 . (4)

Next compute the following forward- and backward cumulative sums:

F(i2) =

i2−1∑
i=1

i2−i odd

qi, B(i2) =
B∑

i=i2+1
i−i2 odd

qi, i2 = 2, . . . , B − 1.

Note that all values (F(i2),B(i2)), i2 = 2, . . . , B − 1, can be computed with a total
complexity of Θ(B) similarly to the cumulative sum of a vector of length B. With these
values stored, (4) can be computed in linear time since the product of the inner sums
equals F(i2) · B(i2) which now can be computed in constant time. For K = 4, we have

d4,N,B(q1, . . . , qB) =
1(
N
4

) B−2∑
i2=2

qi2

 i2−1∑
i1=1

i2−i1 odd

qi1


 B−1∑

i3=i2+1
i3−i2 odd

qi3

B∑
i4=i3+1
i4−i3 odd

qi4

 . (5)
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Once again, the formula above can be computed in linear time if the inner sums are
computed in advance. Since the first of the inner sums equals F(i2) from the previous
case, it only remains to efficiently compute

B2(i2) :=
B−1∑

i3=i2+1
i3−i2 odd

qi3

B∑
i4=i3+1
i4−i3 odd

qi4 =
B−1∑

i3=i2+1
i3−i2 odd

qi3B(i3), i2 = 2, . . . , B − 1

where B(i), i = 2, . . . , B − 1, is defined as in the previous case and can be computed in
linear time. Hence, by computing these values in advance we may also compute B2(i2),
i2 = 2, . . . , B− 1 in linear time. Therefore we may also compute (5) with a total of Θ(B)
operations. The other cases K ≥ 5 essentially only require an iterative computation of
the terms

Bj(i2) =

B−j+1∑
i3=i2+1
i3−i2 odd

qi3Bj−1(i3), i2 = 2, . . . , B − j,

for j = 2, . . . , K − 2 where B1(i2) equals B(i2) from the case K = 3. Computing these
terms require a total of Θ(KB) operations, which remains linear in B for any constant
K. Then the K-depth is given by

dK,N,B(q1, . . . , qB) =
1(
N
K

) B−K+2∑
i2=2

qi2F(i2)BK−2(i2).

2 Proofs

Lemma 2. If En1 , ..., EnK
are random variables with P (Eni

6= 0) = 1 for i = 1, ..., K and
K ∈ N \ {1} then we have

K∏
k=1

1{Enk
(−1)k > 0}+

K∏
k=1

1{Enk
(−1)k < 0} −

(
1

2

)K−1

=
1

2K−1

bK2 c∑
L=1

∑
1≤i(1)<...<i(2L)≤K

2L∏
j=1

(−1)i(j)ψ
(
Eni(j)

)
P -almost surely,

(6)

where ψ (x) := 1{x > 0} − 1{x < 0}.

Proof of Lemma 2. In order to simplify the notation, we assume (n1, . . . , nK) = (1, . . . , K).
Note for x 6= 0

1{x > 0} =
1

2
(ψ (x) + 1) , 1{x < 0} =

1

2
(−ψ (x) + 1) .

It is straightforward to check
K∏
i=1

(ai + 1) =
K∑
`=1

∑
1≤i(1)<...<i(`)≤K

∏̀
j=1

ai(j) + 1 for arbitrary

a1, . . . , aK . This implies P -almost surely
K∏
k=1

1{Ek(−1)k > 0} =
1

2K

K∏
k=1

(
(−1)kψ (Ek) + 1

)
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=
1

2K

 K∑
`=1

∑
1≤i(1)<...<i(`)≤K

(−1)i(1)+···+i(`)
∏̀
j=1

ψ
(
Ei(j)

)
+ 1

 .

Similarly
K∏
k=1

1{Ek(−1)k < 0}

=
1

2K

 K∑
`=1

∑
1≤i(1)<...<i(`)≤K

(−1)i(1)+···+i(`)+`
∏̀
j=1

ψ
(
Ei(j)

)
+ 1


=

1

2K

 ∑
`=1,...,K
` even

∑
1≤i(1)<...<i(`)≤K

(−1)i(1)+···+i(`)
∏̀
j=1

ψ
(
Ei(j)

)
+ 1


− 1

2K

∑
`=1,...,K
` odd

∑
1≤i(1)<...<i(`)≤K

(−1)i(1)+···+i(`)
∏̀
j=1

ψ
(
Ei(j)

)
.

Therefore
K∏
k=1

1{Ek(−1)k > 0}+
K∏
k=1

1{Ek(−1)k < 0}

=
1

2K−1

 ∑
`=1,...,K
` even

∑
1≤i(1)<...<i(`)≤K

(−1)i(1)+···+i(`)
∏̀
j=1

ψ
(
Ei(j)

)
+ 1


=

(
1

2

)K−1
+

1

2K−1

bK2 c∑
L=1

∑
1≤i(1)<...<i(2L)≤K

(−1)i(1)+···+i(2L)
2L∏
j=1

ψ(Ei(j))

and the assertion follows. 2

Theorem 1. Let K ≥ 2. If R1(θ), . . . , RN(θ) are satisfying (1) then

dK(R1(θ), . . . , RN(θ)) −→
(

1

2

)K−1
Pθ-almost surely as N →∞.

