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Abstract

We simplify simplicial depth in two directions for regression and autoregressive growth
processes. At first we show that simplicial tangent depth often reduces to counting the
subsets with alternating signs of the residuals if the regressors are ordered. The second
simplification is given by not regarding all subsets of residuals. By consideration of
only special subsets of residuals, the asymptotic distributions of the simplified simpli-
cial depth notions are normal distributions so that tests and confidence intervals can
be derived easily. We propose two simplifications for the general case and a third
simplification for the special case where two parameters are unknown. Additionally,
we derive conditions for the consistency of the tests. We show that the simplified
depth notions can be used for polynomial regression, for several nonlinear regression
models, and for several autoregressive growth processes. We compare the efficiency
and robustness of the different simplified versions by a simulation study concerning
the Michaelis-Menten model and a nonlinear autoregressive process of order one and
provide an application on crack growth.
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1. INTRODUCTION

Data depth is a possibility to generalize the median and ranks to complex situations. Starting
with the halfspace depth of Tukey (1975) for multivariate data, meanwhile many depth notions
were proposed. There exist depth notions for regression as in Rousseeuw and Hubert (1999), for
generalized linear models as in Müller (2005), for estimation equations as in Lin and Chen (2006),
for functional data as in López-Pintado and Romo (2009) or Claeskens et al. (2014), for copulas
as in Denecke and Müller (2011), and for correlation as in Denecke and Müller (2014). Further
depth can be used to estimate quantiles, also in regression, as discussed by Hallin et al. (2010). To
describe multimodal densities, Paindaveine and van Bever (2013) and Agostinelli and Romanazzi
(2011) proposed local versions of depth and Lok and Lee (2011) introduced a depth function
based on interpoint distances. Depth is also applied to analyze distributions as shown by Kong
and Zuo (2010), Mizera and Müller (2004) and Rousseeuw and Ruts (1999) or for classification as
presented by Dutta and Ghosh (2012) and Li et al. (2012). See also the book of Mosler (2002) and
the general approaches of Zuo and Serfling (2000a,b) or Mizera (2002).

Important for the statistical applicability of a depth notion beyond estimation is that at least an
asymptotic distribution is known. However, it is very difficult for many depth notions to derive the
asymptotic distribution. One general approach is to use simplicial depth, since simplicial depth is
a U-statistic and the asymptotic distribution for U-statistics is in principle known.

Simplicial depth was originally introduced by Liu (1988, 1990) as an extension of the halfspace
depth of Tukey (1975). If the data are K-dimensional then the simplicial depth of a parameter
µ ∈ RK is the relative number of simplices spanned by K + 1 data points which contain µ.
Thereby, µ is contained in a simplex spanned by K + 1 points if its halfspace depth with respect
to these K + 1 points is greater than 0. This is the key to generalize simplicial depth to many
situations. As soon as a depth notion d(θ, (z1, . . . , zK+1)) of a K-dimensional parameter θ and
a specific model is known for any data set (z1, . . . , zK+1), then simplicial depth of θ in a sample
z∗ = (z1, . . . , zN) is defined as

dS(θ, z∗) :=
1(
N
K+1

)∑
1≤n1<n2<...<nK+1≤N

1{d(θ, (zn1 , zn2 , . . . , znK+1
)) > 0}, (1)

where 1{h(z) > 0} denotes the indicator function 1A(z) withA = {z̃; h(z̃) > 0} for any function
h. Thereby, dS(θ, z∗) should be large if θ is the correct parameter of the model and should be small
if θ is not the correct parameter. Hence a simple rule for testing H0 : θ ∈ Θ0 is the following:
reject H0 if supθ∈Θ0

dS(θ, z∗) is smaller than a critical value c, as e.g. proposed by Müller (2005).
The critical value must be determined by the distribution dS(θ, z∗) or at least by the asymptotic
distribution of dS(θ, z∗), if θ is the underlying parameter.

Although dS(θ, z∗) is a U-statistic, it is only in few cases not a degenerated U-statistic,
see Denecke and Müller (2011, 2012, 2013, 2014). In most cases, dS(θ, z∗) is a degenerated
U-statistic and its asymptotic distribution must be determined by a spectral decomposition of the
conditional expectation. If the unknown parameter is one-dimensional, then the spectral decom-
position is still simple as shown for linear regression through the origin in Müller (2005) and for
a linear AR(1) model without intercept in Kustosz and Müller (2014). However, it becomes more
complicated if more than one parameter is unknown. Dümbgen (1992) derives a functional limit
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theorem for simplicial depth for general distributions under some restrictions and applies it to loca-
tion models. Other results were presented for linear and quadratic regression in Müller (2005), for
polynomial regression in Wellmann et al. (2009), for multiple regression in Wellmann and Müller
(2010a), and for orthogonal regression in Wellmann and Müller (2010b). Thereby, not only the
derivation is complicated but also the resulting asymptotic distributions are. In case of specific
models the limit distributions can be derived exactly. For example, the asymptotic distribution is
given by an infinite sum of Chi-squared distributed random variables for polynomial regression.
For AR(1) processes with intercept, it is even worse. Here the asymptotic distribution is given by
an integrated squared Gaussian process as shown in Kustosz et al. (2015).

Therefore here, we provide simplified versions of the simplicial depth. At first, we prove in Sec-
tion 2 that the calculation of the depth d(θ, (zn1 , zn2 , . . . , znK+1

)) of K + 1 data points reduces
in many cases to a check whether residuals at the ordered data set have alternating signs. This
property of simplicial depth was already noticed by Rousseeuw and Hubert (1999) for linear re-
gression and used by Müller (2005) for polynomial regression. However, a complete proof for this
property was not given. Here we provide general sufficient conditions for this property which are
satisfied not only by polynomial regression but by many other models like nonlinear models or
autoregressive models. As soon as these sufficient conditions are satisfied, the simplicial depth can
be easily calculated by counting the subsets with K + 1 points with alternating signs. Hence the
simplicial depth is a modification of the simple sign test where only subsets with one data point
are considered. Since the tests are based on the signs of the residuals only, they are robust against
outliers.

However, even checking the simple criterion of alternating signs can be computationally intensive
if N and K are large since

(
N
K+1

)
subsets have to be analyzed. Additionally, the above mentioned

problem of deriving the asymptotic distribution remains. Therefore, we propose simplified ver-
sions of the simplicial depth in Section 3 by not regarding all

(
N
K+1

)
subsets. Instead, we propose

only subsequent subsets. The subsets are nonoverlapping in the first version and overlapping in
the second version. Additionally, a third version is introduced for the case of two unknown param-
eters, i.e. K = 2. All versions have a computational complexity of N instead of

(
N
K+1

)
and it is

proven that the asymptotic distribution is always the normal distribution.

In Section 4, sufficient conditions for the consistency of tests based on these simplified simpli-
cial depth statistics are proven. Section 5 contains several examples, where the conditions used in
Sections 2, 3, and 4 are satisfied. These examples include polynomial regression, several nonlin-
ear models and several autoregressive growth processes with two and three unknown parameters.
Finally, Section 6 provides a simulation study for the Michaelis-Menten model and a nonlinear
autoregressive process with two parameters and Section 7 an application on crack growth.

All proofs are given in the Appendix.

2. DATA DEPTH VIA ALTERNATING SIGNS

We consider a general model of the form

yn = g(xn, θ) + en, for n ∈ {1, . . . , N},
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where θ ∈ IRK is the unknown parameter vector and zn = (yn, xn) ∈ IR2, n ∈ {1, . . . , N}, are
the data points. The errors e1, . . . , eN are realizations of independent and identically distributed
random variables E1, . . . , EN , so that y1, . . . , yN and z1, . . . , zN are realizations of random vari-
ables Y1, . . . , YN and Z1, . . . , ZN , respectively. Although the regressors x1, . . . , xN are fixed for
regression, we always interpret them as realizations of random variablesX1, . . . , XN which satisfy

X1 < X2 < . . . < XN (2)

almost surely. In particular, we have Xn = Yn−1 for autoregressive processes so that condition (2)
implies that the autoregressive process is strictly increasing, i.e. it is a growth process.

To provide a characterization of the depth of θ at subsets with K + 1 data points in this section, we
regard here only N = K + 1. Moreover, we do not need the random variables here, but they are
important for the asymptotic normality shown in Section 3.

General depth notions are global and tangent depth introduced by Mizera (2002). Mizera proposed
these depth notions for an arbitrary quality function. Here the quality function shall be given by
the squared residuals so that global depth coincides with tangent depth in many cases. Although
the interpretation of tangent depth is less obvious, it is computationally more feasible. Therefore,
we use tangent depth here. The tangent depth of θ in z∗ = (z1, . . . , zK+1) is defined as

dT (θ, z∗) :=
1

K + 1
min
u∈IRK

]

{
n ∈ {1, . . . , K + 1}; u> ∂

∂θ
res(zn, θ)2 ≤ 0

}
where res(zn, θ) := yn−g(xn, θ), n ∈ {1, . . . , N}, are the residuals and ]A denotes the cardinality
of a set A. Setting

v(xn, θ) :=
∂

∂θ
g(xn, θ)

tangent depth can be also written as

dT (θ, z∗) =
1

K + 1
min
u∈IRK

]
{
n ∈ {1, . . . , K + 1}; u>v(xn, θ) res(zn, θ) ≤ 0

}
.

