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Abstra
tThis paper studies tangential and simpli
ial data depth for orthogonalregression through the origin. For both depth notions, it is proved that or-thogonal lines have the same depth. As robustness measure of maximumdepth estimators, exa
t-�t points for one line and for two orthogonal lines arede�ned and 
al
ulated. Sin
e the simpli
ial depth has a simple asymptoti
distribution, tests 
an be easily derived. These tests are used for 
he
kingwhether data are distributed around two orthogonal lines. But sin
e distri-butions whi
h are invariant with respe
t to rotations with angle of π/2 have
onstant depth fun
tions, the tests 
an only be used to reje
t the hypothesisof a distribution around two orthogonal lines. To verify su
h a hypothesis, itis proposed to transform the data appropriately and then to 
he
k the depthfun
tion for the transformed data. This approa
h is applied to 
he
k whethermi
ro 
ra
ks have an orientation of approximately 45◦ and 135

◦ to strain inan initial stage.Keywords: Orthogonal regression through the origin; Tangential data depth; Sim-pli
al data depth; Statisti
al tests; Cra
k orientation1 Introdu
tionThe understanding of 
ra
k initiation and 
ra
k growth is very important for pre-di
ting the life time of produ
ts as wheels of trains or hip repla
ement. Manyexperiments in whi
h material was exposed spe
i�
 strains were done in the past.Thereby photos of small 
ra
ks whi
h 
an be analyzed with modern methods ofpattern re
ognition (see e.g. Flet
her et al. (2003), Iyer and Sinha 2005, Fujita etal. 2006, Gunkel et al. 2009) were also obtained by mi
ros
opes. This provides thepossibility to analyze a huge amount of 
ra
k data. While the growth of large 
ra
ks(ma
ro 
ra
ks) follows more or less the deterministi
 me
hani
al laws des
ribed e.g.
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in Pook (2000) and Ludwig et al. (2003), the small 
ra
ks (mi
ro 
ra
ks) show mu
hmore a random behavior whi
h must be des
ribed by probabilisti
 laws. Some �rstattempts 
an be found in Ihara and Tanaka (2000) and Brü
kner-Foit et al. (2003).However, probabilisti
 laws should be validated by data.In this arti
le, a new statisti
al method is des
ribed for validating the followinghypothesis about the orientation of mi
ro 
ra
ks:A) In an initial stage of the growing pro
ess, a mi
ro 
ra
k has an orientationwith an angle of approximately 45◦ or 135◦ (π/4 or 3π/4) with respe
t to thestrain.B) When a mi
ro 
ra
k be
omes a ma
ro 
ra
k, its orientation is tending to anorientation perpendi
ular to the strain.These hypotheses were 
he
ked up to now only by a qualitative analysis regardingsele
ted 
ra
ks (see Besel et al. 2008, Besel and Brü
kner-Foit 2008, Brü
kner-Foitand Huang 2008). Here, we in parti
ular show how Hypothesis A) 
an be veri�edstatisti
ally.Sin
e orientations are 
ir
ular, the simple mean of the observed angles is a misleadingquantity. The only paper whi
h deals with statisti
al analysis of 
ra
k orientations,the paper of Mann et al. (2003) 
on
erning 
ra
ks in 
emented femoral 
omponents,uses 
ir
ular statisti
s given by Fisher (1995) and Zar (1999). A mean 
ra
k angleis 
al
ulated there as tan−1
(

msin

mcos

) where msin is the mean of sin(αn) and mcos isthe mean of cos(αn) when αn are the angles of the 
ra
ks. With this statisti
, it istested whether the distribution of the angles is uniform distributed and whether theangles in di�erent regions have the same distribution.But every mean is sensitive to outlying observations. Hen
e the mean should berepla
ed by the median. But every mean angle and median angle have the disad-vantage that they do not take the length of the 
ra
ks into a

