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Abstract For estimating the remaining lifetime of old prestressed concrete bridges,
a monitoring of crack widths can be used. However, the time series of crack widths
show a strong variation mainly caused by temperature and traffic. Additionally, se-
quences with extreme volatility appear where the cause is unknown. They are called
anomalous sequences in the following. We present and compare four methods which
aim to detect these anomalous sequences in the time series. Volatilities caused by
traffic should not be detected.
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1 Introduction

The accident in Genoa on August 14th, 2018, showed that the safety of bridges is a
severe problem. This is because many bridges were built in the fifties and sixties of
the last century. They were designed and constructed for much lower than today’s
traffic loads in reality. Furthermore, the principles for designing and detailing had
been advanced. Hence, an important task is to predict the remaining lifetime of old
prestressed concrete bridges. This can be done by monitoring cracks in the bridges.
[8], [9], [16] showed how this can be done in lab experiments with prestressed con-
crete beams. Crucial in these approaches is to detect the breaking of tension wires.
This was mainly done by acoustic measurements. Thereby, it turned out that each
break causes a distinct increase of the width of an initial crack.

These acoustic measurements are not possible in bridge monitoring. Only the
crack widths can be monitored. However, they are influenced by the traffic and,
more heavily, by temperature. The left-hand side of Fig. 1 shows crack width mea-
surements together with two temperature measurements. The traffic load of the tram
and other heavy vehicles are visible as isolated peaks. In particular, there is a large
isolated peak at 6:30 a.m. which was caused by a heavy test load using a mobile
crane of 48 tons. Moreover, the measurements of the crack widths are disturbed by
strong anomalous sequences. Such an anomalous sequence is shown on the right-
hand side of Fig. 1. It provides a zoom around 12:48 p.m. of the left-hand plot.
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Fig. 1: Left: crack width and temperature measured above (air temperature) and
below (bridge temperature) the bridge on June 5th, 2016, for sensor WWS4. Right:
zoom of the crack width curve given by the green box on the left-hand side.



Detection of anomalous sequences 3

Anomalous sequences show an extreme volatility. It is unclear whether these
phenomena are caused by beat effects or if there are other causes. In any case, they
disturb the analysis severely so that a first step is to extract these anomalous se-
quences. Thereby, it is important that peaks caused by traffic are not extracted.

We present four methods for detecting the anomalous sequences. All of them are
based on filtering the time series of crack width data. Three of them use additionally
special change point detection methods. A location change point method is used
by the LCP (Location Change Point Detection using Squared Residuals) method,
in which a two-sample test based on the Hodges-Lehmann estimator for shift is
applied on the logarithm of squared residuals in a moving time window, see [1] and
[7]. The VCP (Variance Change Point Detection) and MVCP (Modified Variance
Change Point Detection) methods use the PELT (Pruned Exact Linear Time) method
of [13] for variance change point detection. The PELT method aims to find the global
minimum of a cost function with a penalty for several change points where the
number of evaluations is linear in the number of observations. The fourth method,
called CMAD (Clustering of MAD filtered data), uses a MAD (Median Absolute
Deviation from the median) filter and two times a median filter. It clusters the MAD
filtered data by the k-means algorithm.

In Section 2, the experimental setup and the data are described. The statistical
methods are explained in Section 3. Section 4 provides a comparison of the four
methods. Finally, in Section 5 a discussion is given.

Fig. 2: Bridge view during the installation of the monitoring.

2 Experimental Setup and Data Description

2.1 Bridge Monitoring

2.1.1 Motivation

In June 2016, a bridge monitoring on an existing post-tensioned prestressed con-
crete bridge in Bochum built in 1961 (Fig. 2) has been installed and started. The
reason was an assessment of this bridge by recalculation. It showed a significant
deficit of fatigue strength according to the current standards in certain areas of the



4 Abbas et al.

superstructure. Furthermore, in those critical areas, several bending cracks showing
widths of more than 0.5 mm have been detected during a routine bridge inspection.
Therefore, it was decided to carry out a crack monitoring with sensors at 16 mea-
surement points to observe a potential increase of crack widths which indicates a
damage due to fatigue in the cracked areas.

