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Abstract The lifetime of diamond impregnated tools for core drilling of concrete
is studied via the lifetimes of the single diamonds on the tool. Thereby, the number
of visible and active diamonds on the tool surface is determined by microscopical
inspections of the tool at given points in time. This leads to interval-censored life-
time data if only the diamonds visible at the beginning are considered. If also the
lifetimes of diamonds appearing during the drilling process are included then the
lifetimes are doubly interval-censored. A statistical method is presented to analyse
the interval-censored data as well as the doubly interval-censored data. The method
is applied to three series of experiments which differ in the size of the diamonds
and the type of concrete. It turns out that the lifetimes of small diamonds used for
drilling into conventional concrete is much shorter than the lifetimes when using
large diamonds or high strength concrete.
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1 Introduction

Diamond impregnated tools for concrete drilling are so-called “self-sharpening
tools”. This means that these tools need to wear down within the application so
that at any time of the process new sharp diamonds are exposed at the tool sur-
face. Several authors already analysed the wear behaviour of diamond impregnated
tools, e.g. [12], [3], [20], [6], and the main wear mechanisms seem to be identi-
fied. Nevertheless, extensive scientific work has to be undertaken to increase the
process knowledge and understanding to allow further improvements in tool perfor-
mance [9]. Statistical approaches for the analysis of the wear behaviour of diamond
impregnated tools were used in [10], [14] and [4]. But these articles focused on tools
for sawing applications of rock. Only a few authors are dealing with the diamond
core drilling process [2], [8].

In particular, the wear of the single diamonds in core drilling tools is not studied
well up to now although the wear of the tool depends heavily on it. Having an esti-
mate for the lifetime of the single diamonds, we can estimate, for example, the time
until a certain number of diamonds are broken out. This, in return, gives us insight
into the total lifetime of the drilling tool. Hence, this paper deals especially with the
statistical analysis of the lifetime of these single diamonds, where the lifetime of a
diamond is understood as the time until the diamond is completely broken out.

One of the challenges of the statistical analysis is that the lifetime of the dia-
monds cannot be observed directly. The drilling process must be interrupted to check
how many diamonds on the tool are broken out. This can be done only at predeter-
mined inspection times. Hence, the lifetimes are given as so-called interval-censored
data where only intervals are known in which the exact lifetimes are falling.

The statistical analysis of interval-censored data, also called grouped data, is
quite an old research area, see for example the book [11] from 1961. Nevertheless
it is of high actual interest which is shown by the new books [1] of 2018 and [16]
of 2006 and many recent publications such as [5], [7], [17], [18], [19]. See also [13]
for determining optimal inspection times for interval-censored data.

Another challenge is that the drilling tool consists of a metal matrix where the
diamonds are embedded. Not all diamonds embedded in this matrix are visible and
active in the beginning. Several of them appear only during the drilling process.
Hence, the starting point of the lifetimes of these diamonds is not the beginning
of the drilling process. Because of the predetermined inspection times, the exact
starting points of these lifetimes are not known. They are also interval-censored.
Hence, both start and end of the lifetimes are interval-censored so that those data
are called doubly interval-censored.

There are not many statistical methods for doubly interval-censored data. The
most of them concern nonparametric methods for discrete lifetime distributions with
finite support or complicated semiparametric methods for proportional and additive
hazard models for the case of covariates, see [16]. Since we are mainly interested in
the prediction of lifetimes of diamonds and diamond impregnated tools, we present
and apply a rather simple parametric approach based on the exponential distribution.
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The description of the experimental setup is given in Section 2. Thereby, the
state of the art of diamond impregnated tools is given before the experiments are
described. The statistical methods are presented in Section 3. At first, we provide
the method for interval-censored lifetime data with identical known starting times.
After this, our method for doubly interval-censored lifetime data is derived. For both
situations, confidence sets for the unknown parameter are provided. Based on these
confidence sets, confidence sets for related quantities are derived. These quantities
include - among other quantities - the expected lifetime and the time until half of the
initially visible diamonds are broken out. Section 4 provides the results for the ex-
periments. They show in particular a significant difference between tools with small
and large diamonds applied to the conventional concrete. A significant difference
appears also between the tools with small diamonds applied to the conventional
concrete and a high strength concrete. However, both significances appear only if
the diamonds visible in the beginning are used, i.e. for the interval-censored data.
The tendency is similar if also the doubly interval-censored data are used, but the
differences are not significant anymore. A discussion of these results is given in
Section 5.