ount. Using orthogonalregression through the origin, also the length of the 
ra
ks has an impa
t. In par-ti
ular, longer 
ra
ks have more in�uen
e than short 
ra
ks, an important propertysin
e small 
ra
ks are often falsely dete
ted 
ra
ks or 
aused by impurities of thematerial. While one generalization of the median for regression, the L1 regressionestimator is not outlier robust (see He et al. 1990, Mizera and Müller 1999), an-other generalization of the median whi
h is based on data depth leads to outlierrobust regression estimators. This was shown by Rousseeuw and Hubert (1999) for
lassi
al linear regression and by Wellmann and Müller (2008b) for orthogonal re-gression with inter
ept. Moreover, Wellmann and Müller (2008b) found in examplesthat often two orthogonal lines with inter
epts have the same data depth. This is awel
ome property in view of Hypothesis A). Hen
e, in this paper we study the datadepth for orthogonal regression without inter
ept. In this spe
ial 
ase, we 
an alsogive a proof for the observed property that orthogonal lines have the same depth.Using simpli
ial data depth, also statisti
al tests 
an be derived. This was done byMüller (2005) and Wellmann et al. (2009) for polynomial regression, by Wellmannand Müller (2008a) for multiple regression, and by Wellmann and Müller (2008b) fororthogonal regression with inter
ept. For regression with inter
ept, the asymptoti
distribution of the simpli
ial depth is given by an in�nite sum of independent χ2-distributed random variables. But here we show that the asymptoti
 distribution isgiven only by one χ2-distributed random variable if there is no inter
ept.2



The paper is organized as follows. Se
tion 2 provides preliminaries about orthogonalregression and data depth. In Se
tion 3, two depth notions, tangential depth andsimpli
ial depth, are 
hara
terized for orthogonal regression without inter
ept. Someproperties of these depth notions for spe
ial distributions, in parti
ular for so-
alledorthogonal distributions, are shown as well. Exa
t-�t points for one line and for twoorthogonal lines are de�ned as robustness measure and are derived for estimatorsmaximizing the tangential and simpli
ial depth.Se
tion 4 deals with the problem of verifying the hypothesis that data are distributedaround two orthogonal lines, e.g. the Hypothesis A) for 
ra
ks. It is shown that testsbased on simpli
ial depth 
an reje
t su
h hypotheses. But they 
annot distinguishbetween other orthogonal distributions. Therefore an approa
h using transformeddata is proposed for the veri�
ation. This approa
h is applied on 
ra
k data inSe
tion 5.2 Preliminaries2.1 Classi
al estimatorsLeast squares estimators and L1 estimators for orthogonal regression through theorigin 
an be de�ned as in 
lassi
al linear regression by minimizing the sum ofsquared and absolute residuals. The di�eren
e to 
lassi
al linear regression is thede�nition of the residuals.For de�ning the residuals, it is important to note that a line through the origin in
IR2 
an be expressed in di�erent ways: as slope β ∈ IR, as angle α ∈ [0, π) betweenthe line and the x-axis, and as ve
tor a = (a1, a2)

⊤ ∈ IR2 so that {λa; λ ∈ IR}
ontains all points of the line. Preferable, a should satisfy ‖a‖ = 1. The 
onne
tionsbetween these representations are the following:
a = (cos(α), sin(α))⊤, β = a2/a1 = tan(α).In orthogonal regression, the residuals for a given line are given by the length of thedi�eren
e between the data point zn = (xn, yn)⊤ and its perpendi
ular proje
tion tothe line. The perpendi
ular proje
tion of zn to a line given by a is

a⊤zn a if ‖a‖ = 1.Hen
e the absolute residuum is res(a, zn) := ‖zn − a⊤zn a‖. Let
A(α) =

(
cos(α) sin(α)
− sin(α) cos(α)

) (1)the rotation matrix whi
h rotates the ve
tor a = (cos(α), sin(α))⊤ to the point
(1, 0)⊤, i.e. A(α)a = (1, 0)⊤. Then the squared absolute residuum satis�es

res(a, zn)2 = ‖zn − a⊤zn a‖2

= (zn − a⊤zn a)
⊤A(α)⊤A(α)(zn − a⊤zn a)

= ‖A(α) zn − (A(α) a)⊤A(α) zn A(α) a‖2

=

∥∥∥∥

(
cos(α)xn + sin(α)yn)
− sin(α)xn + cos(α)yn

)
−
(

cos(α)xn + sin(α)yn)
0

)∥∥∥∥
2

= (sin(α)xn − cos(α)yn)
2 = ‖z⊤n a⊥‖2,3



where a⊥ = (sin(α),− cos(α))⊤ is the unit ve
tor orthogonal to a. Hen
e we 
an setfor the residuum also
res(α, zn) := sin(α)xn − cos(α)yn. (2)This se
ond representation of a residuum has the advantage that a derivative withrespe
t to α 
an be easily 
al
ulated. This 
an be used to 
al
ulate the least squaresestimator by Newton's method.De�nition 1a) The least squares estimator α̂ (LS) for the angle α at z = (z1, . . . , zN ) is de�nedas
α̂LS(z) ∈ arg min

α∈[0,π)

N∑

n=1

res(α, zn)
2.b) The L1 estimator α̂ (L1) for the angle α at z = (z1, . . . , zN) is de�ned as

α̂L1(z) ∈ arg min
α∈[0,π)