Our first theorem proves the relation between dT (θ, z∗) > 0 and alternating signs of the residuals.
For that, we need some definitions.

Definition 1.
a) Let sgn(y) denote the sign of a number y ∈ IR, i.e. sgn(y) = 1 if y > 0, sgn(y) = −1 if y < 0,
and sgn(y) = 0 if y = 0.
b) A vector s = (s1, . . . , sK+1)> ∈ IRK+1 has alternating signs if sgn(sk) = −sgn(sk+1) 6= 0 for
all k ∈ {1, . . . , K} is satisfied. If s has alternating signs, then it has K sign changes.
c) A function f : [a, b]→ IR hasK sign changes on the interval [a, b] ⊂ IR if there exist x1 < x2 <
. . . < xK+1 with xk ∈ [a, b] for k ∈ {1, . . . , K + 1} and sgn(f(xk)) = −sgn(f(xk+1)) 6= 0 for
k ∈ {1, . . . , K} and no x1 < x2 < . . . < xL+1 for L > K so that xl ∈ [a, b] for l ∈ {1, . . . , L+1}
and sgn(f(xl)) = −sgn(f(xl+1)) 6= 0 for l ∈ {1, . . . , L}.

Theorem 1. Let be x1 < x2 < . . . < xK+1 ∈ IR and assume the following conditions for
wu : [x1, xK+1]→ IR given by wu(x) = u>v(x, θ):
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A) wu has at most K − 1 sign changes on [x1, xK+1] for all u ∈ IRK ,

B) For any s ∈ {−1, 1}K+1 with at most K − 1 sign changes, there exists u0 ∈ IRK with
sgn(wu0(xn)) = sn for n ∈ {1, . . . , K + 1}.

Then dT (θ, z∗) > 0 holds if and only if (res(z1, θ), . . . , res(zK+1, θ))
> has alternating signs or at

least one of the residuals is zero.

The examples in Section 5 show that the conditions of Theorem 1 are usually satisfied for well
known models. Hence in these cases, simplicial depth based on dT reduces to

dS(θ, z∗) =
1(
N
K+1

)∑
1≤n1<n2<...<nK+1≤N

(
K+1∏
k=1

1
{

res(znk , θ)(−1)k > 0
}

(3)

+
K+1∏
k=1

1
{

res(znk , θ)(−1)k+1 > 0
}

+ 1−
K+1∏
k=1

1 {res(znk , θ) 6= 0}

)
.

3. SIMPLIFIED SIMPLICIAL DEPTH

If we assume that the residuals have continuous distributions, then they are not equal to zero
with probability one. Under this assumption and the assumptions of Theorem 1, we have with
probability one that dT (θ, (zn1 , . . . , znK+1

)) > 0 holds if and only if the residuals res(zn1 , θ), . . . ,
res(znK+1

, θ) have alternating signs, whereby ni ∈ {1, ..., N} and ni > nj if i > j. Hence the
simplicial depth (3) of θ in z∗ = (z1, . . . , zN) is given almost surely by

dS(θ, z∗) =
1(
N
K+1

)∑
1≤n1<n2<...<nK+1≤N

(
K+1∏
k=1

1
{

res(znk , θ)(−1)k > 0
}

(4)

+
K+1∏
k=1

1
{

res(znk , θ)(−1)k+1 > 0
})

.

The asymptotic distribution of dS given by (4) is only known for K ∈ {1, 2}. For K = 2 it
is for example given by an integrated two-dimensional Gaussian process as shown in Kustosz et
al. (2015). To obtain more simple asymptotic results and to avoid the consideration of all

(
N
K+1

)
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subsets of the data set, we define the following simplified simplicial depth notions:

d1
S(θ, z∗) :=

1⌊
N
K+1

⌋∑b N
K+1c

n=1

(
K+1∏
k=1

1
{

res(z(K+1)(n−1)+k, θ)(−1)k > 0
}

(5)

+
K+1∏
k=1

1
{

res(z(K+1)(n−1)+k, θ)(−1)k+1 > 0
})

,

d2
S(θ, z∗) :=

1

N −K
∑N−K

n=1

(
K+1∏
k=1

1
{

res(zn−1+k, θ)(−1)k > 0
}

(6)

+
K+1∏
k=1

1
{

res(zn−1+k, θ)(−1)k+1 > 0
})

.

The depth d1
S(θ, z∗) uses only nonoverlapping subsets, while the subsets used in d2

S(θ, z∗) are
overlapping. In the case K = 2, we also consider

d3
S(θ, z∗) (7)

:=
1⌊

N−1
2

⌋∑bN−1
2 c

n=1

(
1 {res(zn, θ) > 0} 1

{
res(zbN+1

2 c, θ) < 0
}
1 {res(zN−n+1, θ) > 0}

+1 {res(zn, θ) < 0} 1
{

res(zbN+1
2 c, θ) > 0

}
1 {res(zN−n+1, θ) < 0}

)
.

For testing, the definitions given by (4), (5), (6), and (7) are sufficient, so that we use them to
simplify the notation. However to obtain connected confidence intervals and depth contours, the
terms accounting for residuals equal to zero as appearing in (3) should be added.

Theorem 2. If θ is the underlying parameter with Pθ(res(Zn, θ) > 0) = Pθ(res(Zn, θ) < 0) = 1
2

for all n ∈ {1, . . . , N}, then

a) T 1
N(θ) :=

√⌊
N

K + 1

⌋
d1
S(θ, Z∗)−

(
1
2

)K√(
1
2

)K (
1−

(
1
2

)K) −→ N (0, 1),

b) T 2
N(θ) :=

√
N −K

d2
S(θ, Z∗)−

(
1
2

)K√
(1

2
)K · [3− (1

2
)K−1 ·K − 3 · (1

2
)K ]
−→ N (0, 1),

c) T 3
N(θ) :=

√⌊
N − 1

2

⌋
d3
S(θ, Z∗)− 1

4√
3
16

−→ N (0, 1),

in distribution for N →∞.

Note that the only assumption needed here for asymptotic normality is that the median of the
residuals is zero. The proofs are based on appropriate central limit theorems.
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An asymptotic α-level test for a general null hypothesis of the form H0 : θ ∈ Θ0 is then for any
i ∈ {1, 2, 3}:

reject H0 if sup
θ∈Θ0

T iN(θ) < qα, (8)

where qα is the α-quantile of the standard normal distribution.

4. CONSISTENCY OF THE TESTS BASED ON SIMPLIFIED SIMPLICIAL DEPTH

Since confidence sets can be constructed from tests for point hypothesesH0 : θ = θ0, we now show
the consistency of the tests given by (8) for the case Θ0 = {θ0}. Thereby, a test for H0 : θ = θ0

based on T iN(θ0), i ∈ {1, 2, 3}, is consistent at θ∗ 6= θ0 if

lim
N→∞

Pθ∗
(
T iN(θ0) < qα

)
= 1.

For linear and nonlinear regression we can consider two different asymptotic scenarios.

Scenario (A) with finite horizon: There exist a, b ∈ IR such that a ≤ x1N < x2N < . . . <
xNN ≤ b is satisfied for all N ∈ IN . Usually, it is satisfied that x1N < x2N < . . . < xNN are
equidistant points or the deviation from equidistant points is small.

Scenario (B) with infinite horizon: For all b ∈ IR, there exists N0 ∈ IN such that Xn ≥ b
holds almost surely for n ≥ N0. In particular X1 < X2 < . . . < XN −→ ∞ is satisfied for
N →∞.

For autoregression, only Scenario (B) makes sense.

Note, that the simple sign test, see e.g. Huggins (1989), is usually consistent under Scenario (B)
but has consistency problems under Scenario (A) when, for example, the signs of the residuals are
positive in the first half of the interval [a, b] and negative in the second half.

Let be MiN the set of indexes (n1, . . . , nK+1) used in the simplified simplicial depth diS , for
exampleM2N = {(1, . . . , K + 1), (2, . . . , K + 2), . . . , (N −K, . . . , N)}.