2.1.2 State of the building

In the course of a design recalculation, deficits with regard to the limit of the state
of decompression and fatigue strength were determined. The assessment was based
on the German recalculation guideline for existing buildings [3]. An important as-
pect of this guideline is the determination of a calculated remaining service life of
existing structures under traffic. It was possible to estimate a remaining service life
due to fatigue until the year 2019.

Considering this low remaining service life and also the large crack widths,
which could already point at a preexisting damage, it has been decided to build
a new bridge. Furthermore, additional measures were taken to prevent the collapse
of the structure. In addition to the restriction of a maximum weight of 24 tons per
vehicle and the limitation to one lane in each direction, a crack monitoring was
planned until the demolition of the existing bridge.

2.1.3 Objectives of the monitoring

The primary objective of the monitoring was the early and timely detection of crack
width increases, which could indicate failure of prestressing steel due to fatigue. In
case of a successive crack width increase as a result of prestressing steel failure,
further emergency measures, such as bridge closure and temporary support, can be
initiated.

2.1.4 Installation of the monitoring

During continuous monitoring of the structure, high-frequency crack measurements
by means of inductive displacement transducers are used, which were applied at the
16 areas of cracking. These transducers were denoted by WON1 to WON4, WWN1
to WWN4, WOS1 to WOS4, WWS1 to WWS4, where ”O” stands for ”east”, ”W”
for ”west”, ”N” for ”north”, and ”S” for ”south”. In addition to the installation of
the transducers, three measuring points for temperature recording were installed.
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2.2 Data Description and Data Transformation

Since June 1st, 2016, the bridge monitoring is put into practice. The monitoring is
carried out at a total of 16 measuring points for the crack width and three measuring
points for the temperature. The measuring frequency is 0.5 Hz, so that the crack
width and the temperature is recorded every two seconds. After each day, the col-
lected data are stored in a Microsoft Access Add-in data file (.mdt). This results in a
total data volume of 43 200 observations per measuring point and day and adds up
to a file size of about 1.6 Megabyte per day. As we will analyze the data with R, we
have to make the data accessible for it. Converting the MDT files to CSV files for
using the standard R-functions is not practical for long time intervals because the
data of a single day in CSV format add up to a size of 11.8 Megabyte.

For this reason, we wrote a new R-function to read the data from the MDT file.
An MDT file consists of three parts: an ASCII-coded header with information about
the data, the measurements stored as signed two-byte integers, and an ASCII-coded
sentence at the end of the file. The header provides useful information, for example
the day and the starting time of the measurements, but it also includes a table with,
among other things, the name of the point of measurement and a numerical offset
and factor. The offsets and factors are necessary to transform the two-byte integers
of the crack width and temperature measurements to their real values. Let x be a
two-byte integer. Then, the real value is obtained by (x−offset) · factor. Thus, in R
we can read the table in the header with the help of the function read.table()
and the measurements with readBin() and after transforming the integers to their
real values and adding some aesthetics like names, we obtain a data.frame with
20 columns (16 crack widths, three temperatures and one time column) and about
43 200 rows. If we store the obtained data in a RData-file, the file has a size of 1.0
Megabyte.

3 Statistical Methods

In the following, four methods for finding anomalous sequences are described.
Therefore, time series (Xt)t∈T of crack width measurements are examined where
T = {1, . . . ,N} is the time index set. For simplification the notation X = (Xt)t∈T is
used.

All methods use a filtration in the sense of Brockwell and Davis [2]. It transforms
the time series through a time-invariant but not necessarily linear filter f : R2w+1→
R, w ∈ N, given by

X ( f ,w)
t = (X ( f ,w)

t )t∈T = f (Xt−w, ...,Xt+w). (1)

Then X ( f ,w) is the time series filtered through f with window width 2w+1. In this
article, the filters f = med (median) and f = MAD (Median Absolute Deviation
from the median) are applied.
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In particular, all methods use the filter f = med for trend adjustment of Xt . The
window width w varies from method to method. The trend-adjusted crack width
process is then given by

X̃t = Xt −Xt
(med,w), t ∈ T. (2)

The calculations for all methods were performed with the statistical software R [15].

3.1 Location Change Point Detection using Squared Residuals
(LCP)

The Location Change Point Detection using Squared Residuals (LCP) approach
consists of several steps which we will describe in the following. We use Fig. 3
to illustrate them on the time series presented in Fig 2.

