
Supplementary material for
"Inference of intensity based models for load-sharing

systems with damage accumulation"

Christine H. Müller∗ and Renate Meyer†

November 26, 2020

Further results concerning the Bayesian analysis are presented in Section 1. Further fre-
quentist confidence sets and Bayesian credible sets and details of their calculation are
given in Section 2, and details concerning the calculation of the prediction intervals are
given in Section 3. In Section 3 also the difference between prediction intervals based on
credible sets and the classical Bayesian prediction intervals is outlined and it is explained
why the classical Bayesian prediction intervals cannot be used easily in the models with
damage accumulation. Sections 4 and 5 provide further results of the simulation study.
Since the estimates differs if they were calculated in the scale invariant or the scale de-
pendent version, Section 6 explains how one version can be transformed into the other
version. More details of the proofs are given in Section 7.

1 Further results of the Bayesian analysis

Traceplots and kernel density estimates of the marginal posterior distributions of each
parameter for each of the three models are given in Figures 1, 2, 3 and 4. Figure 3
illustrates the problem of sampling the posterior distribution in the model with additive
damage accumulation. Here the two MCMC chains with different initial values get stuck
in one of two local maxima.
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Figure 1: Traceplots and kernel density estimates for the parameters of the load sharing
model without damage accumulation.
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Figure 2: Traceplots and kernel density estimates for the parameters of the load sharing
model with multiplicative damage accumulation.
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Figure 3: Traceplots and kernel density estimates for the parameters of the load sharing
model with additive damage accumulation from two chains with different starting values.
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Figure 4: Traceplots and kernel density estimates for the parameters of the load sharing
model with additive damage accumulation.
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2 Further frequentist confidence sets and Bayesian
credible sets and details of their calculation

To calculate the 90%-prediction intervals in the case of the models with multiplica-
tive and additive damage accumulation, 95%-confidence sets were calculated via grids
with 1013 points. The 1013 grid points were distributed with equidistant steps in
[3.8, 8.2]× [2.4, 4.3]× [0, 0.8] for the model with multiplicative damage accumulation and
in [3.4, 6.6]× [2.5, 4.3]× [0.0001, 0.016] for the model with additive damage accumulation.
To make a fair comparison, the confidence set for the model without damage accumula-
tion were determined by a grid with 1012 points lying in [2.8, 5.0] × [2.1, 3.5]. All these
grids contain at the border points which are not included in the confidence sets so that
the grids were large enough. Moreover, the grids were also not too large since the obtained
confidence set for multiplicative damage accumulation contains 18 062 points, the one for
additive damage accumulation 34 384 points, and the one for the model without damage
accumulation 21 300 points. The 95%-credible sets for Bayesian analysis were obtained by
using the 40 000 simulated parameters of the posterior distribution for the model with-
out and with multiplicative damage accumulation and the 8 500 simulated parameters of
the model with additive damage accumulation. Using Tukey’s half space depth led in all
three models to the smallest sets with at least 95% of the simulated parameters of the
posterior distribution. This resulted in a set of 38 007 parameters with a half space depth
greater than 0.002974987 for the model with multiplicative damage accumulation, in a
set of 8 079 parameters with a half space depth greater than 0.00635294 for the model
with additive damage accumulation, and in a set of 38 009 parameters with a half space
depth greater than 0.007124996 for the model without damage accumulation.

Figure 5: The whole set of simulated parameters of the posterior distribution (black), the
frequentist 95%-confidence sets (green) and the Bayesian 95%-credible sets (red) for the
model without damage accumulation in the scale dependent version with τ? = 106.
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Figure 6: Two-dimensional projections of the whole set of simulated parameters of the pos-
terior distribution (black), the frequentist 95%-confidence sets (green) and the Bayesian
95%-credible sets (red) for the model with multiplicative damage accumulation in the
scale dependent version with τ? = 106.