To show consistency of a test for H0 : θ = θ0 at θ∗ 6= θ0 based on T iN(θ0), we must show that there
exists β <

(
1
2

)K with Eθ∗(diS(θ0, Z∗)) ≤ β for almost all N . Sufficient for this is that

Eθ∗

(
K+1∏
k=1

1
{

res(ZnkN , θ
0)(−1)k > 0

}
+

K+1∏
k=1

1
{

res(ZnkN , θ
0)(−1)k+1 > 0

})
(9)

is less or equal β for almost all subsets (n1, . . . , nK+1) ∈MiN . Because of

res(Zn, θ0) ≶ 0⇔ Yn − g(Xn, θ
0) ≶ 0 (10)

⇔ Yn − g(Xn, θ
∗) ≶ g(Xn, θ

0)− g(Xn, θ
∗)⇔ En ≶ g(Xn, θ

0)− g(Xn, θ
∗),
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the behavior of g(·, θ0) − g(·, θ∗) is crucial. However, there are situations depending on the
g(·, θ0) − g(·, θ∗) so that the quantity in (9) is not less than

(
1
2

)K . To see this, consider quadratic
regression without linear term given by Yn = g(xn, θ)+En = θ0 +θ1x

2
n+En with θ = (θ0, θ1)> ∈

IR2, K = 2, and θ0 = (1, 0)>, θ∗ = (1, 1)>. Then with (10) the expectation (9) equals

Pθ∗(En1N < −x2
n1N

, En2N > −x2
n2N

, En3N < −x2
n3N

) (11)
+Pθ∗(En1N > −x2

n1N
, En2N < −x2

n2N
, En3N > −x2

n3N
).

This becomes arbitrary small for almost all (n1, . . . , nK+1) ∈ MiN in Scenario (B). But in Sce-
nario (A), we could have xn2N = 0, −xn1N = xn3N > 0 infinitely often. Assuming symmetric
errors and setting Pθ∗(En1N > −x2

n1N
) = 1

2
+ ζ , probability (11) equals(

1

2
− ζ
)

1

2

(
1

2
− ζ
)

+

(
1

2
+ ζ

)
1

2

(
1

2
+ ζ

)
=

1

4
+ ζ2 >

(
1

2

)K
.

However, the situation xn2N = 0, −xn1N = xn3N > 0 happens at most for one subset (n1, n2, n3)
for tests based on T 1

N and T 2
N . Moreover under a monotonicity assumption for g(xn1N , θ

0) −
g(xn1N , θ

∗), . . . , g(xnK+1N , θ
0)−g(xnK+1N , θ

∗), we can prove that the expectation in (9) is bounded
by β ≤

(
1
2

)K , where in several cases β <
(

1
2

)K is satisfied. This is shown by the following lemma.

Lemma 1. Assume Scenario (A) for regression and that the errors E1, . . . , EN have continuous
and symmetric distributions around zero. If ck := g(xnkN , θ

0)− g(xnkN , θ
∗) for k ∈ {1, . . . , K +

1}, K ∈ IN , satisfy

c1 ≤ c2 ≤ . . . ≤ cK+1 or c1 ≥ c2 ≥ . . . ≥ cK+1

and |ck| ≥ c0 ≥ 0 for all k ∈ {1, . . . , K + 1}, then the expectation in (9) is bounded by(
1
2

)K − (1
2

)K−2
ζ2 where ζ := 1

2
− Pθ∗(En > c0) ≥ 0.

Hence for Scenario (A), we have only to ensure that the monotonicity of the ck in Lemma 1 is
satisfied for almost all subsets (n1, . . . , nK+1) ∈MiN .

Theorem 3.
a) Assume i ∈ {1, 2}, Scenario (A) holds for regression, the errors E1, . . . , EN have continuous
and symmetric distributions around zero with support given by IR and the existence of c > 0,
δ > 0, and a finite partition [a, b) =

⋃L
l=1[al, bl) of [a, b) so that g(·, θ0) − g(·, θ∗) is monotone

on [al, bl) and |g(·, θ0) − g(·, θ∗)| ≥ c on [al + δ, bl − δ) 6= ∅ for l = 1, . . . , L. Then the test for
H0 : θ = θ0 based on T iN(θ0) is consistent at θ∗.
b) If Scenario (B) holds for regression or autoregression and there exists c 6= 0 with g(Xn, θ

0) −
g(Xn, θ

∗) = c for all n ∈ {1, . . . , N} and N ∈ IN and Pθ∗(En > c) 6= 1
2
, then the test for

H0 : θ = θ0 based on T iN is consistent at θ∗ for i ∈ {1, 2}.
c) If Scenario (B) holds for regression or autoregression and limb→∞ g(b, θ0) − g(b, θ∗) = ∞ or
limb→∞ g(b, θ0)− g(b, θ∗) = −∞, then the test for H0 : θ = θ0 based on T iN is consistent at θ∗ for
i ∈ {1, 2, 3}.

The examples in Section 5 show that the conditions a), b) and c) of Theorem 3 are often satisfied.
In particular condition b) is satisfies if θ0 and θ∗ differs only with respect to the intercept of the
regression function.
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5. EXAMPLES

5.1 Polynomial regression

Consider the model

yn = θ0 + θ1xn + θ2x
2
n + . . .+ θpx

p
n + en

so that θ = (θ0, θ1, . . . , θp)
> ∈ IRp+1 = IRK with K = p + 1 and g(x, θ) = θ0 + θ1x + θ2x

2 +
. . .+ θpx

p. Then

v(x, θ) = (1, x, x2, . . . , xp)> ∈ IRp+1,

and

wu(x) = u1 + u2x+ u3x
2 + . . .+ up+1x

p (12)

is again a polynomial of order p. It is well known that a polynomial of order p has at most p roots
so that it has at most p = K−1 sign changes and Condition A) of Theorem 1 is satisfied. The roots
are determined by (u1, . . . , up+1)>. In particular (x−ω1) · (x−ω2) · . . . · (x−ωp) is a polynomial
of order p with roots at ω1, . . . , ωp. Hence the roots can be placed at arbitrary locations so that sign
changes happen at these roots. This means that also Condition B) of Theorem 1 is satisfied.

Now consider θ∗ = (θ∗0, θ
∗
1, . . . , θ

∗
p)
> 6= (θ0

0, θ
0
1, . . . , θ

0
p)
> = θ0. If θ0

k = θ∗k for k ∈ {1, . . . , p},
then θ∗0 6= θ0

0 so that the assumptions of Theorem 3 b) are satisfied. Since a constant function is
also monotone, also the assumptions of Theorem 3 a) are satisfied. If θ∗0 = θ0

0, then θ0
k 6= θ∗k for

at least one k ∈ {1, . . . , p} so that g(·, θ0) − g(·, θ∗) is an unbounded function implying that the
assumptions of Theorem 3 c) are satisfied. Moreover, the function g(·, θ0) − g(·, θ∗) consists of a
finite number of monotone pieces and a finite number of roots on an interval [a, b] implying that
the assumptions of Theorem 3 a) are satisfied for this case as well. Hence the test for H0 : θ = θ0

based on T iN is consistent at all θ∗ 6= θ0 for i ∈ {1, 2} in Scenario (A) and (B). The test based on
T 3
N is consistent at any θ∗ with θ0

k 6= θ∗k for at least one k ∈ {1, . . . , p} for Scenario (B).

5.2 Michaelis-Menten model

The Michaelis-Menten model is a widely used model for enzyme kinetics. In this model, the
explanatory variable is the concentration xn > 0 of a substrate and the dependent variable is the
reaction rate, denoted by yn. Assuming independent measurements errors, the model is given by

yn =
θ0xn
θ1 + xn

+ en

so that θ = (θ0, θ1)> ∈ (0,∞)2 = (0,∞)K with K = 2 and g(x, θ) = θ0x
θ1+x

. Data depth for
the Michaelis-Menten model already was studied by Van Aelst et al. (2002). However, their depth
notion is different from the depth notions used here and no test was provided. Here, we obtain

v(x, θ) =
x

θ1 + x

(
1,
−θ0

θ1 + x

)>
=

x

θ1 + x
(1, x̃)>
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with x̃ = −θ0
θ1+x

. Since always x
θ1+x

> 0, this factor has no influence on the sign changes of
wu(x) = u>v(x, θ) so that we can consider w̃u(x̃) = u>ṽ(x̃, θ) with ṽ(x̃, θ) = (1, x̃)>. Hence
w̃u(x̃) is of form (12) for p = 1, i.e. as for polynomial regression of order 1, so that Conditions
A) and B) of Theorem 1 are satisfied for w̃u(x̃) according to Section 5.1. But this means that the
conditions are also satisfied for wu(x).

Since g(·, θ) is a strictly increasing function bounded by θ0, the assumptions of Theorem 3 c) are
not satisfied. Moreover, g(xn, θ

0) − g(xn, θ
∗) = c cannot be satisfied for all n ∈ {1, . . . , N}

if θ∗ = (θ∗0, θ
∗
1)> 6= (θ0

0, θ
0
1)> = θ0. However, the function g(·, θ0) − g(·, θ∗) consists of a finite

number of monotone pieces and a finite number of roots on an interval [a, b] so that the assumptions
of Theorem 3 a) follow as for polynomial regression. Hence any test for H0 : θ = θ0 based on T iN
is consistent at all θ∗ 6= θ0 for i ∈ {1, 2} for Scenario (A).