Proof of Theorem 1. Set Rn = Rn(θ). Lemma 2 yields

dK(R1, . . . , RN)−
(

1

2

)K−1

=
1(
N
K

) ∑
1≤n1<n2<...<nK≤N

1

2K−1

bK2 c∑
L=1

∑
1≤i(1)<...<i(2L)≤K

2L∏
j=1

(−1)i(j)ψ
(
Rni(j)

)
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with ψ (x) := 1{x > 0} − 1{x < 0}. Set

v :=

bK2 c∑
L=1

∑
1≤i(1)<...<i(2L)≤K

1

for the number of summands in the representation of K alternating signs given by
Lemma 2. This number depends only on K and not on N . First of all, we show that
each of these v summands is converging in probability to zero.

To this end, let L = 1, . . . ,
⌊
K
2

⌋
and 1 ≤ i(1) < . . . < i(2L) ≤ K be arbitrary. We consider

the summand multiplied by the factor 2K−1. Because Eθ (ψ (Rn)) = 0 and R1, . . . , RN

are independent, we get at once for this summand

Eθ

(
1(
N
K

) ∑
1≤n1<n2<...<nK≤N

(−1)i(1)+...+i(2L)
2L∏
j=1

ψ
(
Rni(j)

))
= 0.

Moreover, ψ (Rn)2 = 1 Pθ-almost surely implies

Eθ

(
2L∏
j=1

ψ
(
Rni(j)

) 2L∏
j=1

ψ
(
Rñi(j)

))
=

{
1, if ni(j) = ñi(j) for j = 1, . . . , 2L,

0, else.

Hence

varθ

(
1(
N
K

) ∑
1≤n1<...<nK≤N

(−1)i(1)+...+i(2L)
2L∏
j=1

ψ
(
Rni(j)

))

=
1(
N
K

)2 ∑
1≤n1<...<nK≤N

∑
1≤ñ1<...<ñK≤N

Eθ

(
2L∏
j=1

ψ
(
Rni(j)

) 2L∏
j=1

ψ
(
Rñi(j)

))

=
1(
N
K

)2 ∑
1≤n1<...<nK≤N, 1≤ñ1<...<ñK≤N

ni(j)=ñi(j) for j=1,...,2L

1

≤ 1(
N
K

)2 ∑
1≤n1<...<n2L≤N

∑
n2L+1,...,nK∈{1,...,N}

∑
ñ2L+1,...,ñK∈{1,...,N}

1

=

(
N
2L

)
NK−2LNK−2L(

N
K

)2 ≤ (K!)2

(2L)!

N2L+2K−4L

(N − (K + 1))2K

=
(K!)2

(2L)!

1

N2L

1(
1− K+1

N

)2K −→ 0

for N → ∞ so that Chebyshev inequality provides the convergence in probability to
zero. Furthermore, the convergence in probability is sufficiently quick of order O(N−2L)
so that the Borel-Cantelli lemma implies the convergence to zero Pθ-almost surely. 2

Theorem 2. Suppose r1, . . . , rN have alternating signs. Then, for 2 ≤ K ≤ N ,

dK(r1, . . . , rN) =
1(
N
K

) ((b(N +K)/2c
K

)
+

(
d(N +K − 2)/2e

K

))
.
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Proof of Theorem 2. Let r1, . . . , rN be residuals with alternating signs. First note that
ri1 , . . . , riK are alternating if and only if (i1, . . . , iK) ∈ AK,N with AK,N defined as in
Lemma 1. Hence

dK(r1, . . . , rN) =
|AK,N |(

N
K

)
where |AK,N | denotes the size of AK,N . Thus it only remains to determine this size.

In the subsequent analysis, we write O for the set of all odd positive integers, i.e. O =
2N0 + 1. For a vector (i1, . . . , iK) let ∆1 := i1 and ∆k := ik − ik−1 for k = 2, . . . , K. Note
that (i1, . . . , iK) ∈ AK,N if and only if (∆1, . . . ,∆K) is part of the set

DK,N :=

{
(∆1, . . . ,∆K) ∈ N×OK−1;

K∑
k=1

∆k ≤ N

}
.

Hence |AK,N | = |DK,N |. In order to remove the additional condition ∆k ∈ O for k ≥ 2,
we will use the transformation ∆̃k = (∆k + 1)/2. Since this transformation for k = 1 only
provides an integer if ∆1 is odd, we additionally split the set into the two parts

D−K,N := {(∆1, . . . ,∆K) ∈ DK,N ; ∆1 ∈ O} ,
D+
K,N := {(∆1, . . . ,∆K) ∈ DK,N ; ∆1 /∈ O} .