3 Details of the calculation of the prediction intervals

Hereinafter, D = M,A,W denotes the model with multiplicative, additive and with-
out damage accumulation, respectively. Recall that the frequentist asymptotic (1 − α)-
prediction interval PFD,1−α for the future failure time TDIc,0 is given by

PFD,1−α :=
⋃

θ∈CF
D,1−α/2

[
qDα/4(θ), q

D
1−α/4(θ)

]
, (1)

where CF
D,1−α/2 is a (1 − α/2)-confidence set of θ while the Bayesian (1 − α)-prediction

interval PBD,1−α for TDIc,0 is given by

PBD,1−α :=
⋃

θ∈CB
D,1−α/2

[
qDα/4(θ), q

D
1−α/4(θ)

]
, (2)

where CB
D,1−α/2 is the credible set. Both prediction intervals are based on the quantiles

qDα/4(θ) and qD1−α/4(θ) of the distribution of the future failure time TDIc,0.

For calculating the 90%-prediction intervals, each of the calculated 95%-confidence sets
and 95%-credible sets were thinned to approximately 2 000 parameters. Then, the thinned
confidence set for the model with multiplicative damage accumulation includes 10% of the
original 18 062 parameters, the thinned confidence set for the model with additive damage
accumulation includes 5% of the 34 384 parameters, and the thinned confidence set for
the model without damage accumulation includes 10% of the original 21 300 parameters.
Similarly, the thinned credible set for the model with multiplicative damage accumulation
includes 5% of the original 38 007 parameters, the thinned credible set for the model with
additive damage accumulation includes 20% of the 38 079 parameters, and the thinned

7



credible set for the model without damage accumulation includes 5% of the original 38 009
parameters. Then 10 000 point processes were simulated for each parameter of the thinned
versions of the confidence sets and credible sets. The predictive distribution of the time
of the Icth break is approximated by the 10 000 time points of the Icth event in these
10 000 point processes. Using the 0.025-quantile and the 0.975-quantile of the 10 000 time
points of the Icth event provides then the intervals

[
qDα/4(θ), q

D
1−α/4(θ)

]
in (1) and (2) for

α = 0.1.

Because of the thinning, the prediction intervals are slightly too short. On the other
hand, the prediction intervals are slightly too large. Namely, for simplicity and to use
them for Experiment SB06 as well as for Experiment SB06a, the 95%-confidence sets
and 95%-credible sets were based only on N = {Nj(t)t≤τj ; j = 1, . . . , J} and not on
N0 = {Nj(t)t≤τj ; j = 0, 1, . . . , J}. To include the general case in the proof of Lemma
III.1 and Lemma III.2, it was assumed that the confidence sets and credible sets are
of form C(N 0), but the proof holds also for C(N ). Since C(N ) is larger than C(N 0),
the prediction intervals becomes only larger. However, we have then independence of
{T ∈ P(θ,N 0)} and C(N ) since the predictive interval P(θ,N 0) =

[
qDα/4(θ), q

D
1−α/4(θ)

]
depends only on N0(t)t≤τ0 . This means that the level of the prediction interval can be
determined as in Leckey et al. (2020) and is (1 − α

2
)2 instead of (1 − α) with α = 0.1.

Nevertheless, the results for the model without damage accumulation are very similar to
those of Leckey et al. (2020).

It should also be noted here that usually the posterior predictive distribution of T := TIc,0
given N 0 = N0 is obtained by

pT |N 0=N0
(t) =: p(t|N0) =

p(t,N0)

p(N0)
=

1

p(N0)

∫
p(t,N0, θ) dθ

=
1

p(N0)

∫
p(t|N0, θ) p(N0, θ) dθ =

∫
p(t|N0, θ) p(θ|N0) dθ.

A sample from this posterior predictive distribution can be obtained by sampling a tk
from the likelihood p(t|N0, θ

(k)) for each sample θ(k) from the posterior distribution. The
problem is that the distribution of T given (N 0,Θ) = (N0, θ), which has the density
p(t|N0, θ), has no simple form. Only for the model without damage accumulation, it
has a simple form since it is the hypoexponential distribution so that it can be easily
sampled. Therefore, we decided to obtain an approximate posterior prediction interval by
an analogous procedure to the frequentist prediction interval consistently for the models
with and without damage accumulation.
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4 Further results of the simulation study for the esti-
mators