5.3 Exponential model

Another widely used nonlinear model is the exponential model given by

yn = θ1e
θ2 xn + en

so that θ = (θ1, θ2)> ∈ IR2 = IRK with K = 2, g(x, θ) = θ1e
θ2 x, and

v(x, θ) = eθ2 x (1 , θ1x)> ∈ IR2 = eθ2 x ṽ(x, θ)

with ṽ(x, θ) = (1 , θ1x)>. Since always eθ2 xn > 0 we again can work with ṽ(x, θ) instead of
v(x, θ). Then we get

wu(x) = u1 + u2θ1x = ũ1 + ũ2x = w̃ũ(x)

with ũ1 = u1 and ũ2 = u2θ1. Since w̃ũ(x) is the wu(x) in (12) for p = 1, i.e. as for polynomial
regression of order 1, the Conditions A) and B) of Theorem 1 again follow from Section 5.1.

The consistency of a test for H0 : θ = θ0 based on T iN at all θ∗ 6= θ0 and i ∈ {1, 2} for Scenario
(A) follows as for polynomial regression and the Michaelis-Menten model. The assumptions of
Theorem 3 b) are never satisfied. However, the assumptions of Theorem 3 c) hold if θ∗2 > 0 or
θ0

2 > 0 is satisfied so that a test for H0 : θ = θ0 based on T iN is consistent at all θ∗ = (θ∗1, θ
∗
2)> 6=

(θ0
1, θ

0
2)> = θ0 with θ∗2 > 0 or θ0

2 > 0 for i ∈ {1, 2, 3} in Scenario (B).

5.4 Nonlinear polynomial model I

The derivation of Conditions A) and B) of Theorem 1 is not always possible via the polynomial
regression model treated in Section 5.1. An example is the nonlinear polynomial model given by

yn = θ0 + θ1x
θ2
n + en

so that θ = (θ0, θ1, θ2)> ∈ IR3 = IRK with K = 3, g(x, θ) = θ0 + θ1x
θ2 , and

v(x, θ) = (1, xθ2 , θ1x
θ2 log(x))> ∈ IR3.

10



This leads to

wu(x) = u1 + u2x
θ2 + u3 θ1x

θ2 log(x). (13)

For deriving the Conditions A) and B) of Theorem 1, the following lemma is necessary.

Lemma 2. If θ1 6= 0, θ2 6= 0, then wu : [0,∞)→ IR given by (13) has the following properties:
a) wu has exactly one extremum at x = exp

(
− 1
θ2
− u2

u3θ1

)
for all u = (u1, u2, u3)> ∈ IR3 with

u3 6= 0.
b) For all 0 < ξ1 < ξ2, there exists a vector u+ ∈ IR3 with wu+(ξ1) = wu+(ξ2) = 0 and
wu+(x) > 0 for all x ∈ (ξ1, ξ2) and a vector u− ∈ IR3 with wu−(ξ1) = wu−(ξ2) = 0 and
wu−(x) < 0 for all x ∈ (ξ1, ξ2).

If θ1 = 0 or θ2 = 0, then clearly wu has at most one sign change on [0,∞) for all u ∈ IR3. If
θ1 6= 0, θ2 6= 0, then wu has exactly one extremum according to Lemma 2 a), which means that wu
can have at most 2 = K−1 sign changes on [0,∞). Hence Condition A) of Theorem 1 is satisfied
for all θ ∈ IR3.

However, to show Condition B) of Theorem 1, we must exclude the cases θ1 = 0 and θ2 = 0. But
this excludes only the case of a constant function, i.e. the model yn = θ0 + en. Hence we assume
θ1 6= 0, θ2 6= 0.

Now regard any 0 ≤ x1 < x2 < x3 < x4 and any s ∈ {−1, 1}4 with at most K − 1 = 2 sign
changes. If s = (s1, s2, s3, s4)> has K − 1 = 2 sign changes, the missing possible third sign
change is between sk and sk+1 with k = 1, k = 2, or k = 3.

For k = 1, set ξ1 ∈ (x2, x3), ξ2 ∈ (x3, x4). Then x3 ∈ (ξ1, ξ2) and according to Lemma 2 b), there
exists u0 ∈ IR3 with wu0(ξ1) = 0 = wu0(ξ2) and sgn(wu0(x3)) = s3. Since wu0 has exactly one
extremum according to Lemma 2 a), wu0 has only sign changes at ξ1 and ξ2 so that there is a sign
change between wu0(x2) and wu0(x3) as well as between wu0(x3) and wu0(x4), and no sign change
between wu0(x1) and wu0(x2) so that sgn(wu0(xk)) = sk for k ∈ {1, 2, 3, 4}.

Using ξ1 ∈ (x1, x2) and ξ2 ∈ (x3, x4) for k = 2 and ξ1 ∈ (x1, x2) and ξ2 ∈ (x2, x3) for k = 3
provides, with the same arguments as for k = 1, the existence of u0 with sgn(wu0(xk)) = sk for
k ∈ {1, 2, 3, 4}. The case that s has less than K − 1 = 2 sign changes can be treated with similar
arguments. Hence Condition B) of Theorem 1 is satisfied.

If θ∗0 6= θ0
0 and θ∗k = θ0

k for k ∈ {1, 2}, then the assumptions of Theorem 3 a) and b) are satisfied.
Otherwise we have the same situation as for the exponential model. In particular the assumptions
of Theorem 3 c) are only satisfied for θ∗ = (θ∗0, θ

∗
1, θ
∗
2)> and θ0 = (θ0

0, θ
0
1, θ

0
2)> with θ∗2 > 0 or

θ0
2 > 0.

5.5 Nonlinear polynomial model II

Another nonlinear polynomial model is given by

yn = θ1(θ2 − xn)θ3 + en

11



so that θ = (θ1, θ2, θ3)> ∈ IR3 = IRK with K = 3, g(x, θ) = θ1(θ2 − x)θ3 , and

v(x, θ) = (θ2 − x)θ3−1 (θ2 − x , θ1 θ3 , θ1 (θ2 − x) log(θ2 − x))> ∈ IR3 = (θ2 − x)θ3−1 ṽ(x, θ)

with ṽ(x, θ) = (θ2 − x , θ1 θ3 , θ1 (θ2 − x) log(θ2 − x)). We here assume that 0 ≤ xn < θ2, where
in particular (θ2 − xn)θ3−1 > 0 holds for all n ∈ {1, . . . , K + 1}. Hence we can work with ṽ(x, θ)
instead of v(x, θ) so that

wu(x) = u1(θ2 − x) + u2θ1 θ3 + u3 θ1 (θ2 − x) log(θ2 − x) = w̃u(x̃)

with x̃ = θ2 − x ∈ (0, θ2] and w̃u(x̃) = u1x̃ + u2θ1 θ3 + u3 θ1 x̃ log(x̃). This w̃u is of the form of
wu in (13) with θ2 = 1 so that the result in Section 5.4 provides that the Conditions A) and B) of
Theorem 1 are also satisfied here.

Again, the assumptions of Theorem 3 a) are always satisfied. The specialty of this model is that
we have explosion for θ3 < 0 when xN → θ2. This is not Scenario (B). However, the proof of
Theorem 3 c) holds also for this case so that consistency of a test for H0 : θ = θ0 based on T iN
follows at all θ∗ = (θ∗1, θ

∗
2, θ
∗
3)> 6= (θ0

1, θ
0
2, θ

0
3)> = θ0 with θ∗3 < 0 or θ0

3 < 0 for i ∈ {1, 2, 3}.

5.6 AR(1) growth models

General linear and nonlinear AR(1) growth processes are given by

yn = g(yn−1, θ) + en

or

yn = yn−1 + g(yn−1, θ) + en (14)

with y0 < y1 < . . . < yp+1, where g(x, θ) is of the same form as in the examples of Sections 5.1
to 5.5. Setting ỹn = yn − yn−1 in the second case and xn = yn−1, the Conditions A) and B) of
Theorem 1 are also satisfied according to Sections 5.1 to 5.5. The results for consistency under
Scenario (B) of Sections 5.1 to 5.5 transfer to these processes as well.

Model (14) appears in particular when the Euler-Maruyama approximation is used for stochastic
differential equations, see e.g. Iacus (2008). An example of strictly increasing observations yn is
crack growth where the function g(x, θ) of Section 5.4 provides a stochastic version of the Paris-
Erdogan equation which is widely used in engineering sciences, see Pook (2000). In Kustosz and
Müller (2014) the one-parameter case with θ0 = 0 and θ3 = 1 was studied. Here the two-parameter
case of the nonlinear function of Section 5.4 with θ0 = 0 is considered in the simulation study of
Section 6.2 and in the application of Section 7. A simulation study for the linear version with
θ3 = 1 is provided by Kustosz et al. (2015).