2 Experimental setup

2.1 Diamond impregnated tools

Diamond impregnated metal matrix composites are mainly used as cutting and
grinding tools for high abrasive mineral materials in the natural stone and construc-
tion industry. Especially, due to the high hardness of granite, basalt and high perfor-
mance concrete, high demands on the efficiency of the cutting tools exist. To guaran-
tee a high cutting performance monocrystalline synthetic diamonds with an average
grain size of 250µm - 500 µm were used. These abrasive components are embed-
ded into a metallic matrix, which basically consisted of pure cobalt, cobalt/copper
or cobalt/bronze until the 2000s. Due to the estimated carcinogenic properties and
the rising world market price in particular, most diamond tool manufacturers tend
to substitute cobalt with iron, copper and bronze. In terms of important materi-
als characteristics like hardness and wear resistance, the new developed cobalt re-
duced and cobalt free alternative binder systems reached comparable properties as
the well-known cobalt based matrix compositions. Additionally, higher amounts of
copper or bronze enables the possibility to adjust the hardness of the metal matrix to
the requirements of the machined mineral subsoil. Depending on the hardness and
abrasiveness of the present mineral materials (concrete, basalt), the metal matrix
composition has to be adapted to guarantee a suitable grain protrusion to avoid the
negative influence of rounding effects on the diamond grains.
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2.2 Production of diamond impregnated tools

The small diamond grinding segments, which were attached on drill bits, saw blades
or wire saws by brazing or laser welding, are fabricated in a powder metallurgical
process route. The first step is the premixing of the chosen metal powder compo-
nents with 5-10 vol-% synthetic monocrystalline diamond grains. Subsequently, the
homogenized powder blend is cold pressed and the obtained green bodies are sin-
tered to achieve an almost pore-free structure with an optimal final strength. The
sintering procedure is conducted pressureless in a vacuum or inert gas furnace or
in a hot-pressing facility which heats and mechanically presses the green bodies si-
multaneously in a graphite mold. In contrast to vacuum sintering, the hot-pressing
process leads to lower porosity with a significant reduction of the sintering time.
Besides these conventional sintering methods, the new developed field assisted sin-
tering technology (FAST) is similar to the hot-pressing but offers the possibility to
increase the heating rate up to max. 1000 K/min. This is realized by a dc current up
to 60 kA and a pulse time of a few milliseconds, which leads to small plasma arcs
between neighboring powder particles resulting in a very fast partial heating of the
powder greenbody.

2.3 The experiments

The experiments were conducted on a 3-axis machine centre and a special tool
holder for a single segment with a diameter of d = 100 mm was used, see Fig.1
a). The workpieces made of two different types of concrete were clamped on a force
dynamometer for force measurements.

Concrete is made of aggregatesm which means stones, cement and water. Hence
concrete has an inhomogeneous material structure. The classification of concrete is
based on its compressive strength. Within the tests, two types of concrete were used:
a high strength concrete with a compressive strength of C100/115 and a conven-
tional concrete with compressive strength of C20/25. C100/115 is used for example
as material for fundaments of skyscrapers whereas C20/25 is used for buildings
without special requirements. The main aggregate material of concrete C100/115 is
basalt. In C20/25 the main aggregate are stones from the Rhine river, see Fig.1 b).
Hence in comparison, the C20/25 concrete possess harder and more brittle material
phases than C100/115. But the cement phase in C20/25 has got a smaller hardness
and reveals more open pores. In contrast, the cement phase of C100/115 is quite
dense.

The concrete workpieces had a volume of b = 150 mm x l = 150 mm x
h = 150 mm and were mounted on top of the dynamometer, see Fig.1. In order
to focus on the wear behaviour of the segments, the tested parameters for the seg-
ments were kept constant. The drilling depth was s = 4 mm, the infeed velocity was
vf = 4 mm/min and the circumferential speed was vu = 3,225 m/s. Overall, each
segment achieved a cumulated drilling depth of stot = 200 mm. The infeed veloc-
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ity and the circumferential speed were deduced from force-controlled core drilling
tests with eight segments and the same segment specifications. In order to remove
slurry from the process, water with an additive was used (Bechem Avantin 361,
concentration p = 7%).