First, we calculate a trend-adjusted time series as in (2). The estimated trend
function is depicted in Fig. 3 b) for the parameter w = 75. This choice of w is
rather intuitive and not the result of a thorough optimization. In general, w should
be chosen small enough so that the level of the time series is nearly constant and
large enough so that the filter withstands a few large observations and to ensure a
satisfying efficiency. In our case, it is only important that no relevant anomalous
sequences are smoothed by the filter. The resulting trend-adjusted time series of our
example is represented by the black line in Fig. 3 c) and 3 d).

To detect volatility changes, we transform the trend-adjusted time series by com-
puting the logarithm of X̃2

t . For our example, the result is shown in Fig. 3 c). The
volatility changes are visible as location shifts. In the trend-adjusted time series,
about 33% of the values equal zero. That is why we add random noise from a uni-
form distribution to the observations before applying the logarithm. The range of
the random numbers is by the factor ten smaller than the scale of the data.

Sequential two-sample tests in a moving time window can now be applied to
check for a location shift at each time point t. This approach is, for example,
described in [1]. At each time point t ≥ k, we consider a time window X t =
(Xt−k+1, . . . ,Xt , . . . ,Xt+k)

′ of width n = 2k + 1 centred at t. We test for a location
shift between t and t +1 by splitting the window into two subwindows

X̃ t− = (X̃t−k+1, . . . , X̃t)
′ and X̃ t+ = (X̃t+1, . . . , X̃t+k)

′,

each of length k. The window width k controls the robustness against outliers and the
power of the test. The latter can be improved by using a large window. However, it
is crucial that the assumption of a constant underlying signal within the window can
be justified. Using this local approach avoids making, possibly unrealistic, global
parametric assumptions. Moreover, the methods are able to adapt to a slowly varying
signal and lessen the impact of a possible variation due to the natural behaviour
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Fig. 3: Presentation of LCP method using the crack widths from June 5th, 2016,
at measuring point WWS4. a) Original time series, b) estimated trend after me-
dian filtering, c) logarithm of squared residuals, d) trend-adjusted time series with
change point candidates after applying asymptotical HL22-test (annotated in red), e)
estimated change points after using method of [17], f) MAD within candidate inter-
vals on standardized residual time series for anomalous sequences (red dotted line
denotes the threshold γ = 0.5), g) parts that are detected as anomalous sequences
(highlighted in yellow).

of the process [6] which may not have been completely eliminated by the trend
adjustment.

Assuming that the underlying distributions in X t+ and X t− differ at most in loca-
tion allows for a comparison of both subwindows by a two-sample location test.

Generally, any two-sample location test could be used within this framework. In
the following, we use an asymptotic test based on the robust and rather efficient
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two-sample Hodges-Lehmann estimator for shift (HL2 estimator) which is given by

∆̂t = med{X̃t+ j− X̃t+i : j = 1, . . . ,k, i =−k+1, . . . ,0}

at time t = 1, . . . ,N. The test statistic is

T (HL2)
t =

√
3
∫

g2 (x) dx ·
√

n · ∆̂t (3)

with n = 2 · k and asymptotically follows the standard normal distribution. Here, g
denotes the density of the distribution underlying the X̃t under H0 : ∆ = 0 [10]. Let h
be the density of X̃t+− X̃t− under H0. Then, it can be shown that h(0) =

∫
f 2 (x) dx.

Estimation of this value is possible by applying a kernel-density estimator applied
to the set of pairwise differences between the elements of X̃ t+ and X̃ t− [4].

We use an asymptotic test because some prior studies showed that large windows
lead to better results on the herein analyzed data. In the simulation study in [4], the
HL2-test turns out to be similarly powerful as the t-test, the standard method for
two-sample location problems, while providing a strong protection against outliers.

We choose the rather small value α = 0.005 for the significance level to ensure
that the number of false alarms is not too large. We obtain about 15% of test deci-
sions that lead to a rejection of H0. As Fig. 3 d) shows for α = 0.005 by the vertical
red lines, they are scattered all over the time range. This implies a large amount of
false alarms.