Scale invariant Scale dependent
Fixed horizon Corrected Fixed horizon Fixed number
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Figure 7: Boxplots of the estimates for θ = (θ1, θ2)
> for the simulated load sharing model

without damage accumulation. First column: scale invariant estimator in the scenario of
fixed horizon. Second column: correction of the scale invariant estimator. Third column:
scale dependent estimator in the scenario of fixed horizon. Fourth column: scale depen-
dent estimator in the scenario of fixed number of failures. The red line marks the true
parameter. The number of repetitions was 100.
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Figure 8: Boxplots of the estimates for θ = (θ1, θ2, θ3)
> for the simulated load sharing

model with multiplicative damage accumulation. First column: scale invariant estimator
in the scenario of fixed horizon. Second column: correction of the scale invariant estimator.
Third column: scale dependent estimator in the scenario of fixed horizon. Fourth column:
scale dependent estimator in the scenario of fixed number of failures. The red line marks
the true parameter. The number of repetitions was 100.
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5 Further results of the simulation study for the tests

Figure 9 and Figure 10 provide further simulation results concerning the rejection rates
under the null hypothesis of the likelihood ratio test for H0 : θ = θ∗ and the likelihood
ratio test for testing the null hypothesis of no multiplicative damage accumulation and no
additive damage accumulation, respectively, for growing sample size for the scenarios with
fixed time horizon (left column) and fixed number of failures (right column). With 1 000
simulations, the variability of the rejection rates are still high, which can be seen also by
the repetition of the simulation study with different random numbers in the second row.
In particular, Figure 10 demonstrates that the tests for no damage accumulation are too
conservative.
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Figure 9: Rejection rates of the likelihood ratio test for testing the null hypothesis
H0 : θ = θ∗ in the models with multiplicative damage accumulation, additive damage
accumulation, and without damage accumulation. First column: scenario with fixed hori-
zon. Second column: scenario with fixed number of failures. Second row: results with
different random numbers. The red line marks the test level of 0.05. The number of
repetitions was 1 000.
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Fixed horizon Fixed number of failures
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Figure 10: Rejection rates of the likelihood ratio test for testing the null hypothesis
H0 : θ3 = 0 in the models with multiplicative damage accumulation and additive damage
accumulation for different values of K. First column: scenario with fixed horizon. Second
column: scenario with fixed number of failures. Second row: results with different random
numbers. The red line marks the test level of 0.05. The number of repetitions was 1 000.
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6 Transformation of parameters

The likelihood functions are dependent of the parameter τ for adjusting for different time
scales. The likelihood functions are given in a form that is numerical stable. However, if
different values for τ are used than the following representations are useful:

For the multiplicative model, we have

ln(LM((θ1(τ), θ2(τ), θ3(τ))>))

=
J∑
j=1


Ij∑
i=1

[
−θ1(τ) + θ2(τ) ln(aij) + θ3(τ) ln

(
1

τ
Cj(i)

)
− ln(τ)

]

− exp(−θ1(τ))

θ3(τ) + 1

Ij+1∑
i=1

a
θ2(τ)−1
ij

((
1

τ
Cj(i)

)θ3(τ)+1

−
(

1

τ
Cj(i− 1)

)θ3(τ)+1
)

=
J∑
j=1


Ij∑
i=1

[−θ1(τ) + θ2(τ) ln(aij) + θ3(τ) ln (Cj(i))− θ3(τ) ln(τ)− ln(τ)]

− exp(−θ1(τ))

θ3(τ) + 1

Ij+1∑
i=1

a
θ2(τ)−1
ij

(
1

τ

)θ3(τ)+1 (
Cj(i)

θ3(τ)+1 − Cj(i− 1)θ3(τ)+1
)

=
J∑
j=1


Ij∑
i=1

[−{θ1(τ) + (θ3(τ) + 1) ln(τ)}+ θ2(τ) ln(aij) + θ3(τ) ln (Cj(i))]

− exp(−{θ1(τ) + (θ3(τ) + 1) ln(τ)})
θ3(τ) + 1

Ij+1∑
i=1

a
θ2(τ)−1
ij

(
Cj(i)

θ3(τ)+1 − Cj(i− 1)θ3(τ)+1
)