The tested segments were of laboratory dimensions (height hseg = 10 mm, width
wseg = 5 mm and length lseg = 10 mm). The metal matrix was Diabase V21 which
main components are iron, copper, cobalt and tin. The diamonds were of quality
Syngrit SDB 1055 by Element Six. The grit size of the diamonds was dk = 40/50
mesh and dk = 20/30 mesh. Two different diamond concentrations were used,
c = C20 and C40.

In the following chapters, the segments with the grit size dk = 20/30 mesh are
named B18 and B19, and the segments with the grit size dk = 40/50 mesh should be
named B28 and B29. B18 and B29 were used on concrete C100/115, and B19 and
B28 on C20/25.

This provided four sequences of experiments where the experiments of a se-
quence were done under the same conditions. Each experiment of these sequences
are given by the drilling of depth s = 4 mm which means a drilling time of 1 min.
Since the cumulated drilling depth of each sequence is stot = 200 mm, each sequence
consists of 50 experiments and a cumulated drilling time of 50 min.

After each experiment, the tested segment was microscopically inspected using a
digital microscope (DigiMicro Profi by DNT). Hence the inspection times are given
by the drilling depth of s = 4 mm and correspond to one minute of drilling. The

Tool holder with segment 
attached to spindle

Lubrication

Concrete sample on
force dynamometer

vu

vf

Fz

Fx

Fy

Cement CEM I 52,5 R
Aggregates sand 0/2, 
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concrete C100/115

Conventionel
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Fig. 1 a) Experimental setup for single segment tests b) Concrete workpieces c) Microscopic pic-
tures of diamond impregnated segments with diamond breakout



6 Malevich et al.

microscopical analysis comprised the counting of the number of exposed diamonds
on the segment surface. Thereby, each exposed diamond got a label so that the visi-
bility of the single diamonds could be followed over the experiments. For simplifi-
cation, it was only distinguished between visible ”1” and non-visible diamonds ”0”.
There was no differentiation between flat/worn diamonds or diamonds with partial
outbreak respectively. Only when a complete diamond breakout occurred, this di-
amond was classified as ”0”. Diamonds which are not visible in the beginning are
classified as ”0” as well until they become visible. Fig.1 c) shows the surface of a
segment before and after an experiment where two diamonds broke out during the
experiment (marked by red circles) and one new diamond occured (marked by a
black circle).

3 Statistical methods for interval-censored lifetime data

3.1 Analysis of lifetimes with the same starting times

Let T1, . . . ,TN be independent and identically distributed nonnegative random vari-
ables (lifetime variables of N objects) with the cumulative distribution function Fθ ,
where θ ∈ Rd is an unknown parameter. However, the realizations t1, . . . , tN of
T1, . . . ,TN are not observed. The objects are only observed at predicted fixed time
points 0 = τ0 < τ1 < .. . < τI < τI+1 = ∞, which are called inspection times. This
means that only realizations zn of Zn with

Zn = i, if Tn ∈ (τi−1,τi], i = 1, . . . , I +1,

are observed for n = 1, . . . , N. Such data are called interval-censored data. The
goal is to estimate the unknown parameter θ and to construct the corresponding
confidence intervals.

The likelihood function for interval-censored lifetimes z1, . . . ,zN can be found as
follows:

l(θ) := l(θ ;z1, . . . ,zN) =
N

∏
n=1

Pθ (Zn = zn)

=
N

∏
n=1

I+1

∏
i=1

Pθ (Tn ∈ (τi−1,τi])
1{zn=i} =

N

∏
n=1

I+1

∏
i=1

(
Fθ (τi)−Fθ (τi−1)

)1{zn=i} .

Maximising the likelihood function l(θ), we obtain the maximum likelihood esti-
mate θ̂ of θ :

θ̂ = argmax
{

l(θ); θ ∈ Rd
}
.