The figure shows that many alarms occur subsequently. This is because of the
moving-window nature of this approach. If an alarm is triggered at some time point
t, it is likely that it will also be given at time points prior and after t since the samples
are only different by a few observations. Hence, it is likely that the same cause is
responsible for several subsequent alarms. To thin the number of alarms out, we use
a method proposed by Wu and Chu [17] to estimate the true change point out of
subsequent alarms. Each time point at which H0 is rejected can be seen as a change
point candidate. We determine the time index t∗ which belongs to the smallest p-
value among the set of candidate points. Within a neighborhood {t∗−k+1, t∗−k+
2, . . . , t∗−1, t∗+1, . . . , t∗+k} of t∗, we remove all candidate points. This process is
repeated until no candidates are left. The remaining time points t∗1 < t∗2 < .. . < t∗m
are estimators for the change points. The result for our example is depicted in Fig. 3
e), where we now have rejections at approximately 0.02% of the testing time points.
However, they are still distributed over the complete time range.

Let now {t∗1 , t∗1 +1, . . . , t∗2}, {t∗2 , t∗2 +1, . . . , t∗3}, ..., {t∗m−1, t
∗
m−1 +1, . . . , t∗m} be the

sets of time points between two estimated change points. To identify potential
anomalous sequences, we estimate the variability for the observations in the trend-
adjusted time series within each set. Except for t∗1 and t∗m, each estimated change
point can be the starting or the end point of a potential anomalous sequence under
the assumption that we did not miss any relevant change point before t∗1 and after t∗m.
Hence, subsequent sets share their first and last element. We estimate the variability
within each set by using the MAD on the globally standardized trend-adjusted ob-
servations. This means that we first subtract the mean and divide this difference by
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the standard deviation, both calculated from all observations. We use a threshold ap-
proach with which we remove the sets for which the estimated variability is smaller
than a value γ > 0. By standardizing, we want to make sure that a single threshold
can be used for different time series. The MAD ensures that single large or small
crack widths do not affect the estimation. Fig. 3 f) shows the results for the MAD
and the threshold (horizontal line) of γ = 0.5.

In the last step, we combine connected sets for which the threshold is exceeded.
By doing so, we assume that they belong to the same anomalous sequence. In Fig.
3 g), two sequences are identified, highlighted by a yellow background. The first
is caused by a test load from a 48-ton mobile crane. The second is an anomalous
sequence of interest.

3.2 Variance Change Point Detection (VCP)

Variance Change Point Detection (VCP) uses variance change point analysis to de-
tect anomalous sequences. For detection of anomalous sequences, the trend adjusted
time series X̃t is used. Therefore, the difference of the original time series and the
running median (with w= 150) of the time series is calculated (see Fig. 4 a)). On this
transformed data set, changes in variance are detected using change point analysis
with the method cpt.var() from the R package changepoint [14].

The R method cpt.var() uses the Pruned Exact Linear Time (PELT) method
of Killick et al. (2012) [13] which is based on the Optimal Partitioning (OP) ap-
proach of Jackson et al. (2005) [12]. This approach is able to find several change
points 1 ≤ t∗1 < t∗2 < .. . < t∗M < N in a time series (Yt)t∈{1,...,N} where the number
M of change points is estimated as well. It is based on a cost function C with the
property

C
(
Ytm−1:tm

)
+C

(
Y(tm+1):tm+1

)
= C

(
Ytm−1:tm+1

)
(4)

if no change point exists in the interval [tm−1, tm+1] and

C
(
Ytm−1:tm

)
+C

(
Y(tm+1):tm+1

)
< C

(
Ytm−1:tm+1

)
(5)

if only one change point exists at tm ∈ [tm−1, tm+1) so that the change point is lying
in the interval (tm, tm +1]. Thereby, Ytk:tl stands for (Yt)t∈{tk,tk+1,...,tl−1,tl} for tk ≤ tl ,
tk, tl ∈ {1, . . . ,N}.

Here the adjusted time series X̃t is used for Yt so that we can assume that its mean
is zero. Then an appropriate cost function for variance changes satisfying (4) and
(5) is twice the negative log-likelihood function based on the maximum likelihood
estimator for the variance with known mean equal to zero. To avoid too many change
points, a term log(tm− tm−1) is added, i.e. the cost function is given by
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Fig. 4: Presentation of VCP method using the crack widths from June 5th, 2016,
at measuring point WWS4. a) The trend adjusted time series X̃t , b) X̃t with change
point detection after applying cpt.var() (annotated in red), c) X̃t with change
points that have a distance of at least 80 observations to the next change point,
d) MAD between the change points from c) where the red dotted line marks the
threshold between clusters, e) the part that is detected as anomalous sequence by
VCP (highlighted in yellow).