The elements of D−K,N can be counted by noting that (∆1, . . . ,∆K) ∈ D−K,N if and only if

(
∆̃1, . . . , ∆̃K

)
∈ D̃−K,N :=

{
(n1, . . . , nK) ∈ NK ;

K∑
k=1

nk ≤
N +K

2

}

with ∆̃k = (∆k + 1)/2 for k = 1, . . . , K. Similarly, (∆1, . . . ,∆K) ∈ D+
K,N if and only if

(
∆1

2
, ∆̃2, . . . , ∆̃K

)
∈ D̃+

K,N :=

{
(n1, . . . , nK) ∈ NK ;

K∑
k=1

nk ≤
N +K − 1

2

}

with ∆̃k as above. In summary, the (bijective) transformations discussed above yield

|AK,N | =
∣∣∣D̃−K,N ∣∣∣+

∣∣∣D̃+
K,N

∣∣∣ . (7)

The sizes of the remaining sets can easily be determined by noting that each ele-
ment (n1, . . . , nK) in D̃−K,N corresponds to a K-element subset {m1, . . . ,mK} of the set
{1, 2, . . . , b(N +K)/2c} by letting

mk :=
k∑
i=1

ni for k = 1, . . . , K.

Hence ∣∣∣D̃−K,N ∣∣∣ =

(
b(N +K)/2c

K

)
.
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Essentially the same arguments yield∣∣∣D̃+
K,N

∣∣∣ =

(
b(N +K − 1)/2c

K

)
.

The assertion follows after rewriting b(N + K − 1)/2c = d(N + K − 2)/2e and by
plugging the sizes of the sets back into (7). 2

Corollary 1. Let B,K ≥ 2 be integers and let AK,B be as in Lemma 1. Then

|AK,B| =
(
b(B +K)/2c

K

)
+

(
d(B +K − 2)/2e

K

)
,

where |AK,B| denotes the size of AK,B.

Lemma 3. Let M,N ∈ N with B := N/M ∈ N. Furthermore, let 〈x〉J =
∏J−1

j=0 (x− j) for
x ∈ N and x ≥ J . If r1, . . . , rN are alternating in blocks of size M and if B ≥ K, then

(a) dK(r1, . . . , rN) =
〈B+K−2

2
〉K−1

BK−1 · N
K

〈N〉K
if K +B is even,

(b) dK(r1, . . . , rN) =
2〈B+K−1

2
〉K

BK
· N

K

〈N〉K
if K +B is odd.

Proof of Lemma 3. First note that if (r1, . . . , rN) consists of B blocks and each block has
size M = N/B, then Lemma 1 and Corollary 1 yield

dK(r1, . . . , rN) = dK,N,B

(
N

B
, . . . ,

N

B

)
=

(
N
B

)K(
N
K

) ((b(B +K)/2c
K

)
+

(
d(B +K)/2e − 1

K

))
.

Since binomial coefficients satisfy
(
x

K

)
=
〈x〉K
K!

for x ≥ K, this can be simplified to

dK(r1, . . . , rN) =
NK

BK〈N〉K
(〈b(B +K)/2c〉K + 〈d(B +K)/2e − 1〉K) . (8)

IfK+B is odd, the assertion follows since b(B+K)/2c = (B+K−1)/2 = d(B+K)/2e−1.
It only remains to consider K +B even. For this case, let x = (B +K)/2. Then

〈bxc〉K + 〈dxe − 1〉K = x〈x− 1〉K−1 + 〈x− 1〉K−1(x−K)

= (2x−K)〈x− 1〉K−1.

Since 2x−K = B, the assertion follows after plugging this equality back into (8). 2
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Theorem 3. Let M be a fixed integer. If the residuals r1, . . . , rN are alternating in blocks
of size M , then

lim
N→∞

N

(
dK(r1, . . . , rN)−

(
1

2

)K−1)
=
K(K − 1)

2K
.

Proof of Theorem 3. The proof is based on the formula given in Lemma 3. Let B =
N/M be the number of blocks and recall that M is fixed and thus B = Θ(N). The
key observation to derive the asymptotic value of the test statistic for residuals which
alternate in blocks of size M is the following asymptotic expansion: For any fixed a, J
and as x→∞,

〈x+ a〉J = xJ + J

(
a− J − 1

2

)
xJ−1 +O(xJ−2). (9)

This equality is based on expanding the product in the definition of the falling factorial:

〈x+ a〉J =
J−1∏
j=0

(x+ a− j) = xJ +
J−1∑
j=0

(a− j)xJ−1 +O(xJ−2),

which yields (9) using the well-known formula
∑J−1

j=0 j = J(J − 1)/2. Hence, Lemma 3(a)
and (9) with x = B/2, a = (K − 2)/2, J = K − 1 yield for even K +B that

dK(r1, . . . , rN) =
〈B+K−2

2
〉K−1

BK−1 · N
K

〈N〉K
=

((
1

2

)K−1
+O(N−2)

)
NK

〈N〉K
. (10)

Applying (9) for x = N , a = 0 and J = K yields

NK

〈N〉K
=

1

1− K(K−1)
2N

+O(N−2)
= 1 +

K(K − 1)

2N
+O(N−2),

where the second equality holds since 1/(1 − x) =
∑∞

j=0 x
j = 1 + x + O(x2) as x → 0.

Plugging this asymptotic expansion back into (10) yields for even K +B that

dK(r1, . . . , rN) =

((
1

2

)K−1
+O(N−2)

)(
1 +

K(K − 1)

2N
+O(N−2)

)
=

(
1

2

)K−1
+

(
1

2

)K−1
K(K − 1)

2N
+O(N−2).