Then, an asymptotic (1−α)-confidence interval for θ based on the likelihood-ratio
test is given by
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C (z1, . . . ,zN) =

{
θ ∈ Rd ;−2ln

(
l(θ ;z1, . . . ,zN)

l(θ̂ ;z1, . . . ,zN)

)
≤ χ

2
d;1−α

}
,

where l is the likelihood function, θ̂ is the maximum likelihood estimate for θ and
χ2

d;1−α
is the (1−α)-quantile of the chi-square distribution with d degrees of free-

dom.
For our specific situation with the lifetimes of diamonds we consider an expo-

nential model, i.e. T1, . . . ,TN ∼ Exp(λ ), where λ > 0 is unknown. The likelihood
function in this case is

l(λ ) =
N

∏
n=1

I

∏
i=1

(
e−λτi−1 − e−λτi

)1{zn=i}
(

e−λτI
)1{zn=I+1}

and the asymptotic (1−α)-confidence interval for λ is

C (z1, . . . ,zN) =

{
λ ∈ R;−2ln

(
l(λ ;z1, . . . ,zN)

l(λ̂ ;z1, . . . ,zN)

)
≤ χ

2
1;1−α

}
. (1)

3.2 Analysis of lifetimes with different interval-censored starting
times

Let D1, . . . ,DN be independent and identically distributed nonnegative random vari-
ables (death times of N objects), but here with different starting times (times of
birth) B1, . . . ,BN so that lifetime variables T1 := D1−B1, . . . ,TN := DN −BN are
independent identically distributed nonnegative random variables with the cumula-
tive distribution function Fθ , where θ ∈ Rp is an unknown parameter. We assume
also that B1, . . . ,BN ,T1, . . . ,TN are independent. However, neither the realizations
d1, . . . ,dN of D1, . . . ,DN nor the realizations b1, . . . ,bN of B1, . . . ,BN are observed.
With given inspection times 0 = τ0 < τ1 < .. . < τI < τI+1 = ∞, we observe only
whether dn and bn are lying in (τi−1,τi], i = 1, . . . , I+1, or not. This means that only
realizations zn of Zn with

Zn = (h, i), if Bn ∈ (τh−1,τh], Dn ∈ (τi−1,τi], h < i, h, i = 1, . . . , I +1,

are observed for n = 1, . . . ,N. Such data are called doubly interval-censored data.
The goal is, as before, to estimate the unknown parameter θ and to construct the
corresponding confidence intervals.

The likelihood function for interval-censored birth and death data z1, . . . ,zN is
given by



8 Malevich et al.

l(θ) := l(θ ;z1, . . . ,zN) =
N

∏
n=1

Pθ (Zn = zn) =
N

∏
n=1

I+1

∏
h,i=0
h<i

Pθ

(
Zn = (h, i)

)

=
N

∏
n=1

I+1

∏
i=1

I+1

∏
h=1
h<i

Pθ

(
Bn ∈ (τh−1,τh], Dn ∈ (τi−1,τi]

)1{zn=(h,i)} .

Since Tn := Dn−Bn, n = 1, . . . ,N, we can rewrite

Pθ

(
Bn ∈ (τh−1,τh], Dn ∈ (τi−1,τi]

)
= Pθ

(
Bn ∈ (τh−1,τh], Bn +Tn ∈ (τi−1,τi]

)
=
∫∫

R2
1(τh−1,τh](y1) 1(τi−1,τi](y2) dP(Bn,Bn+Tn)

θ
(y1,y2).

Using the elementary transformation theorem from the measure theory and then the
independence of Bn and Tn, we obtain∫∫

R2
1(τh−1,τh](y1) 1(τi−1,τi](y2) dP(Bn,Bn+Tn)

θ
(y1,y2)

=
∫∫

R2
1(τh−1,τh](u) 1(τi−1,τi](v+u) dP(Bn,Tn)

θ
(u,v)

=
∫∫

R2
1(τh−1,τh](u) 1(τi−1,τi](v+u) dPTn

θ
(v) dPBn

θ
(u)

=
∫

τh

τh−1

∫
τi−u

τi−1−u
dFθ (v) dGθ (u) =

∫
τh

τh−1

(Fθ (τi−u)−Fθ (τi−1−u)) dGθ (u),

where Fθ is the distribution function of T1, . . . ,TN , and Gθ is the distribution function
of B1, . . . ,BN . This implies

l(θ) =
N

∏
n=1

I+1

∏
i=1

I+1

∏
h=1
h<i

(∫
τh

τh−1

(Fθ (τi−u)−Fθ (τi−1−u)) dGθ (u)
)1{zn=(h,i)}

. (2)

Without any further assumptions on the distribution function Gθ , the likelihood
function can not be found explicitly.