=
J∑
j=1


Ij∑
i=1

[−θ1 + θ2 ln(aij) + θ3 ln (Cj(i))]

− exp(−θ1)
θ3 + 1

Ij+1∑
i=1

aθ2−1ij

(
Cj(i)

θ3+1 − Cj(i− 1)θ3+1
)

with θ1 := θ1(τ) + (θ3(τ) + 1) ln(τ), θ2 := θ2(τ), and θ3 := θ3(τ). The last representation
is a version not depending on τ . However, it can be numerically instable because of large
values of Cj. Hence for different τ0 and τ∗ we get

θ2(τ0) = θ2 = θ2(τ∗), θ3(τ0) = θ3 = θ3(τ∗),

θ1(τ0) + (θ3 + 1) ln(τ0) = θ1 = θ1(τ∗) + (θ3 + 1) ln(τ∗)

⇔ θ1(τ0) = θ1(τ∗) + (θ3 + 1)[ln(τ∗)− ln(τ0)].

For the additive model, we get

ln(LA((θ1(τ), θ2(τ), θ3(τ))>))
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=
J∑
j=1


Ij∑
i=1

[
−θ1(τ) + θ2(τ) ln

(
aij +

θ3(τ)

τ
Cj(i)

)
− ln(τ)

]

− exp(−θ1(τ))

θ3(τ)(θ2(τ) + 1)

Ij+1∑
i=1

1

aij

((
aij +

θ3(τ)

τ
Cj(i)

)θ2(τ)+1

−
(
aij +

θ3(τ)

τ
Cj(i− 1)

)θ2(τ)+1
)]}

=
J∑
j=1


Ij∑
i=1

[
−θ1(τ) + θ2(τ) ln

(
aij +

θ3(τ)

τ
Cj(i)

)
− ln(τ)

]

−
exp(−θ1(τ)) 1

τ
θ3(τ)
τ

(θ2(τ) + 1)

Ij+1∑
i=1

1

aij

((
aij +

θ3(τ)

τ
Cj(i)

)θ2(τ)+1

−
(
aij +

θ3(τ)

τ
Cj(i− 1)

)θ2(τ)+1
)]}

=
J∑
j=1


Ij∑
i=1

[
−{θ1(τ) + ln(τ)}+ θ2(τ) ln

(
aij +

θ3(τ)

τ
Cj(i)

)]

− exp(−{θ1(τ) + ln(τ)})
θ3(τ)
τ

(θ2(τ) + 1)

Ij+1∑
i=1

1

aij

((
aij +

θ3(τ)

τ
Cj(i)

)θ2(τ)+1

−
(
aij +

θ3(τ)

τ
Cj(i− 1)

)θ2(τ)+1
)]}

=
J∑
j=1


Ij∑
i=1

[−θ1 + θ2 ln (aij + θ3Cj(i))]

− exp(−θ1)
θ3(θ2 + 1)

Ij+1∑
i=1

1

aij

(
(aij + θ3Cj(i))

θ2+1 − (aij + θ3Cj(i− 1))θ2+1
)

with θ1 := θ1(τ) + ln(τ), θ2 := θ2(τ), and θ3 := θ3(τ)
τ

. The last representation is again a
version not depending on τ . Hence for different τ0 and τ∗ we get

θ2(τ0) = θ2 = θ2(τ∗),

θ3(τ0)

τ0
= θ3 =

θ3(τ∗)

τ∗
⇔ θ3(τ0) = θ3(τ∗)

τ0
τ∗
,

θ1(τ0) + ln(τ0) = θ1 = θ1(τ∗) + ln(τ∗)⇔ θ1(τ0) = θ1(τ∗) + ln(τ∗)− ln(τ0).
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7 Additional details of the proofs

Additional details of the proof of Theorem II.1. The detailed derivation of
∫ τj
0
λAj (t)dt for

the model with additive damage accumulation follows by∫ τj

0

λAj (t)dt =

∫ τj

0

1

τ
exp(−θ1)

(
aj(t) + θ3

1

τ
Aj(t)

)θ2
dt

=
Ij∑
i=1

∫ ti,j

ti−1,j

exp(−θ1)
τ

(
aij + θ3

1

τ
Aj(t)