The case that K + B is odd can be treated in a similar fashion and leads to the same
asymptotic expansion. Hence the K-depth of r1, . . . , rN satisfies

N ·

(
dK(r1, . . . , rN)−

(
1

2

)K−1)
=
K(K − 1)

2K
+O(N−1)

and the assertion follows by taking the limit N →∞. 2
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Conjecture 1. Let K ≥ 3, B ≥ K and N ≥ B. Consider the set

MK,N,B := arg max

{
dK,N,B(q1, . . . , qB); (q1, . . . , qB)∈(0, N)B,

B∑
b=1

qb = N

}
.

Then the following holds:

(a) If K +B is even then

MK,N,B =

{(
N

B
, . . . ,

N

B

)}
.

(b) If K +B is odd then

MK,N,B =

{(
βN

B − 1
,

N

B − 1
, . . . ,

N

B − 1
,
(1− β)N

B − 1

)
; β ∈ (0, 1)

}
.

Proof of Conjecture 1 for K = 3. Recall that according to Lemma 5 we may assume
w.l.o.g. that B is odd. Let B̃ = bB/2c = (B−1)/2. For convenience, we will subsequently
ignore the scaling factor

(
N
3

)
and instead maximize

D3,B(q1, q2, . . . , qB) :=

(
N

3

)
d3,N,B(q1, q2, . . . , qB)

=
B̃∑
i=1

q2i−1

B̃∑
j=i

q2j

B̃∑
l=j

q2l+1 +
B̃−1∑
i=1

q2i

B̃−1∑
j=i

q2j+1

B̃−1∑
l=j

q2l+2

(11)

where the maximum is considered over all q = (q1, . . . , qB) from the set

Q′N,B :=

{
(q1, . . . , qB) ∈ [0, N ]B;

B∑
j=1

qj = N

}
.

To this end, note that Q′N,B is a compact set with respect to the standard subspace
topology of the RB-subset

RN,B :=

{
(q1, . . . , qB) ∈ RB;

B∑
j=1

qj = N

}
.

Also note that all possible local maxima of D3,B within RN,B can be computed by using
Lagrange multiplier, i.e. by determining the stationary points of

F (q1, . . . , qB, λ) = D3,B(q1, . . . , qB) + λ

(
N −

B∑
b=1

qb

)
.

Hence, a maximum q of D3,B within Q′N,B has to either be part of a stationary point
(q, λ) of F or has to lie within the boundary

∂Q′N,B =
{

(q1, . . . , qB) ∈ Q′N,B; qi = 0 for some i = 1, . . . , B
}
.

Therefore, the assertion follows if we prove the following two claims:
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(a) The only stationary point of D3,B in Q′N,B \ ∂Q′N,B is

q∗ = q∗(B) =

(
N

B
,
N

B
, . . . ,

N

B

)
∈ Q′N,B.

(b) All q ∈ ∂Q′N,B satisfy D3,B(q) < D3,B(q∗).

For part (a) first note that the partial derivatives of F are given by

∂

∂q2m−1
F (q, λ) =

B̃∑
j=m

q2j

B̃∑
l=j

q2l+1 +
m−1∑
i=1

q2i−1

m−1∑
j=i

q2j

+
m−1∑
i=1

q2i

B̃−1∑
l=m−1

q2l+2 − λ, m = 1, . . . , B̃ + 1,

∂

∂q2m
F (q, λ) =

m∑
i=1

q2i−1

B̃∑
l=m

q2l+1 +
B̃−1∑
j=m

q2j+1

B̃−1∑
l=j

q2l+2

+
m−1∑
i=1

q2i

m−1∑
j=i

q2j+1 − λ, m = 1, . . . , B̃,

with the convention
∑b

i=a xi = 0 for all a > b and any sequence (xi)i≥1. In particular, a
simple calculation reveals that these partial derivatives satisfy for all q = (q1, . . . , qB) ∈
(R \ {0})B, λ ∈ R and j = 3, . . . , B − 1

1

qj

(
∂

∂qj+1

F (q, λ)− ∂

∂qj−1
F (q, λ)

)
+

1

qj−1

(
∂

∂qj
F (q, λ)− ∂

∂qj−2
F (q, λ)

)
=qj−1 − qj.

Hence, if (q, λ) is a stationary point then the equations above have to equal zero for all
j = 3, . . . , B − 1 and thus

q2 = q3 = . . . = qB−1. (12)

With the additional assumption of (12), one can further show that, e.g.,

0 =
1

q2

(
∂

∂q3
F (q, λ)− ∂

∂q1
F (q, λ)

)
= q1 − qB

and hence q1 = qB for any stationary point. Finally, (12) and q1 = qB imply

0 =
∂

∂q2
F (q, λ)− ∂

∂q1
F (q, λ) = q1(q1 − q2)

and therefore q1 = q2 = . . . = qB if q is a stationary point without any zeros. The
additional condition

∑
j qj = N therefore yields q = q∗ as claimed in (a).

11



Part (b) can be shown by induction on B after noting that setting qi = 0 is equivalent to
removing block i and merging blocks i − 1 and i + 1, that is if q = (q1, . . . , qB) satisfies
qi = 0 then

D3,B(q) =


D3,B−1(q2, . . . , qB), if i = 1,

D3,B−2(q1, . . . , qi−1 + qi+1, . . . , qB), if i ∈ {2, . . . , B − 1},
D3,B−1(q1, . . . , qB−1), if i = B.