6. SIMULATION STUDY

In this section, the finite sample behavior of the simplified simplicial depth tests for H0 : θ = θ0

is studied in two models. All calculations were performed in R, see R Core Team (2014). In all
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examples, the simplified depth tests are compared with the simple sign test which is based on the
numbers of positive residuals. For a comparison with other tests see Kustosz et al. (2015), where
the test based on the full simplicial depth based, see (4), and the test defined by the Ordinary Least
Squares estimator are considered. Further two types of errors, namely N(0, 0.1) error variables, to
evaluate the tests under standard assumptions, and errors defined by (1 − ε)N(0, 0.1) + εN(5, 1)
with ε = 0.05, to simulate a skewed and contaminated error distribution, are considered.

6.1 Michaelis-Menten model

The first example evaluates the resulting depth based tests for a Michaelis-Menten model. In Fig-
ure 1 (a) an example process with parameter θ0 = (θ0

0, θ
0
1)> = (20, 2)> is depicted. An exemplary

process with contaminated errors is illustrated in Figure 1 (b). To satisfy the conditions of Sce-
nario (A), xn is fixed by x1 = 0 < x2 = x1 + 0.1 < ... < x60 = 6, so that N = 61. To
analyze the power, the tests are evaluated for H0 : θ = θ0 and processes with parameters on a grid
defined by [18, 22] × [1, 3] for θ0 and θ1 with step width 0.01 are simulated. The tests are evalu-
ated 100 times for each parameter on the grid. The simulated power is then defined by the relative
number of rejections. The results forN(0, 0.1) errors on a level of α = 0.05 are shown in Figure 2.

0 1 2 3 4 5 6

2
6

10
14

xn

y n

(a) N(0, 0.1) Errors

0 1 2 3 4 5 6

5
10

15

xn

y n

(b) Contaminated N(0, 0.1) Errors

Figure 1. Simulated Processes from the Michaelis-Menten Model. Two exemplary simulations
from the Michaelis-Menten model with θ0 = 20, θ1 = 2 observed at x = (0, 0.1, 0.2, ..., 5.9, 6)
with two different error distributions.
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(a) T 1
N (b) T 2

N

(c) T 3
N

(d) Sign

Figure 2. Simulated Power for Different Tests with N(0, 0.1) Errors under the Michaelis-Menten
Model. The simulated relative number of rejections of H0 : θ = (20, 2) based on different values
of θ = (θ0, θ1) is depicted. The errors are simulated asN(0, 0.1) random variables. The parameters
for the null hypothesis are marked by the dashed lines.

The simplicial depth tests have power functions, which are increasing when the parameter deviates
from H0 : θ = (20, 2). This is also true for the sign test. However, due to the fixed sample size the
sign test has a wide range of not rejected parameters if half of the data is under and half of the data
is overestimated. Since these fits can be arbitrary chosen when one residual is fixed in the middle
of the dataset, there is an unbounded set of such parameters. This problem does not appear for
the simplicial depth statistics. In a direct comparison, the T 3

N test performs best measured by the
number of 11 parameters on the grid with simulated power below α = 0.05, followed by the T 2

N

with 67 and T 1
N with 196 parameters with power below of the 5% level. When counting the number

of grid points on which the tests are uniquely best, measured by their power, we have 8093 points
for T 3

N and 3627 points for T 2
N followed by just 1 point for T 1

N . This shows, that T 3
N outperforms

T 2
N when parameters with larger distance to H0 are tested. Note, that although we were not able to

prove the consistency of the T 3
N test it appears to be a valid test for H0 : θ = θ0 as well.

We also evaluate the tests in case of skewed and nonnormal errors. The resulting power functions
are given in Figure 3.
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(a) T 1
N (b) T 2

N

(c) T 3
N

(d) Sign

Figure 3. Simulated Power for ContaminatedN(0, 0.1) Errors under the Michaelis-Menten Model.
The simulated relative number of rejections of H0 : θ = (20, 2) based on different values of
θ = (θ0, θ1) is depicted. The errors are simulated as contaminated N(0, 0.1) random variables,
whereby in a fraction of 5% N(5, 1) variables are added. The parameters for the null hypothesis
are marked by the dashed lines.

The results are similar to the noncontaminated case. Due to the contamination the power decreases
slightly for values of θ2 > θ0

2 but still leads to rejection in most cases. The number of grid points
with power below of the 5% level is 17 for T 3

N , 75 for T 2
N and 229 for T 1

N . Here the number
of grid points with unique superior power shows another result. The T 2

N test is best at 33825 grid
points, followed by the T 3

N test with 10784 and the T 1
N with 1 point. The sign test shows systematic

problems again but is less influenced by the contamination.

6.2 Nonlinear AR(1) growth model

In the second example, the model

yn = yn−1 + θ1y
θ2
n−1 + en,
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which plays an important role in modeling crack growth, see Section 5.6 and Section 7, is con-
sidered. Here the null hypothesis H0 : θ = (θ0

1, θ
0
2) with θ0

1 = 0.005 and θ0
2 = 1.002 is tested.

Processes with a starting value y0 = 15 and N = 500 observations are examined. Example pro-
cesses under H0 are presented in Figure 4.

0 50 150 250

20
40

60

n

y n

(a) N(0, 0.1) Errors

0 50 150 250

50
15

0
n

y n

(b) Contaminated N(0, 0.1) Errors

Figure 4. Simulated Nonlinear AR(1) Processes. Realizations of nonlinear AR(1) processes with
θ1 = 0.005, θ2 = 1.002, y0 = 15 and two different error distributions are depicted.

To evaluate the power of tests for H0 : θ = θ0 := (θ0
1, θ

0
2)>, a grid defined by [−0.02, 0.05] ×

[0.5, 1.5] with a step width of 0.0001 for θ1 and 0.001 for θ2 is considered. On each grid point the
processes are generated 100 times to simulate the power of the test at a 5% level for processes with
a length of N = 500 observations. The resulting power functions for normal errors are depicted in
Figure 5.
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(a) T 1
N (b) T 2

N

(c) T 3
N

(d) Sign

Figure 5. Simulated Power for N(0, 0.1) Errors under the Nonlinear AR(1) Model. The simulated
relative number of rejections of H0 : θ = (0.005, 1.002) based on different values of θ = (θ0, θ1)
is depicted. The errors are simulated as N(0, 0.1) random variables. The parameters for the null
hypothesis are marked by the dashed lines.

One can observe, that the depth based tests have power functions, which are increasing to one when
the parameter deviates from H0 : θ = (0.005, 1.002). Due to the model, the power functions are
not symmetric. It is hard to compare, which test is best, but by counting the number of parameters
with power below of a 5% level we see that the T 3

N with 81 points outperforms the T 1
N test with

270 points followed by the T 2
N version with 303 points. By counting the fractions with unique best

power we have 145263 points for T 2
N , 9475 points for T 3

N and 120 points for T 1
N . By consideration

of a wider parameter range, a systematic shortcoming of the sign test gets obvious. The sign test
again does not reject parameters, for which half of the residuals are negative and half are positive,
even if the model fit is poor. The residuals of a process Ỹ defined by θ = (θ1, θ2) 6= (θ0

1, θ
0
2) = θ0

are given by rn(θ0, Ỹ ) = En + θ1Ỹ
θ2
n−1 − θ0

1Ỹ
θ02
n−1. If the errors are assumed to be approximately

zero, then rn(θ0, Ỹ ) ≶ 0 holds approximately if and only if θ1 ≶ θ0
1Ỹ

θ02−θ2
n−1 . Since Ỹ is strictly

increasing, we obtain for θ2 < θ0
2 that

θ0
1Ỹ

θ02−θ2
0 < ... < θ0

1Ỹ
θ02−θ2
bN/2c−1 < θ1 < θ0

1Ỹ
θ02−θ2
bN/2c < ... < θ0

1Ỹ
θ02−θ2
N

implies rn(θ0, Ỹ ) > 0 for n ∈ {1, ..., bN/2c} and rn(θ0, Ỹ ) < 0 for n ∈ {bN/2c + 1, ..., N}.
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Similarly, if θ2 > θ0
2 then

θ0
1Ỹ

θ02−θ2
0 > ... > θ0

1Ỹ
θ02−θ2
bN/2c−1 > θ1 > θ0

1Ỹ
θ02−θ2
bN/2c > ... > θ0

1Ỹ
θ02−θ2
N

implies rn(θ0, Ỹ ) < 0 for n ∈ {1, ..., bN/2c} and rn(θ0, Ỹ ) > 0 for n ∈ {bN/2c+ 1, ..., N}. For
θ2 → ∞, the interval

[
θ0

1Ỹ
θ02−θ2
bN/2c , θ

0
1Ỹ

θ02−θ2
bN/2c−1

]
reduces to one point, so that only few θ1 can satisfy

θ0
1Ỹ

θ02−θ2
bN/2c−1 > θ1 > θ0

1Ỹ
θ02−θ2
bN/2c for large θ2. The opposite is the case for θ2 → 0, where the interval[

θ0
1Ỹ

θ02−θ2
bN/2c−1, θ

0
1Ỹ

θ02−θ2
bN/2c

]
becomes larger, explaining the widening of the area with low power of the

sign test for small θ2.