N∑

n=1

|res(α, zn)|.2.2 Data depthThe L1 estimator whi
h minimizes the sum of absolute residuals is one possibilityto generalize the outlier robust median to regression. However, this generalizationdoes not lead to outlier robust regression estimators.Another possibilty to generalize the median to regression is data depth. Tukey (1975)used the half spa
e depth d to generalize the median to multivariate data in IRq.The depth d(µ, z) of a lo
ation parameter µ ∈ IRq in a sample z = (z1, . . . , zN ) in IRqis the minimum number of observations z1, . . . , zN lying in a half spa
e 
ontaining
µ. The parameter µ whi
h maximizes d(µ, z) is the generalization of the median.Rousseeuw and Hubert (1999) generalized the half spa
e depth to linear regressionby introdu
ing the notion of a non�t:De�nition 2 (Original de�nition of a non�t) A regression parameter β is anon�t for z1, . . . , zN if there is another parameter β̃ so that the residuals res(β̃, zn)satisfy

res(β̃, zn)2 < res(β, zn)2 for n = 1, . . . , N,whi
h means that the regression fun
tion given by β̃ is 
loser to the data points
z1, . . . , zN ∈ IR2 than the regression fun
tion given by β.Then the regression depth dR(β, z) of the regression parameter β in the data set
z1, . . . , zN is the minimum number M of observations zn1

, . . . , znM
whi
h must beremoved so that β be
omes a non�t in {z1, . . . , zN} \ {zn1

, . . . , znM
}.The original De�nition 2 is di�
ult to handle. Therefore a tangential version isusually used: 4



De�nition 3 (Tangential version of a non�t) A regression parameter β ∈ IRqis a non�t for z1, . . . , zN if there exists a ve
tor u ∈ IRq with
u⊤

∂

∂β
res(β, zn)2 < 0 for n = 1, . . . , N.For 
lassi
al linear regression, where the residuals are linear in β, the two de�nitionsare identi
al. But Mizera (2002) pointed out that there are many situations wherethey are di�erent. He 
alled a depth based on De�nition 2 global depth and a depthbased on De�nition 3 tangential depth. Then the tangential depth dT (β, z) of aparameter β ∈ IRq in z1, . . . , zN has the following simple de�nition

dT (β, z) =
1

N
min

06=u∈IRq
♯{n ∈ {1, . . . , N}; u⊤ ∂

∂β
res(β, zn)

2 ≥ 0},where ♯ denotes the 
ardinality of a set.However, any tangential depth has the disadvantage that it is di�
ult to deriveits �nite sample distribution and its asymptoti
 distribution so that tests basedon it are di�
ult to de�ne. Only few approa
hes exist for regression depth for
lassi
al regression. Bai and He (1999) only derived an impli
itly given asymptoti
distribution of the maximum regression depth estimator while Van Aelst et al. (2002)derived an exa
t test based on the regression depth only for linear regression. Thedevelopment of tests be
omes mu
h easier by using the simpli
ial depth.Simpli
ial depth of a multivariate lo
ation parameter µ ∈ IRq was introdu
ed by Liu(1988, 1990) using the half spa
e depth d of Tukey (1975). She de�ned it as
dS(µ, (z1, ..., zN )) =

(
N

q + 1

)−1 ∑

1≤n1<n2<...<nq+1≤N

II{d(µ, (zn1
, ..., znq+1

)) > 0}, (3)where II denotes the indi
ator fun
tion. This depth 
ounts the simplexes spannedby q+1 data points whi
h are 
ontaining the parameter µ. Repla
ing the half spa
edepth d by any other depth notion leads to a very general 
on
ept of simpli
ialdepth. Any notion of simpli
ial depth has the advantage that it is an U-statisti
s andfor U-statisti
s the asymptoti
 distribution is in prin
ipal known from Hoe�ding'stheorem (see e.g. Lee 1990, p. 79, 80, 90). This advantage was used in Müller(2005), Wellmann (2007), Wellmann et al. (2009), Wellmann and Müller (2008a)to derive distribution free tests for polynomial and multiple regression. See alsoWellmann et al. (2007) for the 
al
ulation of maximum simpli
ial depth.3 Depth estimators for orthogonal regression throughthe origin3.1 Depth notions for dataGlobal and tangential depth are for example di�erent for orthogonal regression asMizera (2002) already noti
ed and whi
h was worked out by Wellmann (2007) and5



Wellmann and Müller (2008b). Wellmann (2007) and Wellmann and Müller (2008b)
onsidered only orthogonal regression for lines with inter
ept. In this 
ase, also theuse of the tangential depth is rather 
ompli
ated.For orthogonal regression through the origin, everything be
omes mu
h more simple.At �rst note that the derivative of the residuals are given by
∂