In order to only consider odd B for the induction, the cases i ∈ {1, B} can further be
reduced by applying Lemma 5 to obtain

D3,B−1(q2, . . . , qB) = D3,B−2(q2 + qB, q3, . . . , qB−1),

D3,B−1(q1, . . . , qB−1) = D3,B−2(q1 + qB−1, q2, . . . , qB−2).

Hence, assuming q∗(B) is the maximum of D3,B by induction hypothesis, then the reduc-
tion above yields for all q ∈ ∂Q′N,B+2

D3,B+2(q) ≤ D3,B(q∗(B)) < D3,B+2(q
∗(B + 2))

in which the last inequality follows by observing that, according to Lemma 3,

D3,B(q∗(B)) =

(
N

3

)
N3

〈N〉3

〈
B+1
2

〉
2

B2
=
N3

24

(
1− 1

B2

)
which is strictly increasing in B. 2

Possible extensions of the proof to K ≥ 4. It is possible to show for all K ≥ 4 that
q∗ = (N/B, . . . , N/B) indeed is a stationary point of dK,N,B if K + B is even. This
essentially only requires to show that the number of K-tuples in AK,B in which index i
appears (i.e. the number of summands in the K-depth with qi in it) is the same for all
i ∈ {1, . . . , B}. However, we did not manage to prove that this stationary point is unique
for K ≥ 4. Note that the argument in part (b) of the proof above also works for ar-
bitrary K. Hence, the only missing gap for a proof of Conjecture 1 is the uniqueness of q∗.

Lemma 5. Let K ≥ 2 and B ≥ K. If K +B is odd then

dK,N,B(q1, . . . , qB) = dK,N,B−1(q1 + qB, q2, . . . , qB−1).

Proof of Lemma 5. For x ∈ R and w = (w1, . . . , wJ) ∈ RJ let (x,w) = (x,w1, . . . , wJ)
and let (w, x) = (w1, . . . , wJ , x). Let AK,B and dK,N,B(q1, . . . , qK) be as in Lemma 1. The
key observations to prove Lemma 5 are the following: If K + B is odd then, for every
i ∈ {2, . . . , B − 1}K−1,

(a) (1, i) ∈ AK,B if and only if (i, B) ∈ AK,B,

(b) there is no vector j ∈ {2, . . . , B − 1}K−2 with (1, j, B) ∈ AK,B.
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Both (a) and (b) are not hard to check, details are given at the end of the proof. Based
on these properties, we can split the sum in dK,N,B(q1, . . . , qK) in the following way: Let

BK,B =
{
i ∈ {2, . . . , B − 1}K−1; (1, i) ∈ AK,B

}
,

CK,B = AK,B ∩ {2, . . . , B − 1}K .

We may now split AK,B into three parts: The first one contains vectors v = (v1, . . . , vK)
in AK,B with v1 = 1, the second one contains vectors with vK = B and the third part
contains vectors with v1 6= 1 and vK 6= B (vectors with v1 = and vK = B are impossible
according to (b)). Then (a) implies AK,B = ({1} × BK,B) ∪ (BK,B × {B}) ∪ CK,B. Hence

∑
(i1,...,iK)∈AK,B

K∏
k=1

qik = (q1 + qB)
∑

(i1,...,iK−1)∈BK,B

K−1∏
k=1

qik +
∑

(i1,...,iK)∈CK,B

K∏
k=1

qik .

Furthermore, note that AK,B−1 = ({1}×BK,B)∪CK,B once again by splitting the set into
two parts based to whether v1 = 1 or not. In particular, if q̃1 = q1 + qB and q̃j = qj for
j = 2, . . . , B − 1, then

∑
(i1,...,iK)∈AK,B−1

K∏
k=1

q̃ik = q̃1
∑

(i1,...,iK−1)∈BK,B

K−1∏
k=1

q̃ik +
∑

(i1,...,iK)∈CK,B

K∏
k=1

q̃ik .

Hence dK,N,B(q1, . . . , qB) = dK,N,B−1(q̃1, . . . , q̃B−1), which is the assertion.

Proof of (a) and (b). For simplicity, we will subsequently assume that K is odd and B
is even. The other case can be treated similarly. For (a) note that (1, i) ∈ AK,B requires
i = (i1, . . . , iK−1) to start with an even index i1 and continue alternating between odd
and even in the subsequent indices. Since the length K − 1 of i is even, the last index
iK−1 of the vector has to be odd. Since B is even, this means that iK−1 and B indeed
alternate between odd and even. Hence (i, B) ∈ AK,B. Similarly, (i, B) ∈ AK,B requires
iK−1 to be odd and subsequent indices in the vector to alternate between odd/even.
Hence i1 has to be even and thus (1, i) ∈ AK,B. For part (b) assume for the sake of
contradiction that (1, j, B) ∈ AK,B for a vector j = (j1, . . . , jK−2) ∈ {2, . . . , B − 1}K−2.
Since 1 is odd, this in particular means that j1 is even. Since K − 2 is odd, j1 and
jK−2 have the same parity in a vector j with entries that alternate between even/odd.
Hence jK−2 is even. However, since B is even, jK−2 has to be odd in order to have
(1, j, B) ∈ AK,B, which leads to a contradiction. 2

Theorem 4. Let K ≥ 2, B ∈ {K,K + 1} and let QN,B be as above. Then

lim
N→∞

sup {dK,N,B(q1, . . . , qB); (q1, . . . , qB)∈QN,B} =
K!