)θ2
dt

+

∫ τj

t
Ij ,j

exp(−θ1)
τ

(
a(Ij+1)j + θ3

1

τ
Aj(t)

)θ2
dt

=
exp(−θ1)

τ

 Ij∑
i=1

∫ ti,j

ti−1,j

(
aij + θ3

1

τ

[
aij

(
t−

i−1∑
k=1

Wkj

)
+

i−1∑
k=1

akjWkj

])θ2

dt

+

∫ τj

t
Ij ,j

a(Ij+1)j + θ3
1

τ

a(Ij+1)j

t− Ij∑
k=1

Wkj

+
Ij∑
k=1

akjWkj

θ2

dt


=

exp(−θ1) τ
τ θ3(θ2 + 1)

 Ij∑
i=1

1

aij

(
aij + θ3

1

τ

[
aij

(
t−

i−1∑
k=1

Wkj

)
+

i−1∑
k=1

akjWkj

])θ2+1
∣∣∣∣∣∣
ti,j

ti−1,j

+
1

a(Ij+1)j

a(Ij+1)j + θ3
1

τ

a(Ij+1)j

t− Ij∑
k=1

Wkj

+
Ij∑
k=1

akjWkj

θ2+1
∣∣∣∣∣∣∣
τj

t
Ij ,j


=

exp(−θ1)
θ3(θ2 + 1)

Ij+1∑
i=1

1

aij

((
aij + θ3

1

τ
Cj(i)

)θ2+1

−
(
aij + θ3

1

τ
Cj(i− 1)

)θ2+1
)

with W(Ij+1)j := τj − tIj ,j and Cj(i) =
∑i

k=1 akjWkj for i = 1, . . . , Ij + 1. 2

Additional details of the proof of Corollary II.2. The intensity function λWj of a load
sharing model without damage accumulation satisfies∫ τj

0

λWj (t)dt =

∫ τj

0

1

τ
exp(−θ1)aj(t)θ2 dt

=
Ij∑
i=1

∫ ti,j

ti−1,j

exp(−θ1)
τ

aθ2ij dt+

∫ τj

t
Ij ,j

exp(−θ1)
τ

aθ2
(Ij+1)j

dt

=
exp(−θ1)

τ

 Ij∑
i=1

aθ2ij Wij + aθ2
(Ij+1)j

(τj − tIj ,j)

 =
exp(−θ1)

τ

Ij+1∑
i=1

aθ2ij Wij

 ,
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so that, with λWj (ti,j) = 1
τ

exp(−θ1)aθ2ij , the form of the likelihood function LW follows

from formula L =
[∏N(τ)

i=1 λ(ti)
]

exp
(
−
∫ τ
0
λ(t)dt

)
for the likelihood function of a general

point process which was used in the proof of Theorem II.1.

To see also ln(LW ((θ1, θ2)
>)) = ln(LM((θ1, θ2, 0)>)), note

Cj(i)− Cj(i− 1) =
i∑

k=1

akjWkj −
i−1∑
k=1

akjWkj = aijWij (3)

for i = 1, . . . , Ij + 1, j = 1, . . . , J . Hence according to Theorem II.1, it holds

ln(LM((θ1, θ2, 0)>))

=
J∑
j=1


Ij∑
i=1

[−θ1 + θ2 ln(aij)− ln(τ)]− exp(−θ1)
τ

Ij+1∑
i=1

aθ2−1ij (Cj(i)− Cj(i− 1))


=

J∑
j=1


Ij∑
i=1

[−θ1 + θ2 ln(aij)− ln(τ)]− exp(−θ1)
τ

Ij+1∑
i=1

aθ2ij Wij


= ln(LW ((θ1, θ2)

>)).