∂α
res(α, zn)

2 =
∂

∂α
(sin(α)xn − cos(α)yn)

2

= 2 (sin(α)xn − cos(α)yn) (cos(α)xn + sin(α)yn) = −2A2(α)⊤zn A1(α)⊤zn,where A1(α)⊤ and A1(α)⊤ are the rows of the rotation matrix A(α) given in (1), i.e.
A(α) =

(
A1(α)⊤

A2(α)⊤

). Hen
e tangential depth for orthogonal regression through theorigin 
an be de�ned as follows.De�nition 4 (Tangential depth for orthogonal regression through the ori-gin)The tangential depth dT (α, z) of an angle α ∈ IR in z1, . . . , zN ∈ IR2 is de�ned as
dT (α, z) =

1

N
min{♯{n; A2(α)⊤zn A1(α)⊤zn ≥ 0}, ♯{n; A2(α)⊤zn A1(α)⊤zn ≤ 0}}.For α = 0, i.e. for a horizontal line, we obtain
dT (α, z) =

1

N
min{♯{n; xn yn ≥ 0}, ♯{n; xn yn ≤ 0}}.This is the same de�nition of the depth of a horizontal line as for 
lassi
al regressionthrough the origin. However, for other lines the de�nitions are di�erent sin
e for
lassi
al regression through the origin the derivative of the residuals is

∂

∂β
res(β, zn)

2 =
∂

∂β
(yn − β xn)2 = 2 (yn − β xn) xn.De�nition 4 for orthogonal regression 
an be interpreted as follows: The data arerotated with the rotation matrix A(α) so that the line given by α is the horizontalline. Then the tangential depth for 
lassi
al regression through the origin is usedfor the horizontal line and the rotated data. This interpretation was also used byWellmann and Müller (2008b) for orthogonal regression for a line with inter
ept.Lemma 1 Orthogonal lines have the same depth, i.e.

dT (α, z) = dT (α + π/2, z).Proof. The assertion follows from
∂

∂α
res(α + π/2, zn)2

= 2 (sin(α + π/2)xn − cos(α + π/2)yn) (cos(α+ π/2)xn + sin(α + π/2)yn)

= 2 (cos(α)xn + sin(α)yn) (− sin(α)xn + cos(α)yn)

= − ∂

∂α
res(α, zn)

2.2 6



That orthogonal lines have the same tangential depth was also observed by examplesin Wellmann and Müller (2008b) for orthogonal regression for a line with inter
ept.A proof was not given there. The examples in Wellmann and Müller (2008b) alsoshowed that this property is not satis�ed for the global depth so that global depthfor orthogonal regression through the origin should have the same property.To derive tests, the simpli
ial depth based on the tangential depth given by De�ni-tion 4 is introdu
ed here as well.De�nition 5 (Simpli
ial depth for orthogonal regression through the ori-gin)The simpli
ial depth dS(α, z) of an angle α ∈ IR in z1, . . . , zN ∈ IR2 is de�ned as
dS(α, (z1, ..., zN)) =

(
N

2

)−1 ∑

1≤n1<n2≤N

II{dT (α, (zn1
, zn2

)) > 0}.Lemma 2 The simpli
ial depth for orthogonal regression through the origin satis�es
dS(α, (z1, ..., zN))

=

(
N

2

)−1 (
negz(α)posz(α) + negz(α)zeroz(α) + posz(α)zeroz(α) +

(
zeroz(α)

2

))where
negz(α) = ♯{n; A1(α)⊤znA2(α)⊤zn < 0},
posz(α) = ♯{n; A1(α)⊤znA2(α)⊤zn > 0},
zeroz(α) = ♯{n; A1(α)⊤znA2(α)⊤zn = 0}.Proof. Sin
e

dT (α, (zn1
, zn2

)) = 0if and only if A1(α)⊤zn1
A2(α)⊤zn1

and A1(α)⊤zn2
A2(α)⊤zn2

are both positive orboth negative we have
dT (α, (zn1

, zn2
)) > 0if and only if A1(α)⊤zn1

A2(α)⊤zn1
and A1(α)⊤zn2

A2(α)⊤zn2
have di�erent signs orat least one of them is zero. Hen
e, the assertion follows. 2Sin
e orthogonal lines have the same tangential depth for orthogonal regressionthrough the origin, they have also the same simpli
ial depth, i.e. we have dS(α, z) =

dS(α + π/2, z).3.2 Depth notions for distributionsIt is straightforward to generalize the tangential depth given in De�nition 4 toarbitrary distributions PZ where Z is an arbitrary random variable on IR2.
7