KK
≤
(

1

2

)K−1
, (13)

where the inequality in (13) is strict for K ≥ 3.

Before proving Theorem 4, we start with a Lemma that yields the inequalities in Theo-
rem 4 and Theorem 5.
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Lemma 6. Let K,B be integers with B ≥ K ≥ 2. Then∏K−1
k=1

(
B+K

2
− k
)

BK−1 ≤
(

1

2

)K−1
with equality if and only if K = 2.

Proof of Lemma 6. First note that by rearranging the order of the product one obtains

K−1∏
k=1

(
B+K

2
− k
)

= εK,B

b(K−1)/2c∏
k=1

(
B+K

2
− k
)(

B+K

2
− (K − k)

)
, (14)

with εK,B =

{
1, if K is odd,
B/2, if K is even.

Next note that the quadratic function g(x) = ((B + K)/2 − x)((B − K)/2 + x) has a
unique global maximum at x = K/2 and that g(K/2) = B2/4. Hence

b(K−1)/2c∏
k=1

(
B +K

2
− k
)(

B −K
2

+ k

)
≤
(
B2

4

)b(K−1)/2c
in which the inequality is strict if there is at least one factor with k 6= K/2, i.e. if K ≥ 3.
In combination with (14), this upper bound yields∏K−1

k=1

(
B+K

2
− k
)

BK−1 ≤ εK,B
BK−1

(
B2

4

)b(K−1)/2c
=

(
1

2

)K−1
where the last equality can easily be checked by a case distinction between K even/odd.
The assertion follows since this inequality is strict for K ≥ 3. 2

Proof of Theorem 4. We first consider the case K = B, i.e. the aim is to compute the
maximum of the function

(q1, . . . , qK) 7→ dK,K(q1, . . . , qK) =
1(
N
K

) K∏
k=1

qk

under the side condition (q1, . . . , qK) ∈ QN,K , that is q1, . . . , qK ∈ N and
∑K

k=1 qk = N .
When disregarding the condition q1, . . . , qK ∈ N, this can easily be done, e.g., by using
Lagrange multipliers (considering the function ln(dK,K(·)) instead of dK,K(·) simplifies
the calculations), which reveals a global maximum at

q1 = . . . = qK =
N

K
.

Hence,

sup {dK,K(q1, . . . , qK); (q1, . . . , qK) ∈ QN,K}
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≤dK,K
(
N

K
, . . . ,

N

K

)
=

1(
N
K

) (N
K

)K
with equality if N/K ∈ N. Thus the limit values of the maximal depth of residual vectors
with K blocks is given by

lim
N→∞

1(
N
K

) (N
K

)K
=

K!

KK
.

The case B = K + 1 can be treated in a similar fashion or can be deduced from B = K
and Lemma 5. In particular, the maximal value is attained at q1 + qK+1 = q2 = . . . = qK
and its limit value remains K!/KK . The remaining inequality

K!

KK
<

(
1

2

)K−1
for all K ≥ 3

follows from Lemma 6 with B = K. Hence the assertion follows. 2

Theorem 5. Let K ≥ 2 and B ≥ K be fixed. If K +B is even then

lim
N→∞

dK,N,B

(
N

B
, . . . ,

N

B

)
=

∏K−1
k=1

(
B+K

2
− k
)

BK−1 ≤
(

1

2

)K−1
. (15)

The inequality in (15) is strict for K ≥ 3.

Proof of Theorem 5. The identity for the limit of the test statistic follows from Lemma 3
sinceNK/〈N〉K → 1 for fixedK asN →∞. The inequality in (15) follows from Lemma 6.
2

3 Further simulation results

At first, we present here further simulation for models with three unknown parameter
as quadratic regression, AR(2)-regression and nonlinear AR(1)-regression with intercept.
In these examples, all simulations were done with 100 repetitions since there were no
visible difference when 500 repetitions were used. For getting the simulated p-values for
the 3-depth test and the 4-depth test for N = 96, 3-depth and 4-depth were simulated
10 000 times. For N = 12, the exact distribution was used.

At last we consider the multiple regression case as considered in the paper, but here
additionally with sample size N = 500 and for another aspect of alternatives.

3.1 Quadratic regression

In the quadratic regression model given by

Yn = θ0 + θ1 xn + θ2 x
2
n + En, n = 1, . . . , N, θ = (θ0, θ1, θ2)

>,
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we consider the problem of testing the null hypothesis H0 : θ = (1, 0, 1)> with a test with
level α = 0.05.

Figures 1 and 2 show the simulated power of the sign test, the F test, the 3-depth test,
and the 4-depth test for N = 12 and x1 = −5.5, x2 = −4.5, . . . x6 = −0.5, x7 = 0.5, . . .
x12 = 5.5 where En has a standard normal distribution. For each simulation, a 41 × 41
grid of alternatives and 100 repetitions were used. Moreover, the exact distributions for
the 3-depth and the 4-depth were used to obtain the p-values. The parameter of the null
hypothesis is given by the intersection of the two dotted lines.