C
(
Y(tm−1+1):tm

)
(6)

= (tm− tm−1)

(
log(2π)+ log

(
∑

tm
j=tm−1+1 (Yj)

2

tm− tm−1

)
+1

)
+ log(tm− tm−1) .

Given a cost function C , then the change points are determined as the vector
τ∗N := τ∗N,M∗ := (t∗0 , t

∗
1 , t
∗
2 , . . . , t

∗
M∗ , t

∗
M∗+1) which solve the following minimization

problem

min
M=0,1,...,N−1

min
τM∈TN,M

(
Mβ +

M+1

∑
m=1

C
(
Y(tm−1+1):tm

))
(7)

where β is a penalty and

TN,M := {(t0, t1, t2, . . . , tM, tM+1) ∈NM+2; 0 = t0 < t1 < t2 < .. . < tM < tM+1 = N}.
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For calculating the solution of (7), the OP approach of Jackson et al. (2005) [12]
uses the following recursion for I = 1, . . . ,N

F(I) := min
M=0,1,...,I−1

min
τI,M∈TI,M

M+1

∑
m=1

(
C
(
Y(tm−1+1):tm

)
+β

)
= min

J=0,1,...,I−1
min

M=0,1,...,J−1
min

τJ,M∈TJ,M

[
M+1

∑
m=1

(
C
(
Y(tm−1+1):tm

)
+β
)
+
(
C
(
Y(J+1):I

)
+β
)]

= min
J=0,1,...,I−1

[
F(J)+

(
C
(
Y(J+1):I

)
+β

)]
with F(0) :=−β . The idea for the OP algorithm is then to calculate recursively

F(I) = min
J=0,1,...,I−1

[
F(J)+

(
C
(
Y(J+1):I

)
+β

)]
(8)

and

J(I) := arg min
J=0,1,...,I−1

[
F(J)+

(
C
(
Y(J+1):I

)
+β

)]
(9)

for I = 1, . . . ,N starting at I = 1 and to store all F(1), . . . ,F(N) and J(1), . . . ,J(N).
Then backtracking is used to obtain

I0 := N, I1 := J(N), Im := J(Im−1) as long as Im−1 > 0,

so that τ∗N = (t∗0 , t
∗
1 , t
∗
2 , . . . , t

∗
M∗ , t

∗
M∗+1) = (IM∗+1, IM∗ , IM∗−1, . . . , I1,N) with IM∗+1 = 0

and IM∗ > 0 is a solution of (7). This requires O(N2) evaluations. The PELT algo-
rithm reduces the number of evaluations to O(N) so that it is linear. This is done by
pruning the set {0,1, . . . , I−1} for calculating F(I) and J(I) in (8) and (9), respec-
tively. The pruned set is given by

RI := {I−1}∪
{

i ∈ RI−1 : F(i)+C
(
Y(i+1):(I−1)

)
< F(I−1)

}
with R1 = {0}. Hence J ∈ RI is used instead of J ∈ {0,1, . . . , I− 1} in (8) and (9).
This pruning is possible since i with F(i)+C

(
Y(i+1):(I−1)

)
≥ F(I−1) cannot be the

last change point due to (4) and (5). That this pruning reduces the set {0,1, . . . , I−1}
drastically is not so easy to see, but the proof is given in [13].

For the VCP method, cpt.var() is used with its default values. Thereby, the
penalty β is the modified Bayes Information Criterion given by 3log(N). Moreover,
a step length of 2 is used as default so that the results for a reverted time series
differ from the non-reverted time series although the PELT algorithm should find
the global minimum.

With this method, nearly every change in variance of the crack width is labeled
as change point (see Fig. 4 b)). Thereby also changes of the variability within an
anomalous sequence are labelled as change point. Moreover, changes in crack width
triggered by traffic are labelled as change points as well.
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To separate changes in crack width triggered by traffic from anomalous se-
quences and to reduce the change points within anomalous sequences, the MAD
is calculated for observations between adjacent change points. All MADs which
are based on at least 80 observations are clustered by k-means into two clusters,
i.e. in a cluster with high MAD and in a cluster with small MAD. Fig. 4 c) shows
only those changepoints that are used for clustering and in part d) the correspond-
ing MADs are pictured. If connected sequences of the data are classified to the
cluster with high MAD then they are joined to one sequence and this sequence is
then a detected anomalous sequence. Then an anomalous sequence is followed by a
nonanomalous sequence and this sequence is followed by anomalous sequence and
so on. Sequences with less than 80 observations and high MAD are not considered
as anomalous sequence here since the high MAD may be caused by the traffic. The
anomalous sequence located by this procedure is shown in Fig. 4 e).