For our specific situation with newborn diamonds, we consider the following
model: B1, . . . ,BN ∼ Exp(λ0) with unknown λ0 > 0 and T1, . . . ,TN ∼ Exp(λ ) with
unknown λ > 0, so that θ = (λ0,λ ). Using the method described in Section 3.1 –
now for interval-censored birth times – we obtain the estimate λ̂0 for λ0 and as-
sume that B1, . . . ,BN ∼ Exp(λ̂0). Then, a plug-in likelihood function of (2) can be
calculated as follows:

l(λ ) =
N

∏
n=1

I+1

∏
i=1

I+1

∏
h=1
h<i

(
λ̂0

λ − λ̂0

(
e−λτi−1 − e−λτi

)(
e(λ−λ̂0)τh − e(λ−λ̂0)τh−1

))1{zn=(h,i)}

Using the plug-in likelihood function l(λ ), we obtain the plug-in maximum like-
lihood estimate λ̂ and a plug-in confidence interval for λ using (1). This plug-in
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confidence interval is an asymptotic confidence interval since λ̂0 is a consistent es-
timator for λ0.

3.3 Analysis of lifetimes with mixed starting times

In some situations, we have the combination of the models presented in 3.1 and 3.2.
For example, in drilling experiments we had some diamonds visible at the beginning
and some diamonds, which appeared later during the drilling. For this case we use
the following model.

Let the birth times of the diamonds visible at the beginning be modeled by
B1 = · · ·= BN0 = 0 and the birth times of the new diamonds be modeled by the in-
dependent and identically distributed random variables BN0+1, . . . ,BN , N0 < N, with
the common distribution function Gθ , where θ ∈ Rp is unknown. Let T1, . . . ,TN be
the lifetime random variables (also independent and identically distributed) with the
common distribution function Fθ . We assume that B1, . . . ,BN ,T1, . . . ,TN are inde-
pendent. We do not observed the realizations BN0+1, . . . ,BN and the realizations of
T1, . . . ,TN . Only realizations zn of Zn with

Zn =

{
(0, i), if Bn = 0, Tn ∈ (τi−1,τi], i = 1, . . . , I +1,
(h, i), if Bn ∈ (τh−1,τh], Bn +Tn ∈ (τi−1,τi], h < i, h, i = 1, . . . , I +1,

are observed for n = 1, . . . ,N.
Similar as in Sections 3.1 and 3.2, we get the likelihood function for the data

z1, . . . ,zN in the following form:

l(θ) =
N

∏
n=1

I+1

∏
i=1

Pθ

(
Tn ∈ (τi−1,τi]

)1{zn=(0,i)} ·

·
I+1

∏
h=1
h<i

Pθ

(
Bn ∈ (τh−1,τh], Bn +Tn ∈ (τi−1,τi]

)1{zn=(h,i)}

=
N

∏
n=1

I+1

∏
i=1

(
(Fθ (τi)−Fθ (τi−1))

)1{zn=(0,i)} ·

·
I+1

∏
h=1
h<i

(∫
τh

τh−1

(Fθ (τi−u)−Fθ (τi−1−u)) dGθ (u)
)1{zn=(h,i)}

.

If we assume that θ = (λ̂0,λ ) with λ̂0 defined in Section 3.2, Gθ = Exp(λ̂0) and
Fθ = Exp(λ ), we obtain
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l(λ ) =
N

∏
n=1

I+1

∏
i=1

(
e−λτi−1 − e−λτi

)1{zn=(0,i)} ·

·
I

∏
h=1
h<i

(
λ̂0

λ − λ̂0

(
e−λτi−1 − e−λτi

)(
e(λ−λ̂0)τh − e(λ−λ̂0)τh−1

))1{zn=(h,i)}

Using the likelihood function l(λ ), we obtain the maximum likelihood estimate λ̂

and an asymptotic confidence interval for λ from (1).

3.4 Confidence sets for related quantities

Usually, the parameter λ of the exponential distribution itself is not of interest. The
following quantities are of more interest when analyzing the lifetime of diamond
impregnated tools:

(a) expected lifetime of each diamond;
(b) expected number of breakouts in N diamonds within [0,T ];
(c) time TL,N so that the probability of a breakout of at least L of N diamonds

equals p.

Let us consider each of these quantities.
(a) Expected lifetime of each diamond is

q1(λ ) := Eλ (Tn) =
1
λ
,

since we assume T1, . . . ,TN ∼ Exp(λ ).
(b) Probability that one diamond breaks out within [0,T ] is

pT := Pλ (Tn ≤ T ) = Fλ (T ) = 1− e−λT .

