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Abstract

The estimation of the abundance of a species using the presence or absence

of the species over a grid of cells simplifies data collection but the resulting

statistical analysis is challenging. Several estimators have been proposed but

their properties are unknown. Here we assume a generalized gamma-Poisson

model which allows dependencies across the grid and develop a new estimator

for this model. It is shown that this estimator is consistent, allowing us to con-

clude that it is indeed possible to estimate abundance from presence-absence

maps.

Keywords: Presence Absence Map; Consistency; Gamma-Poisson Model.

1 Introduction

In ecological studies where the interest is in estimating the number of individuals

of a certain species in a given area it is often too laborious to count all individuals

in an area and a more labor effective procedure is to divide the area in M cells and

to determine for each cell whether the species is present or not. The data may be

thought of as a presence-absence map that identifies the occupied cells and it is often

represented by a I × J-matrix (yij)i=1,...,I, j=1,...,J with M = I ⋅ J cells, where yij = 1
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if the i, j cell is unoccupied cell and 0 otherwise. Then the question is whether it is

possible to estimate the total number N of the species in the area from these data

in general. The analysis of these data presents an interesting statistical challenge

(Kunin 1998, He and Gaston 2000, Kunin et al. 2000, Conlinsk et al. 2007, He and

Gaston 2007, Hwang and He 2010).

The resolution of the problem requires distributional assumptions on the unknown

numbers Xij of individuals in each cell. The simplest approach is to assume that

the probability for the occurrence of each of the N individuals is the same for each

cell. Then (Xij)i=1,...,I, j=1,...,J has a multinomial distribution where each cell has the

same probability. Then N =
∑I

i=1

∑J
j=1Xij can be estimated using maximum like-

lihood. Alternatively, the Xij may be supposed to be independently and identically

distributed with a common Poisson distribution. Then N can be estimated using

the method of moments (He and Gaston 2000), however, the resulting estimator is

negatively biased and hence not used. Noting the well known relationships between

multinomial, Poisson and negative binomial distributions, He and Gaston (2000)

proposed the use of the negative binomial distribution. However, as Conlisk et al.

(2007) remarked, this leads to an underdetermined problem. It is caused by the fact

that the negative binomial distribution has two unknown parameters including the

clumping or aggregation parameter k (Pielou 1977). If k is known, then N can be

estimated as a function of m0, the number of empty cells (He and Gaston 2000).

Since k is usually not known, it must also be estimated. He and Gaston (2000) used

a coarser map, where adjacent pairs of cells are merged, to estimate k. However,

as noted by Conlisk et al. (2007), the resulting equations for the two parameters

cannot be simultaneously solved and in the negative binomial framework there is

no simple solution to this problem (Conlisk et al. 2007, He and Gaston 2007). To

date, no statistical properties of the estimators of He and Gaston (2000) are known.

Even consistency has not been proven.

Recall that the negative binomial distribution arises from a gamma-Poisson mixture.

That is, Xij has a Poisson distribution with mean �ij which is the realization of a

gamma random variable, representing for example environmental variation across

the study area. In this model the cell counts are unconditionally independent. This

is unrealistic in modelling species abundance where we expect correlation between

adjacent areas with similar environments. To model this behaviour Hwang and He

(2010) proposed the generalized gamma-Poisson mixture model. In this model, a

gamma random variable is first associated with each cell, as in the negative binomial

model, but correlations between the cells are modelled by allowing the conditional

mean of the Poisson counts to be a weighted sum of all gamma random variables.

Hwang and He (2010) used gamma approximations to find an estimator. Using cen-

sus forest data (Condit et al., 1996) they showed empirically that estimators based

on the generalized gamma Poisson model gave improved estimators of abundance

from occurrence data. However, they did not give any theoretical properties of their
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estimator.

In Section 2 we derive an alternate estimator for the generalised gamma-Poisson

model whose consistency is shown in Section 3. This consistency proof is not

straightforward and needs some tricky arguments which are given in the Appendix.

The estimator is applied to real data in Section 4. The results are discussed in

Section 5.