To see ln(LW ((θ1, θ2)
>)) = limθ3→0 ln(LA((θ1, θ2, θ3)

>)) note that L’Hospital’s rule pro-
vides with (3)

lim
θ3→0

1

θ3(θ2 + 1)

1

aij

((
aij + θ3

1

τ
Cj(i)

)θ2+1

−
(
aij + θ3

1

τ
Cj(i− 1)

)θ2+1
)

= lim
θ3→0

1

θ2 + 1

1

aij

(
(θ2 + 1)

(
aij + θ3

1

τ
Cj(i)

)θ2 1

τ
Cj(i)

− (θ2 + 1)

(
aij + θ3

1

τ
Cj(i− 1)

)θ2 1

τ
Cj(i− 1)

)
=

1

τ

1

aij

(
aθ2ijCj(i)− a

θ2
ijCj(i− 1)

)
=

1

τ

1

aij
aθ2ij aijWij =

1

τ
aθ2ijWij

for i = 1, . . . , Ij + 1. This implies ln(LW ((θ1, θ2)
>)) = limθ3→0 ln(LA((θ1, θ2, θ3)

>)). 2

Proof of Lemma II.3. At first note

Hij(t|t1,j, . . . , ti−1,j) =

∫ t

ti−1,j

−
S ′ij(u|t1,j, . . . , ti−1,j)
Sij(u|t1,j, . . . , ti−1,j)

du

=

∫ t

ti−1,j

− ∂

∂u
ln(Sij(u|t1,j, . . . , ti−1,j)) du

= − ln(Sij(t|t1,j, . . . , ti−1,j)) + ln(Sij(ti−1,j|t1,j, . . . , ti−1,j))
= − ln(Sij(t|t1,j, . . . , ti−1,j)).

16



Additionally with Fij(ti−1,j|t1,j, . . . , ti−1,j) := 1− Sij(ti−1,j|t1,j, . . . , ti−1,j), we get

P (Fij(Ti,j|T1,j, . . . , Ti−1,j) ≤ t|T1,j = t1,j, . . . , Ti−1,j = ti−1,j)

= P (Fij(Ti,j|T1,j = t1,j, . . . , Ti−1,j = ti−1,j) ≤ t|T1,j = t1,j, . . . , Ti−1,j = ti−1,j)

= P (Ti,j ≤ F−1ij (t|T1,j = t1,j, . . . , Ti−1,j = ti−1,j)|T1,j = t1,j, . . . , Ti−1,j = ti−1,j)

= Fij(F
−1
ij (t|T1,j = t1,j, . . . , Ti−1,j = ti−1,j)|T1,j = t1,j, . . . , Ti−1,j = ti−1,j) = t

so that the conditional distribution of Fij(Ti,j|T1,j, . . . , Ti−1,j) given T1,j =
t1,j, . . . , Ti−1,j = ti−1,j is a uniform distribution on [0, 1]. Hence the conditional distri-
bution of Sij(Ti,j|T1,j, . . . , Ti−1,j) is also a uniform distribution on [0, 1]. This implies

P (Hij(Ti,j|T1,j, . . . , Ti−1,j) ≤ t|T1,j = t1,j, . . . , Ti−1,j = ti−1,j)

= P (− ln(Sij(Ti,j|T1,j, . . . , Ti−1,j)) ≤ t|T1,j = t1,j, . . . , Ti−1,j = ti−1,j)

= P (Sij(Ti,j|T1,j, . . . , Ti−1,j) ≤ exp(−t)|T1,j = t1,j, . . . , Ti−1,j = ti−1,j)

= exp(−t)

which means that the conditional distribution of Hij(Ti,j|T1,j, . . . , Ti−1,j) given T1,j =
t1,j, . . . , Ti−1,j = ti−1,j is an exponential distribution with parameter 1. 2

Proof of Theorem II.4. Similarly as in the proof Theorem II.1, we get for the load sharing
model with multiplicative damage accumulation

ΛM
ij (t) =

∫ t

ti−1,j

λMj (u)du =

∫ t

ti−1,j

1

τ
exp(−θ1)aj(u)θ2A(u)θ3 du

=
exp(−θ1)

τ

aθ2ij
τ θ3

∫ t

ti−1,j

(
aij

(
u−

i−1∑
k=1

Wkj

)
+

i−1∑
k=1

akjWkj

)θ3

du

=
exp(−θ1)

τ

aθ2ij
τ θ3 aij(θ3 + 1)

(aij (u− ti−1,j) + Cj(i− 1))θ3+1
∣∣∣t
ti−1,j

=
exp(−θ1) aθ2−1ij

τ θ3+1 (θ3 + 1)

[
(aij (t− ti−1,j) + Cj(i− 1))θ3+1 − Cj(i− 1)θ3+1

]
=

exp(−θ1) aθ2−1ij

τ θ3+1 (θ3 + 1)

[
(aijt− aijti−1,j + Cj(i− 1))θ3+1 − Cj(i− 1)θ3+1

]
.