A modification of the above method is to apply the k-means clustering on all
MADs, also on those with less than 80 observations. However, then the cluster with
high MADs contains mainly very small sequences and these sequences are mainly
triggered by traffic. If afterwards the sequences with less than 80 observations are
removed then often no anomalous sequences are found. Hence, this modification is
not a good alternative.

3.3 Modified Variance Change Point Detection (MVCP)

The method cpt.var() from the changepoint-package [14] detects changes
in variance at different points in the time series if the reversed time series is used.
This is due to the dependence on the past in the change point identification process
which is caused by the fact that cpt.var() uses a step length of 2 by default so
that shifts can appear in the detected anomalous sequences. Therefore, the Modi-
fied Variance Change Point Detection (MVCP) method uses the VCP method on
the original time series and on the reversed time series. Only those observations
which are identified as anomalous sequences in both runs get labelled as anomalous
sequences by MVCP.

3.4 Clustering of MAD filtered data (CMAD)

At first a trend adjustment is conducted on Xt . Therefor the filter f = med with
window width w = 15 is applied on the time series Xt . The trend adjusted crack
width process is shown in Fig. 5 a).

For the further process, it is assumed that anomalous sequences certainly exist in
adequate large time intervals. This was confirmed in preliminary studies.

The next step is based on the assumption that anomalous sequences are marked
by a locally increased variability. Application of the filter f = MAD with window
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Fig. 5: Presentation of CMAD method using the crack widths from June 5th, 2016,
at measuring point WWS4. a) The trend adjusted time series X̃t , b) X (MAD)

t , the
MAD smoothed, trend adjusted time series, c) X (MAD)

t with red marked candidates
where Pt = 1, d) X (MAD)

t with red marked candidates where P(med)
t = 1, e) X (MAD)

t

with extension of sequences where P(med)
t = 1, f) X̃t with anomalous sequence (high-

lighted in yellow).

width 91 on the trend adjusted time series X̃t , i.e.

X (MAD)
t = X̃t

(MAD,45)
, t ∈ T, (10)

allows the detection of anomalous sequences by finding clusters of higher variabil-
ity. In Fig. 5 b) peaks are visible at 06:00 o’clock and 12:00 o’clock.

After that, all observations of the MAD smoothed time series Xt
(MAD) are divided

into two clusters by the k-means algorithm. Because of the target variable being one
dimensional and k being 2, a threshold is the result so that every observation above
this threshold is classified as a candidate for an anomalous sequence. A time series
Pt = (Pt)t∈T is constructed, whereby Pt = 1 means that Xt

(MAD) is above the thresh-
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old and Pt = 0 stands for a value below this threshold. The candidates for anomalous
sequences are shown in Fig. 5 c) where Xt

(MAD) is shown with red marked candi-
dates for anomalous sequences based on Pt .

To prevent special occurrences like the test load being classified as anomalous
sequences, the filter f = med with window width 301 is applied on Pt . The resulting
time series is denoted P(med)

t . In Fig. 5 d), Xt
(MAD) is represented with red marked

candidates for anomalous sequences where P(med)
t = 1. The peak at 06:00 o’clock is

no longer classified as an anomalous sequence.
Furthermore, it is apparent that start and end of an anomalous sequence are not

included in the cluster. Hence, the boundary points are examined. These points form
the transition between a normal and an anomalous sequence. So the boundary points
mark the beginning and ending of an anomalous sequence, but are not classified as

one yet. For this, the average X (MAD)
t of X (MAD)

t is calculated. The values of the

boundary points are compared with this value. If they are larger than X (MAD)
t , the

points are assigned to the candidates for the anomalous sequence. Then the new
boundary points are examined iteratively. This process is stopped as soon as the

values of the boundary points are smaller or equal to X (MAD)
t and hence the maximal

extension of the anomalous sequence is reached. This is shown in Fig. 5 e).
In Fig. 5 f), X̃t is pictured with anomalous sequences underlaid by yellow boxes.