2 Model and the new estimator

For simplicity, assume that I and J are even. Formally, the generalized gamma-

Poisson mixture model is defined as follows. Let Vst, s, t = 0,−1, 1,−2,−2, . . . be

i.i.d. gamma distributed random variables with parameters a and b so that E(Vst) =

ab and var(Vst) = ab2. The conditional distribution of Xij given Vst = vst for s, t ∈ ZZ

is taken to be Poisson with parameter �ij =
∑∞

s=−∞

∑∞
t=−∞ �∣i−s∣+∣j−t∣vst where

0 ≤ � < 1. Here the parameter � reflects the strength of spatial correlation across

the cells. Note that for (i, j) ∕= (k, l), Xij and Xkl are conditionally independent

given Vst = vst, s, t ∈ ZZ.

Since the conditional distribution of Xij given Vst = vst, s, t ∈ ZZ, is Poisson with

parameter �ij =
∑∞

s=−∞

∑∞
t=−∞ �∣i−s∣+∣j−t∣ vst, we see that

E(Xij) =

∞∑

s=−∞

∞∑

t=−∞

�∣i−s∣+∣j−t∣ E(Vst) =

∞∑

s=−∞

�∣i−s∣

∞∑

t=−∞

�∣j−t∣ ab =

(
1 + �

1− �

)2

ab,

and thus

E (N) =

I∑

i=1

J∑

j=1

E(Xij) = I J

(
1 + �

1− �

)2

ab. (1)

Once we have estimators â, b̂, �̂ of a, b, and � this yields the estimator

N̂ = I J

(
1 + �̂

1− �̂

)2

â b̂, (2)

and our main task is to estimate these parameters using presence-absence data.

Let Yij = 1{0}(Xij) be an indicator of whether the cell (i, j) is empty or not. The vari-

ables Y d
i(2j−1) = Yi(2j−1)Yi(2j) and Y q

(2i−1)(2j−1) = Y(2i−1)(2j−1)Y(2i−1)(2j)Y(2i)(2j−1)Y(2i)(2j)

indicate whether the double and quadruple cells are empty. Our approach is based

on the method of moments and to this end we need:
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Proposition 1

a) E(Yij) =

∞∏

s=−∞

∞∏

t=−∞

(
1 + b �∣i−s∣+∣j−t∣

)−a
,

b) E(Y d
ij) =

∞∏

s=−∞

∞∏

t=−∞

(
1 + b �∣i−s∣(�∣j−t∣ + �∣j+1−t∣)

)−a
,

c) E(Y q
ij)

=

∞∏

s=−∞

∞∏

t=−∞

(
1 + b (�∣i−s∣ + �∣i+1−s∣)(�∣j−t∣ + �∣j+1−t∣)

)−a
,

Define M0 =
∑I

i=1

∑J
j=1 Yij, Md

0 =
∑I

i=1

∑J/2
j=1 Y

d
i(2j−1) and M q

0

=
∑I/2

i=1

∑J/2
j=1 Y

q
(2i−1)(2j−1) with realizations m0, md

0, and mq
0. Then, a, b, and �

can be estimated by solving

1

I J
m0 = E(a,b,�)

(
1

I J
M0

)
=

∞∏

s=−∞

∞∏

t=−∞

(
1 + b �∣s∣+∣t∣

)−a
, (3)

2

I J
md

0 = E(a,b,�)

(
2

I J
Md

0

)
=

∞∏

s=−∞

∞∏

t=−∞

(
1 + b �∣s∣(�∣t∣ + �∣t+1∣)

)−a
,

4

I J
mq

0 = E(a,b,�)

(
4

I J
M q

0

)
=

∞∏

s=−∞

∞∏

t=−∞

(
1 + b (�∣s∣ + �∣s+1∣)(�∣t∣ + �∣t+1∣)

)−a
.

3 Consistency

To establish consistency we let IJ → ∞ so that the number of cells observed in-

creases. As we suppose the occupancy probabilities do not depend on I or J this

implies that N → ∞. This corresponds to increasing the size of the map.