For an error distribution which is contaminated with positive outliers in 5% of all cases, the result-
ing power functions are presented in Figure 6. As in the noncontaminated case the region of the
depth based tests with low power is bounded while the sign test shows a systematic problem for a
range of parameters with small θ2. In general the power functions are steeper, since the jumps lead
to a faster growing process, what is exploited by the proposed tests. The number of parameters
below the 5% level are 2 for T 3

N and 21 for T 1
N and T 2

N . The best power is achieved at 18891 points
for T 2

N , 683 points for T 3
N and 37 points for T 1

N .
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(a) T 1
N (b) T 2

N

(c) T 3
N

(d) Sign

Figure 6. Simulated Power for Contaminated N(0, 0.1) Errors under the Nonlinear AR(1) Model.
The simulated relative number of rejections of H0 : θ = (0.005, 1.002) based on different values
of θ = (θ0, θ1) is depicted. The errors are simulated as contaminated N(0, 0.1) random variables,
whereby in a fraction of 5% variables with a N(5, 1) distribution are added. The parameters for
the null hypothesis are marked by the dashed lines.
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7. APPLICATION
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Figure 7. Observed crack growth in prestressed concrete in mm. The observations are recorded at
n = 1, ..., 91 steps with differences of 6756 load cycles.

Figure 7 shows the growth of the crack width yn in prestressed concrete in an experiment conducted
by Maurer and Heeke (2010), where n denotes the observation index of n = 1, ..., 91 discretely
observed values at load cycles from 2784104 to 3392189 in steps of 6765. The jumps, visible in
the crack growth process, are caused by the breaking of the tension wires and can be considered as
outliers although they are innovation outliers. In Kustosz and Müller (2014), the AR(1) model

yn = yn−1 + θ1y
θ2
n−1 + en,

with known θ2 = 1 was used to model the growth of the crack width yn without the jumps.
However, a more realistic description of the process should allow θ2 to be unknown. Figure 8
illustrates yn dependent on yn−1. As can be seen in this Figure, the fit of the nonlinear least squares
(NLS) estimator given by (θ̂1, θ̂2) = (1.2 · 10−8, 12.05) is quite well for low increments but also
influenced by the large increments caused by jumps. Confidence regions based on d1

S and d2
S

can be computed by grid search. Fits constructed by parameters in the 95% confidence region
from the d1

S test statistic are given by the dashed lines in Figure 8. Due to a structural change of
the dynamics, this confidence region consists of two parts which are not connected, namely a part
around (0.0001, 5.97350) and a part around (0.000115, 2.654). However the two parts are so small,
that the corresponding curves only appear as two slightly different curves in Figure 8. Both lines
are not influenced by the jumps and show good fits for large increments as well.
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Figure 8. Fit of yn against yn−1 plotted for yn ≥ 2.25. The dots represent the observed pairs
(yn, yn−1). The solid black line is the fit based on the NLS estimator. The dashed black lines show
fits resulting from parameters in the 95% confidence region based on d1

S and the grey line shows
the fit calculated by the parameters from the 99.9% confidence region based on d2

S .

Although the depth statistics improve the robustness of the parameter estimates for the crack
growth process, they also react to a nonhomogeneous structure of the data. The d2

S test statistic is
in this sense more sensible to local deviations of the model assumptions, so that the corresponding
confidence regions do not contain any parameters up to a level of 99.9%. The resulting fit from
parameters in the 99.9% confidence set based on d2

S is presented by the light grey curve in Figure
8. Again the confidence set, an area around (0.00074, 0), is so small that the corresponding curves
appear as one line. This line is also not influenced by the jumps.
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8. APPENDIX: PROOFS

Proof of Theorem 1:
Clearly, dT (θ, z∗) > 0 if res(zn, θ) = 0 for some n ∈ {1, . . . , K + 1}. Therefore, we only have to
consider the situation where res(zn, θ) 6= 0 for all n ∈ {1, . . . , K + 1}.

Assume that (res(z1, θ), . . . , res(zK+1, θ))
> does not have alternating signs. This means that there

exists k ∈ {1, . . . , K} with sgn(res(zk, θ)) = sgn(res(zk+1, θ)). Set sn = sgn(res(zn, θ)) for
n ∈ {1, . . . , K + 1} and s = (s1, . . . , sK+1)>. Then s ∈ {−1, 1}K+1 and s has at most K − 1
sign changes. According to Condition B), there exists u0 ∈ IRK with sgn(wu0(xn)) = sn for
n ∈ {1, . . . , K + 1}. But this implies

sgn(wu0(xn)) sgn(res(zn, θ)) = 1 for n ∈ {1, . . . , K + 1}

and thus

u>0 v(xn, θ) res(zn, θ) = wu0(xn) res(zn, θ) > 0 for n ∈ {1, . . . , K + 1}

so that dT (z∗, θ) = 0.

Conversely, assume dT (θ, z∗) = 0. Then there exists u ∈ IRK with

u>v(xn, θ) res(zn, θ) = wu(xn) res(zn, θ) > 0 for n ∈ {1, . . . , K + 1}. (15)

Since wu has at most K − 1 sign changes on [x1, xK+1] according to Condition A), there exists
k ∈ {1, . . . , K} with

sgn(wu(xk)) = sgn(wu(xk+1)).

This means with (15) that sgn(res(zk, θ)) = sgn(res(zk+1, θ)) so that (res(z1, θ), . . . , res(zK+1, θ))
>

does not have alternating signs. 2

Before we start the proof of Theorem 2 we recall the definition of m-dependence for random
variables.

Definition 2. A sequence of random variablesX1, X2, ... is m-dependent form ≥ 0, if (Xi, ..., Xi+n)
is independent of (Xi+j, ..., Xi+j+n) for all j > m and i, n ∈ IN .

Proof of Theorem 2:
First note, that res(θ, Zn) = En holds if θ is the underlying parameter.
a) Set

Vn :=
K+1∏
k=1

1
{

res(Z(K+1)(n−1)+k, θ)(−1)k > 0
}

+
K+1∏
k=1

1
{

res(Z(K+1)(n−1)+k, θ)(−1)k+1 > 0
}
.

Then Vn, n ∈ {1, . . . ,
⌊

N
K+1

⌋
}, are independent variables with Bernoulli distribution satisfying

P (Vn = 1) = (1/2)K , so that the assertion follows from the CLT.
b) Set

Vn :=
K+1∏
k=1

1
{

res(Zn−1+k, θ)(−1)k > 0
}

+
K+1∏
k=1

1
{

res(Zn−1+k, θ)(−1)k+1 > 0
}
.
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Then Vn, n ∈ {1, ..., N − K}, are also Bernoulli variables with P (Vn = 1) = (1/2)K . By
centering to Xn = Vn − (1

2
)K we get a series of stationary random variables with E[Xn] = 0

and E[|Xn|3] < ∞. So the limit theorem of Hoeffding and Robbins (1948) for m-dependent
random variables can be applied, since Xn and Xm are dependent if and only if the corresponding
index sets are overlapping. This implies, that V1, V2, ... is K-dependent. To calculate the variance
component in the limit distribution we need to calculate E(X1Xd) for d ∈ {1, ..., K + 1} and get

A = E[X2
1 ] +

∑K+1

d=2
2 · E[X1Xd].

For d > K + 1 the terms are zero, since the underlying events are independent.
For d ∈ {1, ..., K + 1} we have

E[X1Xd] = E

[(
V1 −

(
1

2

)K)(
Vd −

(
1

2

)K)]

= E [V1Vd]−
(

1

2

)2K

=

(
1

2

)K+d−1

−
(

1

2

)2·K

.

By insertion of the explicit expressions for the expected values, A can be calculated by

A =
∑K+1

d=2
2 ·

[(
1

2

)K+d−1

−
(

1

2

)2K
]

+

(
1

2

)K (
1−

(
1

2

)K)

=

(
1

2

)K [∑K−1

d=0

(
1

2

)d
−K

(
1

2

)K−1

+ 1−
(

1

2

)K]

=

(
1

2

)K [
3−

(
1

2

)K−1

·K − 3 ·
(

1

2

)K]
.

c) Set

Vn = 1 {res(Zn, θ) > 0} 1
{

res(ZbN+1
2 c, θ) < 0

}
1 {res(ZN−n+1, θ) > 0}

+1 {res(Zn, θ) < 0} 1
{

res(ZbN+1
2 c, θ) > 0

}
1 {res(ZN−n+1, θ) < 0} .