De�nition 6 (Tangential depth for distributions)The tangential depth dT (α, PZ) of an angle α ∈ IR at distribution PZ is de�ned as
dT (α, PZ) = min

{
PZ({z ∈ IR2; A2(α)⊤z A1(α)⊤z ≥ 0}),

PZ({z ∈ IR2; A2(α)⊤zn A1(α)⊤zn ≤ 0})
}
.To generalize the simpli
ial depth given in De�nition 5 to distributions, note that

dS(α, (z1, ..., zN)) =
1

N (N − 1)

∑

n1 6=n2

II{dT (α, (zn1
, zn2

)) > 0}.De�nition 7 (Simpli
ial depth for distributions)The simpli
ial depth dS(α, PZ) of an angle α ∈ IR at distribution PZ is de�ned as
dS(α, PZ) = PZ1,Z2({(z1, z2); dT (α, (z1, z2)) > 0}),where Z1 and Z2 are independent random variables with PZ1 = PZ2 = PZ.The following lemma is analogous to Lemma 2.Lemma 3 The simpli
ial depth at distribution PZ satis�es

dS(α, (z1, ..., zN)) = 2PZ(Neg(α))PZ(Pos(α))

+ 2PZ(Neg(α))PZ(Zero(α)) + 2PZ(Pos(α))PZ(Zero(α)) + PZ(Zero(α))2,where
Neg(α) = {z ∈ IR2; A1(α)⊤z A2(α)⊤z < 0},
Pos(α) = {z ∈ IR2; A1(α)⊤z A2(α)⊤z > 0},

Zero(α) = {z ∈ IR2; A1(α)⊤z A2(α)⊤z = 0}.Proof. Sin
e (see the proof of Lemma 2)
PZ1,Z2({(z1, z2); dT (α, (z1, z2)) > 0})

= PZ1,Z2({(z1, z2); z1 ∈ Neg(α), z2 ∈ Pos(α) or z2 ∈ Neg(α), z1 ∈ Pos(α) or
z1 ∈ Neg(α), z2 ∈ Zero(α) or z2 ∈ Neg(α), z1 ∈ Zero(α) or
z1 ∈ Pos(α), z2 ∈ Zero(α) or z2 ∈ Pos(α), z1 ∈ Zero(α) or
z2 ∈ Zero(α), z1 ∈ Zero(α)}),the assertion follows from the independen
e of Z1 and Z2. 2As for data, orthogonal lines have the same depth, i.e. dT (α+π/2, PZ) = dT (α, PZ)and dS(α + π/2, PZ) = dS(α, PZ). But for spe
ial distributions, the depth 
an bethe same for all lines and angles, respe
tively. We 
all these spe
ial distributionsorthogonal distributions:

8



De�nition 8 PZ is an orthogonal distribution on IR2 if
PZ/‖Z‖ = P ρ(Z)/‖ρ(Z)‖is satis�ed for any rotation ρ about ± 90◦, i.e. for

ρ1(z) := ρ1

((
x

y

))
=

(
0 −1
1 0

)(
x

y

) and ρ2(z) := ρ2

((
x

y

))
=

(
0 1
−1 0

)(
x

y

)
.Rotation invariant distributions like the uniform distribution on the two dimensional
ir
le or disk are orthogonal distributions. But an orthogonal distribution 
an alsobe 
on
entrated on or around two orthogonal lines. Namely, if

L1 = {z ∈ IR2; z = λ(cos(α), sin(α))⊤ for α ∈ [α0 − α1, α0 + α1], λ ∈ IR}and
L2 = {z ∈ IR2; there exists z∗ ∈ L1 with z⊤z∗ = 0}are areas around two orthogonal lines so that

P ρ1(Z)(L1) = P ρ2(Z)(L1) = PZ(L1) = PZ(L2) = P ρ1(Z)(L2) = P ρ2(Z)(L2)and
PZ(L1 ∪ L2) = 1,then PZ is an orthogonal distribution. Su
h kind of distribution is 
on
entrated ontwo orthogonal lines if α1 = 0. In this 
ase, only PZ(L1) = PZ(L2) and PZ(L1 ∪

L2) = 1 must be 
he
ked.Theorem 1a) If PZ is an orthogonal distribution and PZ/‖Z‖ is an absolute 
ontinuous distrib-ution, then
dT (α, PZ) = dS(α, PZ) =

1

2
for all α ∈ [0, π).b) If PZ is an orthogonal distribution with P (Z =

(
0
0

))
= 0 whi
h is 
on
entratedon two lines given by α0 and α0 + π/2, then

dT (α, PZ) = dS(α, PZ) = 1 for α = α0 and α = α0 + π/2and
dT (α, PZ) = dS(α, PZ) =

1

2
for all α ∈ [0, π) \ {α0, α0 + π/2}.
) If PZ is a distribution with P (Z =
(
0
0

))
= 0 whi
h is 
on
entrated on one linegiven by α0, then

dT (α, PZ) = dS(α, PZ) = 1 for α = α0 and α = α0 + π/2and
dT (α, PZ) = dS(α, PZ) = 0 for all α ∈ [0, π) \ {α0, α0 + π/2}.