Theorem 1 If (a, b, �) ∈ (0,∞)× (0,∞)× [0, 1), then
(

1
I J

M0,
2
I J

Md
0 ,

4
I J

M q
0

)⊤
is

a weakly consistent estimator of
(
E(a,b,�)

(
1
I J

M0

)
, E(a,b,�)

(
2
I J

Md
0

)
, E(a,b,�)

(
4
I J

M q
0

))⊤

as I J → ∞.

The consistency of the estimators (â, b̂, �̂) and thus of N̂ follows from the following

general proposition, which is similar to those of Amemiya (1973, Lemma 3), White

(1980, Lemma 2.2) and White (1981, Theorem 2.1).

Proposition 2 Let be Θ ⊂ IRL compact, g : Θ → IRL continuous satisfying g(�) ∕=

g(�′) for all �, �′ ∈ Θ with � ∕= �′, and XN an L dimensional random vector. If XN

is a weakly consistent estimator for g(�), then

�̂N ∈ argmin
�∈Θ

∥XN − g(�)∥

is a weakly consistent estimator of �.
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Since E (N) defined in (1) is a continuous function of (a, b, �), Theorem 1 implies at

once:

Theorem 2 The abundance estimator N̂ given by (2), where (a, b, �) ∈ Θ for a

compact parameter space Θ ⊂ (0,∞)× (0,∞)× (0, 1) are solutions of (3), satisfies

N̂ − E(N) = oP (IJ).

Hence we need only to prove Theorem 1. This proof is not straightforward be-

cause of the dependence structure and therefore given together with the proof of

Proposition 1 in the Appendix.

4 Application to real data

We consider data from a complete census of a tropical rain forest in Barro Colorado

Island (BCI), Panama (Condit et al. 1996). The study area was a 50-hectare

(500×1000 m) retangle plot referred to as the BCI plot. The tree plot was established

in 1980 and has been surveyed six times so far. The data from the 1985 census are

used in this study. The data records the exact location and species for each free-

standing tree with diameter at breast height (dbh) at least 1 cm in the plot. In

the 1985 census, there are 238,018 trees representing 299 species. We illustrate

the computation of the estimator on the the species Faramea occidentalis. Here

N = 25094, m0 = 7824, md
0 = 1994 and mq

0 = 357. There were 20000−7824 = 12176

occupied cells, giving a lower bound on N . We solved the estimating equations (3)

with the products from negative to positive infinity replaced by products from −T

to T by minimizing an objective function consisting of the sums of squares of the

differences. We considered � = 0.05, 0.06, . . . , 0.99 and for each value of � we found

values of a and b to minimize the objective function. In Figure 1 we plot the value

of the minimum and the estimated N̂ as functions of � for T = 60. The minimum

was quite flat as a function of � near the minimum, however, a plot of the logarithm

of the minimum, not given here, did show a distinct minimum. At this minimum,

â = 0.00066, b̂ = 3.27, and �̂ = 0.92 and the estimated abundance was N̂ = 24774.

In the second part of the figure we see that the estimated value of N is also quite

flat and is close to the true value for a range of values of �.

5 Discussion

We have demonstrated analytically that the new estimator is consistent and conclude

that for the mixed gamma-Poisson model it is possible to estimate abundance from

presence-absence maps in a quite general setting.
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Figure 1: The minimum value of the sums of squared differences of (3) and N̂ as

functions of � ∈ (0, 1) for Faramea occidentalis. In the second plot, the horizontal

line gives the known value of N (solid line) and the lower bound on N (dashed line).

The assumption of a compact parameter space is required to prove Proposition 2

and hence Theorem 2, but since the compact parameter space can be arbitrarily

large, this is not a strong restriction. We also require g(�) ∕= g(�′) for all �, �′ ∈ Θ

with � ∕= �′. This is an identifiability condition which is usually difficult to verify

in nonlinear settings with more than two parameters. Here this means that the

solutions â, b̂, �̂ of the equations given by (3) are unique, i.e. (a, b, �) is identified

by
(

1
I J

m0,
2
I J

md
0,

4
I J

mq
0

)⊤
. This is not the case for � = 0 or a = 0 or b = 0, but

we conjecture that identifiability holds for � > 0, a > 0, b > 0. Since � = 0 does not

satisfy the conditions of the Theorem, we have shown consistency only in the case

where the cell counts are dependent. Moreover, consistency is obtained as IJ → ∞

with the cell occupancy probabilities remaining the same so that N → ∞. An

alternate approach not considered here would be to allow the grid to become finer

so that N is the number of individuals in a given area. In this case, the large sample

properties are problematic as for a fine enough grid, N will be the total number of

occupied cells.