Again Vn are Bernoulli variables, here with P (Vn = 1) = 1/4. To apply the CLT we need to assure
independence of V1, ..., VbN−1

2
c. At first note that

P
(
Vn = 0|EbN+1

2
c > 0

)
=P (En > 0, EN−n+1 > 0) + P (En > 0, EN−n+1 < 0) + P (En < 0, EN−n+1 > 0)

=
3

4
= P (Vn = 0),

since E1, ..., EN are independent. Analogously we obtain

P
(
Vn = 0|EbN+1

2
c < 0

)
=

3

4
= P (Vn = 0)

26



and

P
(
Vn = 1|EbN+1

2
c < 0

)
= P

(
Vn = 0|EbN+1

2
c > 0

)
=

1

4
= P (Vn = 1).

Therefore independence of E1, ..., EN implies that Vn and Vm, with n < m < bN+1
2
c are condi-

tionally independent given EbN+1
2
c, so that

P (Vn = k, Vm = l)

=P
(
Vn = k, Vm = l|EbN+1

2
c > 0

)
P
(
EbN+1

2
c > 0

)
+P

(
Vn = k, Vm = l|EbN+1

2
c < 0

)
P
(
EbN+1

2
c < 0

)
=P

(
Vn = k|EbN+1

2
c > 0

)
P
(
Vm = l|EbN+1

2
c > 0

)
· 1

2

+P
(
Vn = k|EbN+1

2
c < 0

)
P
(
Vm = l|EbN+1

2
c < 0

)
· 1

2
=P (Vn = k)P (Vm = l),

for k, l ∈ {0, 1}. Hence Vn and Vm are independent. Similarly, we obtain the independence of
V1, ..., VbN−1

2
c. 2

Proof of Lemma 1: Without loss of generality, assume 0 ≤ c0 = c1 ≤ c2 ≤ . . . ≤ cK+1. Since
the distribution of En is continuous and symmetric around 0, we have

ζk :=
1

2
− Pθ∗(Enk > ck) =

1

2
− Pθ∗(Enk < −ck) > 0 for all k ∈ {1, . . . , K + 1},

and in particular Pθ∗(Enk > ck) = 1
2
− ζk, Pθ∗(Enk < ck) = 1

2
+ ζk, and

0 ≤ ζ := ζ1 ≤ ζ2 ≤ . . . ≤ ζK+1 ≤ 1
2
. This implies with (10) that the expectation (9) equals

K+1∏
k=1

(
1

2
+ (−1)k+1ζk

)
+

K+1∏
k=1

(
1

2
+ (−1)kζk

)
. (16)

To prove the assertion, we have to show that (16) is bounded by (1
2
)K − (1

2
)K−2ζ2, which is

equivalent to

K+1∏
k=1

(
1 + (−1)k+1xk

)
+

K+1∏
k=1

(
1 + (−1)kxk

)
≤ 2− 2x2

1, (17)

whereby xk := 2 · ζk and 0 ≤ x1 ≤ x2 ≤ ... ≤ xK+1 ≤ 1.
Note that

(1 + x1)(1− x2) + (1− x1)(1 + x2) = 2− 2x1x2 ≤ 2− 2x2
1,

since x1 ≥ 0. To conclude by induction first note, that from xK+1 ≥ xK

(1− xK)(1 + xK+1) ≥ (1 + xK)(1− xK+1)

and

(1 + xK−1)(1− xK)(1 + xK+1) ≥ (1− xK−1)(1 + xK)(1− xK+1)
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follows. By a successive application of this inequality we get

b :=(1± x1)(1∓ x2) · ... · (1− xK)(1 + xK+1) (18)
≥(1∓ x1)(1± x2) · ... · (1 + xK)(1− xK+1) =: a.

By (18) and ad+ bc ≤ ac+ bd for 0 < a ≤ b, 0 < c ≤ d we get

(1∓ x1)(1± x2) · ... · (1 + xK)(1− xK+1)(1 + xK+2)

+(1± x1)(1∓ x2) · ... · (1− xK)(1 + xK+1)(1− xK+2)

≤(1∓ x1)(1± x2) · ... · (1 + xK)(1− xK+1)(1− xK+2) (19)
+(1± x1)(1∓ x2) · ... · (1− xK)(1 + xK+1)(1 + xK+2),

by setting d = (1 + xK+2), c = (1− xK+2). (17) now follows from

K+2∏
k=1

(
1 + (−1)k+1xk

)
+

K+2∏
k=1

(
1 + (−1)kxk

)
=

K+1∏
k=1

(
1 + (−1)k+1xk

)
(1 + (−1)K+3xK+2) +

K+1∏
k=1

(
1 + (−1)kxk

)
(1 + (−1)K+2xK+2)

=
1

2

[
(
K+1∏
k=1

(
1 + (−1)k+1xk

)
(1 + (−1)K+3xK+2) +

K+1∏
k=1

(
1 + (−1)kxk

)
(1 + (−1)K+2xK+2)

+ (
K+1∏
k=1

(
1 + (−1)k+1xk

)
(1 + (−1)K+3xK+2) +

K+1∏
k=1

(
1 + (−1)kxk

)
(1 + (−1)K+2xK+2)

]
(19)

≤ 1

2

[
(
K+1∏
k=1

(
1 + (−1)k+1xk

)
(1 + (−1)K+3xK+2) +

K+1∏
k=1

(
1 + (−1)kxk

)
(1 + (−1)K+2xK+2)

+ (
K+1∏
k=1

(
1 + (−1)k+1xk

)
(1 + (−1)K+2xK+2) +

K+1∏
k=1

(
1 + (−1)kxk

)
(1 + (−1)K+3xK+2)

]

=
1

2

[(
K+1∏
k=1

(
1 + (−1)k+1xk

)
+

K+1∏
k=1

(
1 + (−1)kxk

))

·
(

(1 + (−1)K+3xK+2) + (1 + (−1)K+2xK+2)
)]

=
1

2

[(
K+1∏
k=1

(
1 + (−1)k+1xk

)
+

K+1∏
k=1

(
1 + (−1)kxk

))
((1 + xK+2) + (1− xK+2))

]

=
1

2

[(
K+1∏
k=1

(
1 + (−1)k+1xk

)
+

K+1∏
k=1

(
1 + (−1)kxk

))
· 2

]

=
K+1∏
k=1

(
1 + (−1)k+1xk

)
+

K+1∏
k=1

(
1 + (−1)kxk

)
≤2− 2x2

1

by induction. 2
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Proof of Theorem 3:
Let be ε > 0 arbitrary. If we can show that N∗ ∈ IN , δ∗ > 0, and a statistic T̃ iN with T iN(θ0) ≤ T̃ iN
exist such that

Eθ∗
(
T̃ iN

)
≤ −
√
N

(
δ∗ −

qα√
N∗

)
(20)

and

varθ∗
(
T̃ iN

)
≤ εNδ2

∗ (21)

for all N ≥ N∗, then Chebyshev’s inequality provides for all N ≥ N∗ using qα√
N
≥ qα√

N∗

Pθ∗

(
T iN(θ0) ≥ qα

)
≤ Pθ∗

(
T̃ iN ≥ qα

)
≤ Pθ∗

(
|T̃ iN − Eθ∗(T̃ iN)| ≥ qα − Eθ∗(T̃ iN)

)

≤ Pθ∗

(
|T̃ iN − Eθ∗(T̃ iN)| ≥

√
N

qα√
N

+
√
N

(
δ∗ −

qα√
N∗

))

≤ Pθ∗

(
|T̃ iN − Eθ∗(T̃ iN)| ≥

√
N δ∗

)
≤ εNδ2

∗
N δ2

∗
= ε.

a) Set

M1
iN :=

{
(n1, . . . , nK+1) ∈MiN ; ∃l = 1, . . . , L with xn1N , . . . , xnK+1N ∈ [al + δ, bl − δ)

}
M2

iN :=
{

(n1, . . . , nK+1) ∈MiN \M1
iN ; ∃l = 1, . . . , L with xn1N , . . . , xnK+1N ∈ [al, bl)

}
M3

iN := MiN \ (M1
iN ∪M2

iN)

The assumptions of Theorem 3 a) imply that the conditions of Lemma 1 are satisfied with c0 =

c > 0 for all (n1, . . . , nK+1) ∈ M1
iN so that the expectation (9) is bounded by

(
1
2

)K − (1
2

)K−2
ζ2

with ζ := 1
2
− Pθ∗(En > c) > 0 for all (n1, . . . , nK+1) ∈ M1

iN . For all (n1, . . . , nK+1) ∈
M2

iN , the conditions of Lemma 1 are satisfied with c0 = 0 so that (9) is bounded by
(

1
2

)K for all
(n1, . . . , nK+1) ∈ M2

iN . Since only subsequent residuals are used in T iN , the elements of MiN

have the form (m,m + 1, . . . ,m + K) with m ∈ {1, . . . , N −K} so thatM3
iN contains at most

(K + 1)(L+ 1) elements for all N ∈ IN . This means

]M1
iN

]MiN

→ p,
]M2

iN

]MiN

→ 1− p, ]M
3
iN

]MiN

→ 0,

for N →∞, where p ∈ (0, 1). For example, if x1N , . . . , xNN are equidistant points in [a, b] then p
is the length of

⋃L
l=1[al + δ, bl− δ) divided by the length of [a, b]. Since 2 is a general upper bound

of (9), we obtain

Eθ∗(diS(θ0, Z∗)) ≤
]M1

iN

]MiN

((
1

2

)K
−
(

1

2

)K−2

ζ2

)
+
]M2

iN

]MiN

(
1

2

)K
+
]M3

iN

]MiN

2

−→ p

((
1

2

)K
−
(

1

2

)K−2

ζ2

)
+ (1− p)

(
1

2

)K
=

(
1

2

)K
− p

(
1

2

)K−2

ζ2 <

(
1

2

)K
.
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Hence there exists γ < 0, N0 ∈ IN such that for all N ≥ N0

Eθ∗

(
diS(θ0, Z∗)−

(
1
2

)K ) ≤ γ < 0.