9



Proof. At �rst note
dT (α, PZ) = min{PZ(Neg(α) ∪ Zero(α)), PZ(Pos(α) ∪ Zero(α))}and PZ(Neg(α)) = PZ/‖Z‖(Neg(α)), PZ(Pos(α)) = PZ/‖Z‖(Pos(α)), PZ(Zero(α)) =

PZ/‖Z‖(Zero(α)). The orthogonality of PZ and the de�nitions of A1(α) and A2(α)provide
PZ(Pos(α)) = P ρ1(Z)(Pos(α)) = P (A1(α)⊤ ρ1(Z) A2(α)⊤ ρ1(Z) > 0)

= P

(
A1(α)⊤

(
0 −1
1 0

)
Z A2(α)⊤

(
0 −1
1 0

)
Z > 0

)

= P ( (sin(α),− cos(α))Z (cos(α), sin(α))Z > 0)

= P (−A2(α)⊤Z A1(α)⊤Z > 0)

= P (A1(α)⊤Z A2(α)⊤Z < 0) = PZ(Neg(α)).a) If PZ/‖Z‖ is an absolute 
ontinuous distribution, then
PZ/‖Z‖(Zero(α)) = P

(
Z

‖Z‖ =

(
cos(α)

sin(α)

) or Z

‖Z‖ =

(− cos(α)

− sin(α)

) or
Z

‖Z‖ =

(
sin(α)

− cos(α)

) or Z

‖Z‖ =

(− sin(α)

cos(α)

))
= 0,so that PZ(Neg(α)) = PZ(Pos(α)) = 1

2
for all α ∈ [0, π).b) If PZ is 
on
entrated on the two lines given by α0 and α0 + π/2, then

PZ/‖Z‖(Zero(α0)) = 1 = PZ/‖Z‖(Zero(α0 + π/2))and
PZ/‖Z‖(Zero(α)) = 0for all α ∈ [0, π) \ {α0, α0 + π/2} be
ause of P (Z =

(
0
0

))
= 0.
) If P (Z ∈ L1) = 1 with L1 = {z ∈ IR2; z = λ(cos(α0), sin(α0))

⊤, λ ∈ IR} then
P (A2(α0)Z = 0) = 1 and P (A1(α0 + π/2)Z = 0) = 1 so that PZ(Zero(α0)) = 1 =
PZ(Zero(α0 + π/2)). For α ∈ [0, π) \ {α0, α0 + π/2}, we obtain

A1(α)⊤ z A2(α)⊤ z = λ2

(
cos(α)

sin(α)

)⊤(
cos(α0)

sin(α0)

)(− sin(α)

cos(α)

)⊤(
cos(α0)

sin(α0)

)for all z ∈ L1 whi
h is either positive or negative. Hen
e it holds either PZ(Pos(α)) =
0 = PZ(Zero(α)) or PZ(Neg(α)) = 0 = PZ(Zero(α)). 23.3 Depth estimatorsAs soon as a depth notion is given, an estimator 
an be de�ned as that parameterwith maximum depth. Hen
e, the tangential and simpli
ial depth for orthogonalregression through the origin lead to the following de�nitions:De�nition 9 (Depth estimators)a) The tangential depth estimator α̂T (z) is de�ned as

α̂T (z) ∈ arg max
α∈[0,π)

dT (α, z).10



b) The simpli
ial depth estimator α̂S(z) is de�ned as
α̂S(z) ∈ arg max

α∈[0,π)
dS(α, z).Note that the tangential and simpli
ial depth estimators are never unique sin
eorthogonal lines have the same depth (see Lemma 1). Hen
e with α̂T (z) and α̂S(z),also α̂T (z) + π/2 and α̂S(z) + π/2 are depth estimators.Figure 1 
ompares the tangential depth estimator with the least squares estimator,the L1 estimator and the mean of the observed angles in the presen
e of 30% outliers.It shows that the least squares estimator as well as the L1 estimator are heavilyin�uen
ed by the outliers. The tangential depth estimator provides two lines: onewhi
h follows the majority of the data and one orthogonal to the other line. Thisorthogonal line is 
lose to the line given by the mean of the angles. Hen
e the meanprovides a line whi
h is also far away from the majority of the data.