We were not concerned with the practical application of the new estimator but have

focused on consistency. In particular we have not addressed the goodness of fit of the

model. The precision of the estimator may be addressed using bootstrap methods

according to Hall 1988.
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A Proofs

To prove Theorem 1, some propositions must be proved. As Proposition 1 and

Proposition 3 below are related we combine their proofs.
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Proposition 3

a) E(Yij ⋅ Ykl) =

∞∏

s=−∞

∞∏

t=−∞

(
1 + b [�∣i−s∣+∣j−t∣ + �∣k−s∣+∣l−t∣]

)−a
,

b) E(Y d
ij ⋅ Y

d
kl)

=

∞∏

s=−∞

∞∏

t=−∞

(
1 + b [�∣i−s∣(�∣j−t∣ + �∣j+1−t∣) + �∣k−s∣(�∣l−t∣ + �∣l+1−t∣)]

)−a
,

c) E(Y q
ij ⋅ Y

q
kl)

=

∞∏

s=−∞

∞∏

t=−∞

(
1 + b [(�∣i−s∣ + �∣i+1−s∣)(�∣j−t∣ + �∣j+1−t∣)

+ (�∣k−s∣ + �∣k+1−s∣)(�∣l−t∣ + �∣l+1−t∣)]
)−a

.

Proof of Propositions 1 and 3.

Since a Poisson random variable X with parameter � satisfies P (X = 0) = exp{−�},

using the moment generating function of the gamma distribution and the indepen-

dence of the Vst, we have

E(Yij) = P (Xij = 0)

=

∞∏

s=−∞

∞∏

t=−∞

E
(
exp{−�∣i−s∣+∣j−t∣ Vst}

)
=

∞∏

s=−∞

∞∏

t=−∞

(1 + b �∣i−s∣+∣j−t∣)−a

which is Proposition 1 a). Since Xij and Xkl are conditionally independent given

Vst with s, t ∈ ZZ, Proposition 1 b) and Proposition 3 a) follow from

E(Yij ⋅ Ykl) = P (Xij = 0, Xkl = 0)

= E

(
exp{−

∞∑

s=−∞

∞∑

t=−∞

(�∣i−s∣+∣j−t∣ + �∣k−s∣+∣l−t∣) Vst}

)
.

Proposition 1 c) is a special case of Proposition 3 b). Since b) and c) of Proposition

3 can be proved similarly, only the proof of c) is shown here:

E(Y q
ij ⋅ Y

q
kl)

= P (Xij = 0, Xi(j+1) = 0, X(i+1)j = 0, X(i+1)(j+1) = 0,

Xkl = 0, Xk(l+1) = 0, X(k+1)l = 0, X(k+1)(l+1) = 0)

= E

(
exp

[
−

∞∑

s=−∞

∞∑

t=−∞

(
�∣i−s∣+∣j−t∣ + �∣i−s∣+∣j+1−t∣ + �∣i+1−s∣+∣j−t∣ + �∣i+1−s∣+∣j+1−t∣

+ �∣k−s∣+∣l−t∣ + �∣k−s∣+∣l+1−t∣ + �∣k+1−s∣+∣l−t∣ + �∣k+1−s∣+∣l+1−t∣
)
Vst

])
.2
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Proposition 4 Let be (a, b, �) ∈ (0,∞)×(0,∞)×[0, 1). Then there exists a constant

c only depending on a, b, � such that

I∑

i=1

I∑

i=1

J∑

j=1

J∑

j=1

ln

(
E(YijYkl)

E(Yij)E(Ykl)

)
≤ c I J,

I∑

i=1

I∑

i=1

J/2∑

j=1

J/2∑

j=1

ln

(
E(Y d

i(2j−1)Y
d
k(2l−1))

E(Y d
i(2j−1))E(Y d

k(2l−1))

)
≤ c I J,

I/2∑

i=1

I/2∑

i=1

J/2∑

j=1

J/2∑

j=1

ln

(
E(Y q

(2i−1)(2j−1)Y
q
(2k−1)(2l−1))

E(Y q
(2i−1)(2j−1))E(Y q

(2k−1)(2l−1))

)
≤ c I J.