Then, the number Nb of breakouts in N diamonds within [0,T ] follows the binomial
distribution Bin(N, pT ). Therefore, expected number of breakouts in N diamonds
within [0,T ] is given by

q2(λ ) := N pT = NFλ (T ) = N
(

1− e−λT
)
.

(c) Since Nb ∼ Bin(N, pT ) (see (b)), the probability that at least L of N, L ≤ N,
diamonds break out within [0,T ] is given by

Pλ (Nb ≥ L) =
N

∑
l=L

(
N
l

)(
1− e−λT

)l
e−λT (N−l).
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Time TL,N so that the probability of a breakout of at least L of N diamonds is 0.5 can
be found by solving the following equation:

N

∑
l=L

(
N
l

)(
1− e−λTL,N

)l
e−λTL,N(N−l) = 0.5.

Note that the function on the left of the equation is monotone increasing with respect
to λTL,N for all L,N with L ≤ N. This means, there is a unique solution of the
equation and it has the following form:

q3(λ ) := TL,N(λ ) =
f (L,N)

λ
,

where f (L,N) is a function of L,N and can be found numerically for each L,N.
All quantities qi(λ ), i = 1,2,3, can be estimated by replacing λ with its estimate

λ̂ , i.e. by qi(λ̂ ). Since q1(λ ) and q3(λ ) are decreasing functions with respect to λ ,
the confidence interval for qi(λ ), i = 1,3, is given by

[qi(λ̂u),qi(λ̂l)],

where C (z1, . . . ,zN) = [λ̂l , λ̂u] is the confidence interval for λ . Similarly, since q2 is
increasing in λ , the confidence interval for q2(λ ) is [q2(λ̂l),q2(λ̂u)].

4 Results

The statistical analysis was done by R [15].
Within the conducted experiments, one or more diamond breakouts were ob-

served for segments B28, B29, and B19. In contrast, segment B18 showed no com-
plete diamond breakout. Hence, a lifetime analysis for single diamonds is not pos-
sible here and it was decided to neglect this segment for the analysis. Further ex-
periments need to be conducted for this segment to get enough data for lifetime
estimation.

4.1 Using only diamonds visible in the beginning

The maximum likelihood estimates for λ and the corresponding asymptotic 98.4%-
confidence intervals for three experimental setups (B19, B28, B29) are given in
Table 1 and Figure 2. Note that the level α is chosen so that (1−α)3 ≥ 0.95. It is
because of the adjustment by testing (with level 95%) the hypothesis that the lifetime
parameter λ is the same for B19, B28 and B29. Figure 2 shows that the confidence
intervals have an empty intersection. This allows us to reject the null hypothesis and
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conclude that there is significant difference between all three experimental setups.
At the same time the chosen level 98.4% for confidence intervals allows to com-
pare the experiments in pairs (with level al least 95%). The null hypotheses about
the pairwise equality of the lifetime parameters are rejected when the corresponding
confidence intervals are disjoint. So, we see that there is no significant difference be-
tween B19 and B29, since the intersection is not empty. However, B28 distinguishes
significantly from B19 and B29.

Experiment ML-estimate of λ 98.4%-confidence interval
B19 0.00489 [0.00083, 0.01519]
B28 0.03310 [0.01734, 0.05638]
B29 0.00448 [0.00152, 0.00988]

Table 1 ML-estimates and 98.4%-confidence intervals for λ

●

●

●

B19

B28

B29

0.00 0.01 0.02 0.03 0.04 0.05
λ

 

Experiment
●

●

●

B29
B28
B19

Fig. 2 ML-estimates and 98.4%-confidence intervals for λ

The estimates and the confidence intervals for the quantities represented in Sec-
tion 3.4 are given below. Figure 3 provides the estimates for the expected lifetime
1/λ of each diamond. Figure 4 gives the estimated expected number of breakouts
of initially visible diamonds within the time interval [0,50] (in min). Figure 5 rep-
resents T̂L,N for L = N/2 and L = N, i.e. the estimated time at which with proba-
bility 0.5 at least half (all, respectively) of the initially visible diamonds are broken
out. Note that the number N of diamonds visible at the beginning are different for
B19, B28 and B29 (14, 22 and 33, respectively) so that the confidence intervals for
B28 and B29 in Figure 4 and for B19 and B28 in Figure 5 are not disjunct.
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Fig. 3 ML-estimates and 98.4%-confidence intervals for expected lifetime 1/λ
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Fig. 4 ML-estimates and 98.4%-confidence intervals for the expected number of breakouts of
initially visible diamonds within the time interval [0,50] (in min)
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Fig. 5 ML-estimates and 98.4%-confidence intervals for the times TL,N with L = N/2 and L = N

4.2 Using all active diamonds

The maximum likelihood estimation for the birth time parameter λ0 from the model
represented in Section 3.2 yields the following values:

B19: λ̂0 = 0.054, B28: λ̂0 = 0.052, B29: λ̂0 = 0.049.