In Figure 1, where the the component θ2 was fixed to 1, the power of the 3-depth test is
slightly worse than the power of the F test and better than the power of the 4-depth test.
However, the power of the 3-depth tests is much worse in Figure 2, where the component
θ1 was fixed to 0 in the upper part and the component θ0 was fixed to 1 in the lower part.
In both cases, the 3-depth test is even worse than the sign test while only the 4-depth
test is slightly worse than the F test. Both the 3-depth test and the sign test have an
unbounded area of power less or equal α = 0.05. For the 3-depth test, this is due to the
fact that in these cases often two sign changes appear and only vectors with zero 3-depth
can be rejected due to the small sample size. In particular, the maximum 3-depth for two
sign changes is 43·6

12·11·10 = 0.291 providing a p-value of 0.758 so that a rejection of the null
hypothesis is not possible. Moreover, alternatives which tend to lead to two sign changes
also tend to have a large difference between positive and negative signs, which is why
the sign test perform better at these alternatives. Since the 4-depth is zero for two sign
changes, the power of the 4-depth test is similar to the F test.

However the power of the 3-depth test becomes much better for N = 96. For this sample
size, x1 = −5.9375, x2 = −5.875, . . . x48 = −0.0625, x49 = 0.0625, . . . x96 = 5.9375 were
used as design points and the distribution of the 3-depth and the 4-depth was simulated
10 000 times to obtain relative exact p-values. Again, a 41 × 41 grid of alternatives was
used for each simulation and each scenario was repeated 100 times. Figures 3, 4, and
5 show the results for the cases where at first component θ2 was fixed to 1 (Figure 3),
then component θ1 was fixed to 0 (Figure 4), and at last component θ0 was fixed to 1
(Figure 5). Each of the three figures provides the results for errors with standard normal
distribution in the upper part and the results for errors with standard Cauchy distribution
in the lower part.

For the normal distribution, the area of small power of the 3-depth test is now bounded.
Only in the case where θ1 is fixed to zero, this area is much larger than the area of
small power of the F test. But in the two other cases, the 3-depth test behaves similarly
to the F test. The 4-depth test behaves similarly to the F test in all three cases. The
improved performance of the 3-depth test can be explained by the p-values discussed in
the main article. In particular, the maximum depth for two sign changes is 323·6

96·95·94 = 0.229
providing a p-value of 0.014 which is smaller than the significance level α = 0.05.

If the errors follow a Cauchy distribution, then the power of the F test becomes very bad
while the power functions of the sign test, the 3-depth test and the 4-depth test are only
slightly changed. Although Figure 4 may indicate that the area of small power of the
3-depth test and the F test is unbounded, this is not correct. This is only caused by the
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small range of θ chosen for the plot. Increasing the range to the same area as in Figures
1 and 2 reveals that the area of small power is indeed bounded for both tests. However,
the area of small power is still much larger for the F test than for the 3-depth test. Hence
the 3-depth test and the 4-depth test are much more robust against outliers than the F
test.

Normal distribution, N=12
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Figure 1: Simulated power of the sign test, the F test, the 3-depth test, and the 4-depth
test for normally distributed errors for sample size N = 12, where component θ2 is fixed
to 1 (20 gray levels were used, where black corresponds to [0, 0.05] and white to (0.95, 1]).
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Normal distribution, N=12
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Figure 2: Simulated power of the sign test, the F test, the 3-depth test, and the 4-depth
test for normally distributed errors for sample size N = 12, where the component θ1 is
fixed to 0 in the upper part and the the component θ0 is fixed to 1 in the lower part (20
gray levels were used, where black corresponds to [0, 0.05] and white to (0.95, 1]).
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Normal distribution, N=96
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Cauchy distribution, N=96
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Figure 3: Simulated power of the sign test, the F test, the 3-depth test, and the 4-depth
test for errors with normal distribution (upper part) and with Cauchy distribution (lower
part) for sample size N = 96, where the component θ2 is fixed to 1 (20 gray levels were
used, where black corresponds to [0, 0.05] and white to (0.95, 1]).
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Normal distribution, N=96
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Cauchy distribution, N=96
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Figure 4: Simulated power of the sign test, the F test, the 3-depth test, and the 4-depth
test for errors with normal distribution (upper part) and with Cauchy distribution (lower
part) for sample size N = 96, where the component θ1 is fixed to 0 (20 gray levels were
used, where black corresponds to [0, 0.05] and white to (0.95, 1]).
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Normal distribution, N=96
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Cauchy distribution, N=96
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Figure 5: Simulated power of the sign test, the F test, the 3-depth test, and the 4-depth
test for errors with normal distribution (upper part) and with Cauchy distribution (lower
part) for sample size N = 96, where the component θ0 is fixed to 1 (20 gray levels were
used, where black corresponds to [0, 0.05] and white to (0.95, 1]).
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3.2 AR(2)-model

Here we consider the autoregressive model given by

Yn = θ0 + θ1 Yn−1 + θ2 Yn−2 + En, n = 1, . . . , N, θ = (θ0, θ1, θ2)
>,

with Y−1 = Y0 = 5. In contrast to most approaches for autoregressive models, we assume
here only P (En > 0) = P (En < 0) = 1