To prove Proposition 4, we need

Lemma 1 Let �i(s) = �∣i−s∣ + �∣i+1−s∣ for i = 1, . . . , I. Then

I∑

i=1

I∑

k=1

∞∑

s=−∞

�i(s)�k(s) ≤

{
12 I, for � = 0,

1
(1−�2)(1−�)4

(
4 ⋅ 42 I + 4

�
20 I

)
, for � ∈ (0, 1),

for all I ∈ IN .

Proof.

If � ∈ (0, 1), then �i(s) = �i−s + �i+1−s = �i−s(1 + �) ≤ 2 �i−s for s ≤ i and

�i(s) = �s−i + �s−(i+1) = �s−i−1(� + 1) ≤ 2 �s−i−1 for s ≥ i + 1. Analogous bounds

hold for �k(s). Let i ≤ k. Then

∞∑

s=−∞

�i(s)�k(s)

≤

i∑

s=−∞

(2 �i−s) (2 �k−s) +

k∑

s=i+1

(2 �s−i−1) (2 �k−s) +

∞∑

s=k+1

(2 �s−i−1) (2 �s−k−1)

= 4

[
�k−i

∞∑

s=0

(�2)s + �k−i−1 (k − i) + �k−i

∞∑

s=0

(�2)s

]

= 4

[
�k−i 1

1− �2
+ �k−i−1 (k − i) + �k−i 1

1− �2

]

≤ 4
�∣k−i∣−1

1− �2
(2�+ ∣k − i∣) .

Similarly, the same upper bound holds for i ≥ k. As

I∑

i=1

I∑

k=1

�∣k−i∣ ∣k − i∣ =
2

(1− �)4
(
(I − 1)�− 2I�2 + (I + 1)�3 + (I + 1)�I+1

− 2I�I+2 + (I − 1)�I+3
)
≤

2

(1− �)4
10I,
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we see that

I∑

i=1

I∑

k=1

∞∑

s=−∞

�i(s)�k(s) ≤
I∑

i=1

I∑

k=1

4
�∣k−i∣−1

1− �2
(2�+ ∣k − i∣)

≤
4

1− �2

(
2

I∑

i=1

I∑

k=1

�∣k−i∣∣k − i∣+ 2 I +
1

�

I∑

i=1

I∑

k=1

�∣k−i∣∣k − i∣

)

≤
4

1− �2

(
2

2

(1− �)4
10 I + 2 I +

1

�

2

(1− �)4
10 I

)

≤
1

(1− �2)(1− �)4

(
4 ⋅ 42 I +

4

�
20 I

)
.

If � = 0, we obtain using 00 = 1

∞∑

s=−∞

�i(s)�k(s) ≤

{
4, for ∣k − i∣ ≤ 1,

0, for ∣k − i∣ > 1.
.

as required. 2

Proof of Proposition 4.

To complete the proof of Proposition 4, let

�0
i (s) = �∣i−s∣, �i(s) = �∣i−s∣ + �∣i+1−s∣,

�0
j (t) = �∣j−t∣, �j(t) = �∣j−t∣ + �∣j+1−t∣.

Setting

�1
i (s) = �0

i (s), �1
j (t) = �0

j (t),

�2
i (s) = �0

i (s), �2
j (t) = �j(t),

�3
i (s) = �i(s), �3

j (t) = �j(t),

and

Y 1
ij = Yij , Y

2
ij = Y d

ij , Y
3
ij = Y q

ij,

Propositions 1 and 3 provide for m = 1, 2, 3

E(Y m
ij ) =

∞∏

s=−∞

∞∏

t=−∞

(
1 + b �m

i (s)�
m
j (t)

)−a
,

E(Y m
ij Y

m
kl ) =

∞∏

s=−∞

∞∏

t=−∞

(
1 + b [�m

i (s)�
m
j (t) + �m

k (s)�
m
l (t)]