This is of the form

K(t) := c [(at+ b)v − d] (4)

which has the following inverse

K−t(y) =
1

a

[(y
c

+ d
) 1
v − b

]
. (5)

This implies

(ΛM
ij )−1(y)

17



=
1

aij

( τ θ3+1 (θ3 + 1)

exp(−θ1) aθ2−1ij

y + Cj(i− 1)θ3+1

) 1
θ3+1

+ aijti−1,j − Cj(i− 1)

 .
The load sharing model with additive damage accumulation satisfies

ΛA
ij(t) =

∫ t

ti−1,j

λAj (u)du =

∫ t

ti−1,j

1

τ
exp(−θ1)(aj(u) + θ3A(u))θ2 du

=
exp(−θ1)

τ

∫ t

ti−1,j

(
aij + θ3

1

τ

[
aij

(
u−

i−1∑
k=1

Wkj

)
+

i−1∑
k=1

akjWkj

])θ2

du

=
exp(−θ1)
θ3(θ2 + 1)

1

aij

(
aij + θ3

1

τ
[aij (u− ti−1,j) + Cj(i− 1)]

)θ2+1
∣∣∣∣∣
t

ti−1,j

=
exp(−θ1)

θ3(θ2 + 1)aij

[(
aij + θ3

1

τ
[aij (t− ti−1,j) + Cj(i− 1)]

)θ2+1

−
(
aij + θ3

1

τ
Cj(i− 1)

)θ2+1
]

=
exp(−θ1)

θ3(θ2 + 1)aij

[(
θ3aij
τ

t+ aij −
θ3
τ

[aijti−1,j − Cj(i− 1)]

)θ2+1

−
(
aij + θ3

1

τ
Cj(i− 1)

)θ2+1
]
.

This has again the form (4) so that the inverse is given by (5) implying

(ΛA
ij)
−1(y)

=
τ

θ3aij

(θ3(θ2 + 1)aij
exp(−θ1)

y +

(
aij + θ3

1

τ
Cj(i− 1)

)θ2+1
) 1

θ2+1

− aij +
θ3
τ

[aijti−1,j − Cj(i− 1)]

]
.2

Proof of (11) and (12). The proofs of (11) and (12) are similar so that only the proof of
(12) is given. Here, we get again with L’Hospital’s rule

lim
θ3→0

(ΛA
ij)
−1(y)

= lim
θ3→0

τ

aij

 1

θ2 + 1

(
θ3(θ2 + 1)aij

exp(−θ1)
y +

(
aij + θ3

1

τ
Cj(i− 1)

)θ2+1
) 1

θ2+1
−1

·

(
(θ2 + 1)aij
exp(−θ1)

y + (θ2 + 1)

(
aij + θ3

1

τ
Cj(i− 1)

)θ2
· 1

τ
Cj(i− 1)

)

+
1

τ
[aijti−1,j − Cj(i− 1)]

]
18



=
τ

aij

[
1

θ2 + 1

(
(aij)

θ2+1
) −θ2
θ2+1 ·

(
(θ2 + 1)aij
exp(−θ1)

y + (θ2 + 1) (aij)
θ2 · 1

τ
Cj(i− 1)

)
+

1

τ
[aijti−1,j − Cj(i− 1)]

]
=

τ

aij

[
(aij)

−θ2 ·
(

aij
exp(−θ1)

y + (aij)
θ2 · 1

τ
Cj(i− 1)

)
+

1

τ
[aijti−1,j − Cj(i− 1)]

]
=

1

aij

[
τ aij

exp(−θ1)aθ2ij
y + Cj(i− 1) + aijti−1,j − Cj(i− 1)

]
=

τ

exp(−θ1) aθ2ij
y + ti−1,j.2
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