2
. The residuals are Rn(θ) = Yn − θ0 − θ1 Yn−1 −

θ2 Yn−2. In the simulation, we used a normal distribution with mean 0 and standard
deviation 0.01. A comparison of the sign test, the 3-depth test, the 4-depth test, and a
t-test for testing H0 : θ = (0.2, 0.8, 0.21)> for N = 96 with α = 0.05 are given by the
Figures 6, 7, and 8. Thereby a 41 × 41 grid of alternatives and 100 simulations for each
alternative were used.
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Figure 6: Simulated power of the sign test, 3-depth test, 4-depth test and t test for the
AR(2)-model where θ2 is fixed to 0.21 (20 gray levels were used, where black corresponds
to [0, 0.05] and white to (0.95, 1]).
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Figure 7: Simulated power of the sign test, 3-depth test, 4-depth test and t test for the
AR(2)-model where θ1 is fixed to 0.8 (20 gray levels were used, where black corresponds
to [0, 0.05] and white to (0.95, 1]).
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Figure 8: Simulated power of the sign test, 3-depth test, 4-depth test and t test for the
AR(2)-model where θ0 is fixed to 0.2 (20 gray levels were used, where black corresponds
to [0, 0.05] and white to (0.95, 1]).
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3.3 Nonlinear AR(1)-model

Here we consider the nonlinear autoregressive model given by

Yn = θ0 + Yn−1 + θ1 Y
θ2
n−1 + En, n = 1, . . . , N, θ = (θ0, θ1, θ2)

>,

with Y0 = 15. In contrast to most approaches for autoregressive models, we assume here
only P (En > 0) = P (En < 0) = 1

2
. The residuals are Rn(θ) = Yn− θ0−Yn−1− θ1 Y θ2

n−1. In
the simulation, we used a normal distribution with mean 0 and standard deviation 0.01.
A comparison of the sign test, the 3-depth test, the 4-depth test, and a t-test for testing
H0 : θ = (0.01, 0.005, 1.002)> for N = 96 with α = 0.05 are given by the Figures 9, 10,
and 11. Thereby a 81 × 71 grid was used for the presentation of alternatives in θ0 and
θ1, a 81× 101 grid for the presentation of alternatives in θ0 and θ2, and a 65× 74 grid of
for the presentation of alternatives in θ1 and θ2, and 100 simulations for each alternative
were used.
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Figure 9: Simulated power of the sign test, 3-depth test, 4-depth test and t test for the
nonlinear AR(1)-model where θ2 is fixed to 1.002 (20 gray levels were used, where black
corresponds to [0, 0.05] and white to (0.95, 1]).
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Figure 10: Simulated power of the sign test, 3-depth test, 4-depth test and t test for the
nonlinear AR(1)-model where θ1 is fixed to 0.005 (20 gray levels were used, where black
corresponds to [0, 0.05] and white to (0.95, 1]).
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Figure 11: Simulated power of the sign test, 3-depth test, 4-depth test and t test for the
nonlinear AR(1)-model where θ0 is fixed to 0.01 (20 gray levels were used, where black
corresponds to [0, 0.05] and white to (0.95, 1]).
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3.4 Multiple regression

Figures 12 shows the results for multiple regression as considered in the paper but here
with sample size N = 500. For comparison, Figure 13 displays also the situation for
N = 100 again. With the enlarged sample size N = 500, the power of the K-depth tests
increases in all cases compared with N = 100. Now for N = 500, the robust Wald can
be calculated also for D = 40 and D = 80. However, it is very conservative close to the
null hypotheses then. In these close neighbourhoods of the null hypotheses, the K-depth
tests with K = 5 and K = 21 behave better than the robust Wald test. However, for
other alternatives, the Wald test remains to be more powerful.

Finally, in Figure 14 we present the simulated power forN = 100 in the multiple regression
along alternatives of the form θ = γ ·1D, where 1D is the D-dimensional vector consisting
of ones and γ ∈ [−1, 1].
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Figure 12: Extracts of the simulated power functions for the model Yn =
∑D

d=1 θdxnd+En
with N = 500. Here, the power functions are only shown for θ1 ∈ [−1, 1], all other values
of θ are zero. The K-depth tests are conducted with an ordering according to the exact
solution of the Shortest Hamiltonian Path problem. The gray dashed line shows the level
of the test α = 0.05.
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Figure 13: Extracts of the simulated power functions for the model Yn =
∑D

d=1 θdxnd+En
with N = 100. Here, the power functions are only shown for θ1 ∈ [−1, 1], all other values
of θ are zero. The K-depth tests are conducted with an ordering according to the exact
solution of the Shortest Hamiltonian Path problem. The gray dashed line shows the level
of the test α = 0.05.
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Figure 14: Extracts of the simulated power functions for the model Yn =
∑D

d=1 θdxnd+En
with N = 100. Here, the power functions are only shown for alternatives of the form
θ = γ ·1D with γ ∈ [−1, 1]. The K-depth tests are conducted with an ordering according
to the exact solution of the Shortest Hamiltonian Path problem. The gray line shows the
level of the test α = 0.05.
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