)−a
.
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The inequality ln(1 + x) ≤ x for all x ≥ 0 yields

ln

(
E(Y m

ij Y
m
kl )

E(Y m
ij )E(Y m

kl )

)

= ln

(
∞∏

s=−∞

∞∏

t=−∞

(
1 + b [�m

i (s)�
m
j (t) + �m

k (s)�
m
l (t)]

)−a

(
1 + b �m

i (s)�
m
j (t)

)−a
(1 + b �m

k (s)�
m
l (t))−a

)

= a
∞∑

s=−∞

∞∑

t=−∞

ln

((
1 + b �m

i (s)�
m
j (t)

)
(1 + b �m

k (s)�
m
l (t))

1 + b [�m
i (s)�

m
j (t) + �m

k (s)�
m
l (t)]

)

= a

∞∑

s=−∞

∞∑

t=−∞

ln

(
1 +

b2 �m
i (s)�

m
j (t) �m

k (s)�
m
l (t)

1 + b [�m
i (s)�

m
j (t) + �m

k (s)�
m
l (t)]

)

a>0,b>0,�≥0

≤ a
∞∑

s=−∞

∞∑

t=−∞

ln
(
1 + b2 �m

i (s)�
m
j (t) �m

k (s)�
m
l (t)

)

≤ a
∞∑

s=−∞

∞∑

t=−∞

b2 �m
i (s) �

m
j (t) �m

k (s) �
m
l (t).

Let

ℐ1 = {i; i = 1, . . . , I}, J 1 = {j; j = 1, . . . , J},

ℐ2 = {i; i = 1, . . . , I}, J 2 = {j; j = 2n− 1 with n = 1, . . . , J/2},

ℐ3 = {i; i = 2n− 1 with n = 1, . . . , I/2},

J 3 = {j; j = 2n− 1 with n = 1, . . . , J/2}.

Then for m = 1, 2, 3 using Lemma 1, and noting �m
i (s) ≤ �i(s) for i = 1, . . . , I and

�m
j (t) ≤ �j(t) for j = 1, . . . , J we see that

∑

i∈ℐm

∑

j∈Jm

∑

k∈ℐm

∑

l∈Jm

ln

(
E(Y m

ij Y
m
kl )

E(Y m
ij )E(Y m

kl )

)

≤ a
∑

i∈ℐm

∑

j∈Jm

∑

k∈ℐm

∑

l∈Jm

∞∑

s=−∞

∞∑

t=−∞

b2 �m
i (s) �

m
j (t) �m

k (s) �
m
l (t)

≤ a

I∑

i=1

J∑

j=1

I∑

k=1

J∑

l=1

∞∑

s=−∞

∞∑

t=−∞

b2 �i(s) �j(t) �k(s) �l(t)

11



= a b2
I∑

i=1

I∑

k=1

∞∑

s=−∞

�i(s) �k(s)

J∑

j=1

J∑

l=1

∞∑

t=−∞

�j(t) �l(t)

≤

{
a b2 122 I J, for � = 0

a b2
(

1
(1−�2)(1−�)4

(
4 ⋅ 42 + 4

�
⋅ 20
))2

I J, for � ∈ (0, 1)

= c I J,

where the constant c depends only on a, b, �. 2

Proposition 5 For (a, b, �) ∈ (0,∞)× (0,∞)× [0, 1)

a) var(M0) ≤ c I J,

b) var(Md
0 ) ≤ c I J,

c) var(M q
0 ) ≤ c I J,

where c is a constant only depending on a, b, and �.

Proof of Proposition 5.

Using the same notation as in the proof of Proposition 4, we have

M0 =
∑

i∈ℐ1

∑

j∈J 1

Y 1
ij , M

d
0 =

∑

i∈ℐ2

∑

j∈J 2

Y 2
ij , M

q
0 =

∑

i∈ℐ3

∑

j∈J 3

Y 3
ij .

Hence for m = 1, 2, 3 we have only to prove

var

(
∑

i∈ℐm

∑

j∈Jm

Y m
ij

)
≤ c I J.