4 Comparison of the Methods

In this section, we investigate the performance of the different approaches on se-
lected time series. The available data sets do not contain information about which
sequences fit our definition of anomalous. A categorization was performed manu-
ally for a limited number of time series. Thus, a thorough parameter tuning is not
possible. Therefore, the following results should only be considered as a descriptive
performance study. We use the parameter settings mentioned in the corresponding
subsections in Section 3.

A major difference between the procedures is that, in contrast to VCP, MVCP,
and CMAD, the LCP method is based on the idea of a sequential online monitoring.
It does not use the complete time series for detecting the change points. Moreover,
the threshold to identify intervals with a large variability is a fixed value for LCP,
whereas the other methods choose it for each data set separately due to clustering
on the complete time series.

As illustrated by Figs. 3, 4, and 5 in Section 3, the approaches do not necessarily
identify the same sequences in a time series as being anomalous. For the time series
used in Section 3, only LCP categorizes the short sequence of large variability at
around 6:30 a.m. which was caused by a heavy test load using a mobile crane.
Therefore, we do not consider this short peak caused by traffic as an anomalous
sequence of interest. The methods VCP, MVCP, and CMAD are not identifying this
sequence so that, in this case, they are able to distinguish between short variance
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changes caused by traffic from large variance changes where the cause is unknown.
The reason for this is that VCP, MVCP, and CMAD, unlike LCP, use an assumption
on the minimal length of an anomalous sequence.
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Fig. 6: Comparison of the anomalous sequences detected by the four methods (high-
lighted in yellow) on June 12th, 2016, of WOS4. The figure shows the trend-adjusted
time series for each method.

To point out another difference, we look at the measurements from June 12th,
2016, at WOS4. Figure 6 shows the trend-adjusted time series for each procedure.
VCP, MVCP, and CMAD return the same six sequences. The sequences returned
by VCP and MVCP are similar and shorter than those returned by CMAD. LCP
also returns these six sequences with widths comparable to those of CMAD. In
addition, LCP categorizes two sequences, starting at around 4 o’clock and 6 o’clock,
as anomalies. A closer inspection of these time intervals shows that the variability
of the process is slightly increased compared to the time points before and after.
This variability is smaller than for the other returned sequences. Thus, because of
the clustering, VCP, MVCP, and CMAD are able to adapt to the specific variability
of a time series so that they lead to more reasonable results.

The two aforementioned highlighted regions for LCP do not cover the complete
sequences with slightly increased variability. Again, this is because the variability
in the sequence next to the detected ones is not larger than the threshold. Thus, they
are dropped before the combination step.

We now compare the procedures on three other time series with respect to their
error rates. The measurements were taken on August 5th, 2016, at WOS2, January
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1st, 2017, at WOS2, and February 22nd, 2017, at WWS4. The error rates are com-
puted by comparing the returned sequences to a manually performed categorization.
As it is sometimes difficult for the human eye to detect regions with a higher vari-
ability, two persons classified the time series into anomalous and non-anomalous
sequences. Both decided for each time point whether the corresponding observation
belongs to an anomalous sequence. The results for each time point are captured in
binary vectors called Counting 1 and Counting 2. Similar vectors are obtained by
the different methods. Each counting is compared with each result vector. The error
rate is defined as the fraction of elements that are different. Table 1 shows the rates
and Figure 7 illustrates them by a bar plot.

Table 1: Error rates of the four methods compared with Counting 1 and 2 and be-
tween Counting 1 and 2.

Day Error rates between Methods and Countings
Error rates between
Counting 1 and 2

LCP VCP MVCP CMAD

1 2 1 2 1 2 1 2

5th Aug 2016 0.009 0.014 0.010 0.007 0.010 0.007 0.002 0.006 0.0063
1st Jan 2017 0.004 0.005 0.008 0.008 0.008 0.008 0.006 0.006 0.0003

22nd Feb 2017 0.099 0.155 0.070 0.079 0.095 0.048 0.077 0.046 0.1084

The last column in Table 1 quantifies differences between the two manual count-
ings. The large value of about 10% for February 22nd, 2017, indicates that the clas-
sification in anomalous and non-anomalous sequences can be ambiguous. Here, the
time series has in general a larger variability which makes it harder to distinguish
between normal process behavior and anomalous sequences.