These estimates and the corresponding asymptotic 98.4%-confidence intervals for λ0
are given in Figure 6. Note that the lengths of the intervals are different because of
the different number of new diamonds that appeared during the drilling in B19, B28
and B29 (9, 46 and 22, respectively).
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Fig. 6 ML-estimates and 98.4%-confidence intervals for λ0
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The maximum likelihood estimates for the lifetime parameter λ and the corre-
sponding asymptotic 98.4%-confidence intervals for B19, B28, B29 are given in
Table 2 and Figure 7. Note again that the level α is chosen so that (1−α)3 ≥ 0.95
(for explanation see Section 4.1).

Figure 7 shows that the confidence intervals are not disjunct anymore in com-
parison with the confidence intervals from Figure 2. This means that there is no
significant difference between the lifetime parameter λ in all three experimental se-
tups. Figure 8 provides the estimates for the expected lifetime 1/λ of each diamond.

Experiment ML-estimate of λ 98.4%-confidence interval
B19 0.00300 [0.00047, 0.00919]
B28 0.00879 [0.00526, 0.01346]
B29 0.00302 [0.00114, 0.00634]

Table 2 ML-estimates and 98.4%-confidence intervals for λ
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Fig. 7 ML-estimates and 98.4%-confidence intervals for λ
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Fig. 8 ML-estimates and 98.4%-confidence intervals for expected lifetime 1/λ

5 Discussion

The wear of diamond impregnated drilling tools was studied via the lifetime of the
single active diamonds in three different setups. The three setups concerned small
diamonds (grit size 40/50 mesh) applied to conventional concrete (C20/25), small
diamonds applied to high strength concrete (C100/115), and large diamonds (grit
size 20/30 mesh) applied to conventional concrete. In order to observe the lifetime
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of the single diamonds, the drilling process was stopped every minute and the active
diamonds were marked via inspection of the surface of the drilling segment. This
led to interval-censored lifetimes for the diamonds visible in the beginning and to
doubly interval-censored lifetimes for diamonds appearing during the drilling pro-
cess.

To analyse these interval-censored data, exponential distributions for the life-
times and the birth times of diamonds appearing during the drilling process were
assumed. Moreover, a simple plug-in method for confidence intervals for the life-
times in the three experimental setups was used. It turned out that the lifetimes of
small diamonds are shorter than those of large diamonds in the tools applied to the
conventional concrete. Moreover, the lifetimes of small diamonds in the tools ap-
plied to conventional concrete were shorter than those in the tools applied to high
strength concrete. These differences were significant if only the diamonds visible
in the beginning were used. However, the significance disappeared when using all
active diamonds. A reason might be that, in all setups, the estimated expected life-
times of all active diamonds were longer than the estimated expected lifetimes of
diamonds visible in the beginning so that consequently the variance in a model with
exponential distributions should be larger. It is not surprising that the estimated ex-
pected lifetimes of the initially visible diamonds were shorter since these diamonds
were observed over longer period of time and had more chances to break out within
this period.

The significance also disappeared when some related quantities are considered.
This holds for the expected number of breakouts of the initially visible diamonds
within the time interval up to 50 minutes and for the time so that the probability
of the breakout of all initially visible diamonds is 0.5. However, this is due to the
different numbers of diamonds visible in the beginning which were 22 and 33 for
the small diamonds and 14 for the large diamonds.

More experiments should be used to see whether a significant difference can
be observed also for these quantities and for the case of using all active diamonds.
Moreover, in future work, the simple plug-in method for confidence intervals should
be compared with a method where the two parameters of the two exponential dis-
tributions (for lifetimes and birth times) are estimated simultaneously. Additionally,
other distributions with more parameters like Weibull or gamma distributions should
be studied for the lifetimes and birth times.
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