First note that

E(Y m
ij ) = E(Y m

kl ) and cov(Y m
ij , Y

m
kl ) ≤ var(Y m

ij ) = var(Y m
kl )

for all i, k = 1, . . . , I, j, l = 1, . . . , J , and m = 1, 2, 3. This implies

var(Y m
11 )

E(Y m
11 )

2
=

var(Y m
ij )

E(Y m
ij )

2
≥

cov(Y m
ij , Y

m
kl )

E(Y m
ij )

2

=
E(Y m

ij Y m
kl )− E(Y m

ij ) E(Y m
kl )

E(Y m
ij ) E(Y m

kl )
=

E(Y m
ij Y m

kl )

E(Y m
ij ) E(Y m

kl )
− 1,

so that

E(Y m
ij Y m

kl )

E(Y m
ij ) E(Y m

kl )
≤

var(Y m
11 )

E(Y m
11 )

2
+ 1 =: c1 (4)

12



for all i, k = 1, . . . , I, j, l = 1, . . . , J , and m = 1, 2, 3. The mean value theorem

provides

E(Y m
ij Y m

kl )

E(Y m
ij ) E(Y m

kl )
− 1 = exp

(
ln

(
E(Y m

ij Y m
kl )

E(Y m
ij ) E(Y m

kl )

))
− exp(0)

= exp(�ijkl)

(
ln

(
E(Y m

ij Y m
kl )

E(Y m
ij ) E(Y m

kl )

)
− 0

)

with

�ijkl ∈

[
0, ln

(
E(Y m

ij Y m
kl )

E(Y m
ij ) E(Y m

kl )

)]
if ln

(
E(Y m

ij Y m
kl )

E(Y m
ij ) E(Y m

kl )

)
≥ 0

and

�ijkl ∈

[
ln

(
E(Y m

ij Y m
kl )

E(Y m
ij ) E(Y m

kl )

)
, 0

]
if ln

(
E(Y m

ij Y m
kl )

E(Y m
ij ) E(Y m

kl )

)
< 0.

In particular, �ijkl satisfies because of (4)

�ijkl ≤ ln

(
var(Y m

11 )

E(Y m
11 )

2
+ 1

)
= ln(c1)

so that

E(Y m
ij Y m

kl )

E(Y m
ij ) E(Y m

kl )
− 1 ≤ exp(ln(c1)) ln

(
E(Y m

ij Y m
kl )

E(Y m
ij ) E(Y m

kl )

)
= c1 ln

(
E(Y m

ij Y m
kl )

E(Y m
ij ) E(Y m

kl )

)
.

Then Proposition 4 provides

var

(
∑

i∈ℐm

∑

j∈Jm

Y m
ij

)

=
∑

i∈ℐm

∑

j∈Jm

∑

k∈ℐm

∑

l∈Jm

cov(Y m
ij , Y

m
kl )

=
∑

i∈ℐm

∑

j∈Jm

∑

k∈ℐm

∑

l∈Jm

E(Y m
ij Y m

kl )− E(Y m
ij ) E(Y m

kl )

E(Y m
ij ) E(Y m

kl )
E(Y m

ij ) E(Y m
kl )

=
∑

i∈ℐm

∑

j∈Jm

∑

k∈ℐm

∑

l∈Jm

(
E(Y m

ij Y m
kl )

E(Y m
ij ) E(Y m

kl )
− 1

)
E(Y m

11 )
2

≤
∑

i∈ℐm

∑

j∈Jm

∑

k∈ℐm

∑

l∈Jm

c1 ln

(
E(Y m

ij Y m
kl )

E(Y m
ij ) E(Y m

kl )

)
E(Y m

11 )
2

= c1E(Y m
11 )

2
∑

i∈ℐm

∑

j∈Jm

∑

k∈ℐm

∑

l∈Jm

ln

(
E(Y m

ij Y m
kl )

E(Y m
ij ) E(Y m

kl )

)

≤ c1E(Y m
11 )

2 c2 I J

= c I J,

where as c1, E(Y m
11 )

2, and c2 only depend on a, b, and � so does c. 2

Proof of Theorem 1.

Theorem 1 now follows from Proposition 5 a), b) and c) and Chebyshev’s inequality.

2
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