−4 −2 0 2 4

−4
−2

0
2

4

x

y

Data from angle 0 with 30% outliers

Mean
LS
L1
Max Depth

Figure 1: Tangential depth estimator 
ompared with mean angle, LS and L1 estimatefor data with outliersTo quantify the outlier robustness of the estimators, a robustness measure shall beused. A well known robustness measure is the breakdown point of Donoho andHuber (1983). But the breakdown point makes only sense if the parameter spa
eis bounded by in�nity or some other bounds so that 
onvergen
e to su
h boundsmeans breakdown. But 
onsidering angles, the parameter spa
e is 
ir
ular so thatno bound exists. However, the exa
t-�t point de�ned in Ellis and Morgenthaler(1992) 
an be used whi
h has in other 
ases a strong relation to the breakdownpoint. To de�ne the exa
t-�t point for orthogonal regression through the origin, letbe L(α) := L1(α) ∪ L2(α), where
L1(α) := {z ∈ IR2; z = λ(cos(α), sin(α))⊤ for λ ∈ IR}11



and
L2(α) := {z ∈ IR2; there exists z∗ ∈ L1(α) with z⊤z∗ = 0}.We distinguish between two exa
t-�t properties: one where all data are lying on oneline through the origin, i.e. zn ∈ L1(α) for n = 1, . . . , N , and one where all data arelying on two orthogonal lines, i.e. zn ∈ L(α) for n = 1, . . . , N .De�nition 10 (Exa
t-�t point for orthogonal regression through the origin)The �t point of an estimator α̂ for α at a sample z = (z1, . . . , zN ) is de�ned as

ǫ(α̂, z) =
1

N
min{M ; there exists z̃ ∈ ZM (z) su
h that α̂(z̃) /∈ {α̂(z), α̂(z) + π/2}},where

ZM (z) := {(z̃1, . . . , z̃N); there exists m1, . . . , mN−Msu
h that zmi
= z̃mi

for i = 1, . . . , N −M}.a) The exa
t-�t point for one line of an estimator α̂ for α is de�ned as
ǫ∗(α̂) = min{ǫ(α̂, z); there exists α su
h that z1, . . . , zN ∈ L1(α)}.b) The exa
t-�t point for two orthogonal lines of an estimator α̂ for α is de�ned as
ǫ∗∗(α̂) = min{ǫ(α̂, z); there exists α su
h that z1, . . . , zN ∈ L(α)}.Theorem 2a) The exa
t-�t points for one and two lines of the least squares estimator and theL1 estimator are given by

ǫ∗(α̂LS) =
1

N
= ǫ∗(α̂L1),

ǫ∗∗(α̂LS) =
1

N
= ǫ∗∗(α̂L1).b) The exa
t �t points for one and two lines of the tangential depth estimator aregiven by

ǫ∗(α̂T ) =
1

N

⌈
N

2

⌉
N→∞−→ 1

2
,

ǫ∗∗(α̂T ) ∈
[

1

N

⌈
N

3

⌉
,

1

N

⌈
N + 1

3

⌉]
N→∞−→ 1

3
.
) The exa
t �t points for one and two lines of the simpli
ial depth estimator aregiven by

ǫ∗(α̂S) =
1

N

⌈
N

2

⌉
N→∞−→ 1

2
,

ǫ∗∗(α̂S) ∈
[

1

N

⌈
−N + 2 +

√
2N2 − 6N + 4

⌉
,

1

N

⌈
−N + 2 +

√
2N2 − 6N + 5

⌉]

N→∞−→
√

2 − 1 = 0.4142136.The proof of Theorem 2 is given in the Appendix.12



4 Veri�
ation of a distribution around orthogonallines4.1 Testing parameters of orthogonal linesTo 
he
k whether the observations are distributed around orthogonal lines, onepossibility is to test a hypothesis of the form H0 : α ∈ [α0 − η, α0 + η] ∪ [α0 +
π/2 − η, α0 + π/2 + η], where η < π/4. Tests for su
h hypotheses 
an be basedon the simpli
ial depth for orthogonal regression through the origin. For derivingthe asymptoti
 distribution of this simpli
ial depth, we need some distributionalassumptions: the observations z1 = (x1, y1)

⊤, . . . , zN = (xN , yN)⊤ are realizations ofindependent and identi
ally distributed random variables Z1 = (X1, Y1)
⊤, . . . , ZN =