If N ≥ 2K then N −K ≥ N
2
≥ N

2(K+1)
and b N

K+1
c ≥ N

2(K+1)
, so that

Eθ∗(T iN(θ0)) ≤

√
N

2(K + 1)

γ

vi
=:
√
Nγi,

where vi is the denominator of T iN(θ0) and γi = γ√
2(K+1)vi

.

Setting
√
Ni >

qα
γi

delivers δi := qα√
Ni
− γi > 0. Since res(Z1, θ

0), . . . , res(ZN , θ0) remain inde-
pendent under Pθ∗ for regression, the summands of T 1

N(θ0) are independent and the summands of
T 2
N(θ0) are K-dependent, so that

varθ∗(T iN(θ0)) = σ2
i ≤ εNδ2

i ,

if N ≥ σ2
i

εδ2i
. Set N∗ := max{

√
Ni,

σ2
i

εδ2i
, N0} and δ∗ := qα√

N∗
− γi, then

δ∗ ≥
qα√
Ni

− γi = δi > 0.

Therefore

Eθ∗(T iN(θ0)) ≤
√
Nγi = −

√
N

(
δ∗ −

qα√
N∗

)
and

varθ∗(T iN(θ0)) = σ2
i ≤ N∗εδ

2
i ≤ N∗εδ

2
∗ ≤ Nεδ2

∗

for all N ≥ N∗, so that conditions (20) and (21) are satisfied for T̃ iN = T iN(θ0) and i ∈ {1, 2}.

b) Under the assumptions of b), the simplified simplicial depths are given by

diS(θ0, Z∗)

=
1

]MiN

∑
(n1,...,nK+1)∈MiN

(
K+1∏
k=1

1
{
Enk (−1)k > c

}
+

K+1∏
k=1

1
{
Enk (−1)k+1 > c

})
.

Setting p := Pθ∗(En > c), we get p 6= 1
2

and obtain

Eθ∗(d1
S(θ, Z∗)) = Eθ∗(d2

S(θ, Z∗)) =

{
2 p

K+1
2 (1− p)K+1

2 <
(

1
2

)K
, if K is odd,

p
K
2 (1− p)K2 <

(
1
2

)K
, if K is even,

so that condition (20) and (21) are satisfied as in a).
c) We consider only the case limb→∞ g(b, θ0) − g(b, θ∗) = ∞ since the proof for the other case is
completely analogous. Because of limb→∞ g(b, θ0) − g(b, θ∗) = ∞ , there exists b0 > 0, γ > 0,
and β <

(
1
2

)K with g(b, θ0) − g(b, θ∗) > γ for all b > b0 and Pθ∗(En > γ) ≤ β
2
. According to
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Scenario (B), there exists N0 ∈ IN so that Xn > b0 almost surely for all n ≥ N0. Then we can
work with the following upper bounds

d1
S(θ0, Z∗) ≤

1⌊
N
K+1

⌋ (
N0 +

∑b N
K+1c

n=N0

(
1
{
E(K+1)(n−1)+2 > γ

}
+ 1

{
E(K+1)(n−1)+1 > γ

}))
=: d̃1

S

d2
S(θ0, Z∗) ≤ 1

N −K

(
N0 +

∑N−K

n=N0

(1 {En > γ}+ 1 {En+1 > γ})

)
=: d̃2

S

d3
S(θ0, Z∗) ≤ 1⌊

N−1
2

⌋(N0 +
∑bN−1

2 c
n=N0

(
1

{
EbN+1

2 c > γ
}

+ 1 {EN−n+1 > γ}
))

=: d̃3
S.

Set T̃ iN :=
√
Nλi

(
d̃iS −

(
1
2

)K), where λi is an appropriately chosen constant, then T̃ iN also is

an upper bound of T iN(θ0). Then there exists N∗ > N0 such that (20) is satisfied for T̃ iN for
i ∈ {1, 2, 3} and N ≥ N∗ as in a). Since the summands of T̃ 1

N are independent and the summands
of T̃ 2

N are 1-dependent, also condition (21) is satisfied for T̃ 1
N and T̃ 2

N . To show that (21) also is
satisfied for T̃ 3

N , use γ so large that Pθ∗(EN > γ)2 ≤ Pθ∗(En > γ) ≤ ε δ2∗
λ23 4

is satisfied as well.
Since the errors En are independent and identically distributed, we obtain then

varθ∗
(
T̃ iN

)
≤ Nλ2

3 Eθ∗
[(
1

{
EbN+1

2 c > γ
}

+ 1 {EN−N0+1 > γ}
)2
]

= 2Nλ2
3 (Pθ∗(EN > γ) + Pθ∗(EN > γ)2) ≤ 2Nλ2

3 2
ε δ2
∗

λ2
3 4

= εNδ2
∗. 2

Proof of Lemma 2:
a) Because of

∂

∂t
wu(x) = u2θ2x

θ2−1 + u3 θ1θ2x
θ2−1 log(x) + u3 θ1x

θ2
1

x
= xθ2−1 (u2θ2 + u3 θ1θ2 log(x) + u3 θ1) ≥ 0

⇐⇒ u2θ2 + u3 θ1θ2 log(x) + u3 θ1 ≥ 0

⇐⇒ u3 θ1θ2 log(x) ≥ −u2θ2 − u3 θ1

⇐⇒ log(x) ≥ − u2

u3θ1

− 1

θ2

if u3 θ1θ2 > 0, log(x) ≤ − u2

u3θ1

− 1

θ2

if u3 θ1θ2 < 0

⇐⇒ x ≥ exp

(
− u2

u3θ1

− 1

θ2

)
if u3 θ1θ2 > 0, x ≤ exp

(
− u2

u3θ1

− 1

θ2

)
if u3 θ1θ2 < 0,

wu has a minimum at x = exp
(
− 1
θ2
− u2

u3θ1

)
if u3 θ1θ2 > 0 and a maximum at x = exp

(
− 1
θ2
− u2

u3θ1

)
if u3 θ1θ2 < 0.
b) Let be 0 < ξ1 < ξ2 arbitrary. The equation system(

ξθ21 θ1ξ
θ2
1 log(ξ1)

ξθ22 θ1ξ
θ2
2 log(ξ2)

)(
v2

v3

)
=

(
v2ξ

θ2
1 + v3 θ1ξ

θ2
1 log(ξ1)

v2ξ
θ2
2 + v3 θ1ξ

θ2
2 log(ξ2)

)
=

(
−1
−1

)
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has exact one solution (v2, v3)> since

det

(
ξθ21 θ1ξ

θ2
1 log(ξ1)

ξθ22 θ1ξ
θ2
2 log(ξ2)

)
= ξθ21 θ1ξ

θ2
2 log(ξ2)− ξθ22 θ1ξ

θ2
1 log(ξ1) = ξθ21 θ1ξ

θ2
2 (log(ξ2)− log(ξ1)) 6= 0.

For this solution (v2, v3)>, it holds

w1,v2,v3(ξ1) = 1 + v2ξ
θ2
1 + v3 θ1ξ

θ2
1 log(ξ1) = 0,

w1,v2,v3(ξ2) = 1 + v2ξ
θ2
2 + v3 θ1ξ

θ2
2 log(ξ2) = 0.

Since w1,v2,v3 has at most one extremum according to a), this extremum must be attained in (ξ1, ξ2)
and the extreme value is not equal to zero. It is negative if it is a minimum and positive if it is
a maximum. The use of u0 = (−1,−v2,−v3)> changes a negative minimal value for wu∗ with
u∗ = (1, v2, v3)> to a positive maximal value for wu0 and vice versa. Denote u0 or u∗, respectively,
by u+ if the extreme value is positive and by u− if the extreme value is negative. If the extreme
value is positive, then wu+(x) > 0 for all x ∈ (ξ1, ξ2) because only one extremum exists. The
same argument provides wu−(x) < 0 for all x ∈ (ξ1, ξ2) if the extreme value is negative. 2
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