For January 1st, the differences between the procedures are negligible. Some
larger differences can be noted for August 5th. Here, the smallest error rate of 0.2%
belongs to CMAD on Counting 1 while LCP leads to the largest rate of 1.4%. For
the time series from February 22nd, the rates are, compared to those for the other
two time series, quite large for all procedures. Differences are mostly visible for
Counting 2. LCP has the largest value with 15.5%, whereas MVCP and CMAD
perform similarly with about 5%.

There are several reasons for these observations. The countings are, as they were
performed by human beings, subjective to a certain degree. This can be seen from
the differences between them. Thus, we could not compare our results to the true
sequences but only to those that we assume to be plausible. The differences between
the countings illustrate that it is not easy to identify anomalous sequences on some
time series, for example due to a generally larger variability in the complete series.

Another reason is that the methods may detect the same sequences, but their
lengths are different. This is the case for August 5th and January 1st. Only on Febru-
ary 22nd, LCP discovers more anomalous sequences than the other procedures.
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Fig. 7: Comparison of the error rates of the four methods for three different days
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To sum up, in general, the procedures lead to quite similar results when the
anomalous sequences express themselves as intervals in which the variability is
largely different from the general process behavior. Differences seem to arise when
the variability in the process is generally large so that it might be more difficult to
identify the anomalous sequences.

However, the results should be treated with caution. In order to perform a thor-
ough parameter tuning, more of the available data should be used. This was not done
up to now because more manually analysed data would be necessary.

Nevertheless, the obtained results look promising and further refinement of the
procedures, for example adding a threshold for the minimal sequence length in the
LCP method, might lead to a severe improvement.

5 Discussion

A monitoring of cracks in a bridge provided many time series of crack width data.
The final aim is to decide whether there is a significant increase of the crack widths.
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This is not an easy task since the time series show a strongly varying behavior. Some
variation is caused by temperature and traffic. In addition, there are so called anoma-
lous sequences with much more extreme volatility for which the cause is unknown.
Therefore, a further analysis of these time series is only possible if the anomalous
sequences are removed. We present four methods to detect them automatically.

The LCP (Location Change Point Detection using Squared Residuals) method is
based on applying a two-sample location test in a moving time window to a trans-
formed time series. VCP (Variance Change Point Detection) and MVCP (Modified
Variance Change Point Detection) are based on the PELT (Pruned Exact Linear
Time) method. CMAD (Clustering of MAD filtered data) uses a classification ap-
proach.

We evaluate the procedures on a small set of test time series, all four procedures
lead to similar results. Differences occur especially in the length of the sequences.
Moreover, VCP, MVCP, and CMAD, using an assumption on the minimal length of
an anomalous sequence, are able to distinguish between short sequences which may
be caused by traffic and long sequences where the cause is unknown. Hence these
methods, unlike LCP, do not identify short sequences as anomalous sequences.

When the variability in the time series is generally large, it turns out to be difficult
to identify anomalous sequences. Again, LCP turns out to provide more sequences
than the other procedures. However, this seems to be primary due to the chosen
parameters. LCP does not use knowledge on the minimal length of a sequence.
Moreover, categorizing sequences into classes, one with large and one with small
variability, is done by a fixed threshold by LCP. The other approaches use a clus-
tering algorithm on each time series and thus consider the variability of each time
series individually. This may be advantageous since one does not have to specify a
threshold value globally. However, it may be prone to errors if there are time series
without anomalous sequences. On the other hand, a fixed value needs proper tuning
over several time series with a similar variability structure.

The presented analysis concentrates on a few days only. This is mainly because
only measurements for three days were visually inspected by two persons on one
of the 16 measurement locations on the bridge. Thus, conclusions drawn from our
analysis should be treated with caution. However, they show that it is worth to study
the procedures further in a larger setting.

In further studies, the methods should be applied to a larger set of time series.
This would help to make reliable statements on their advantages and disadvantages.
An important aspect is a proper parameter tuning. Moreover, the influence of the
method for change point detection should be investigated.

Although we apply the procedures retrospectively, that is under the assumption
that all data are available, in practice it may be important to analyze the time series
online and detect unusual sequences with only little time delay. Here, it would be
interesting how the procedures can be adapted to this online scenario. For example,
LCP is based on sequential two-sample testing that can easily be used in the online
analysis.
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