(XN , YN)⊤ with
Zn =

(
Xn

Yn

)
=

(
Un

Vn

)
+

(
Dn

En

)
.We make the following assumptions on Un, Vn, Dn, En:(A) There exists ǫ ∈ [0, 1] and a, b ∈ IR2 with 
orresponding angles α ∈ [0, π/2)and α + π/2 su
h that a⊤b = 0, ‖a‖ = 1 = ‖b‖ and

Pα,ǫ

(
a⊤
(
Un

Vn

)
= 0

)
= ǫ, Pα,ǫ

(
b⊤
(
Un

Vn

)
= 0

)
= 1 − ǫ.(B) The distribution of ( Dn

En

) is invariant with respe
t to all rotations, i.e. thereexist random variables Bn and Cn su
h that
A(α)

(
Dn

En

)
∼ F ∼

(
Bn

Cn

)
; for all α ∈ [0, 2π],where A(α) is the rotation matrix given in (1) and F is a rotation invariantdistribution.(C) Additionally, we assume that

(
Un

Vn

)
, Bn, Cn are sto
hasti
ally independent and have 
ontinuousdistributions.Condition (C) in parti
ular implies Pα,ǫ

((
Un

Vn

)
= 0
)

= 0 so that Condition (A) means
Pα,ǫ

(
a⊤
(

Un

Vn

)
= 0 or b⊤(Un

Vn

)
= 0
)

= 1. This implies that the random ve
tors (Un

Vn

)are lying on the two orthogonal lines given by a and b almost surely. If ǫ = 0 or
ǫ = 1, then the Assumptions (A), (B), and (C) are often made in models whereorthogonal regression shall be used like in errors-in-variables models.A

ording to Condition (B), the distribution of (Dn

En

) is invariant with respe
t torotations about ± 90◦. If we additionally assume that (Un

Vn

) has this invarian
e13



property as well, then P ρ(Zn) = PZn for any rotation ρ about ± 90◦. In parti
u-lar, PZn is an orthogonal distribution in the sense of De�nition 8. The invarian
eof (Un

Vn

) implies for example for ρ1(z) =

(
0 −1
1 0

)
z, a = (cos(α), sin(α))⊤, and

b = (− sin(α), cos(α))⊤

1 − ǫ = Pα,ǫ

(
b⊤
(
Un

Vn

)
=0

)
= Pα,ǫ

(
b⊤ρ1

((
Un

Vn

))
=0

)
= Pα,ǫ

(
a⊤
(
Un

Vn

)
=0

)
= ǫbe
ause of b⊤ρ1(z) = a⊤z. Hen
e ǫ must be 1

2
for orthogonal distributions.The asymptoti
 distribution for the simpli
ial depth is obtained via Hoe�ding'stheorem (see e.g. Lee 1990, p. 79, 80, 90). For that, we need the 
onditionalexpe
tation of the kernel fun
tion II{dT (α, (Z1, Z2)) > 0} of the U-statisti
s dS given

Z1 = z1.Lemma 4
Eα,ǫ(II{dT (α, (Z1, Z2)) > 0}|Z1 = z1) =

1

2
.Proof. Let α be the angle 
orresponding to the ve
tor a providing the line on whi
hthe random variables (Un, Vn)

⊤ are lying. Then the rotation matrix A(α) given by(1) satis�es
A(α) =

(
A1(α)⊤

A2(α)⊤

)
=

(
a⊤

b⊤

)
.This implies using Condition (B)

Bn ∼ A1(α)

(
Dn

En

)
= a⊤

(
Dn

En

)
, Cn ∼ A2(α)

(
Dn

En

)
= b⊤

(
Dn

En

)
. (4)Sin
e dT (α, (Z1, Z2)) > 0 if and only if A1(α)⊤z1 A2(α)⊤z1 A1(α)⊤z2 A2(α)⊤z2 =

a⊤z1 b
⊤z1 a

⊤z2 b
⊤z2 ≤ 0, we have for z1 with a⊤z1 b⊤z1 ≥ 0

Eα,ǫ(II{dT (α, (Z1, Z2)) > 0}|Z1 = z1)

= Pα,ǫ(a
⊤Z1 b

⊤Z1 a
⊤Z2 b

⊤Z2 ≤ 0|a⊤Z1 b
⊤Z1 ≥ 0)

= Pα,ǫ(a
⊤Z2 b⊤Z2 ≤ 0)

(A) (C)
= Pα,ǫ(a

⊤Z2 b⊤Z2 ≤ 0, a⊤W2 = 0)

+ Pα,ǫ(a
⊤Z2 b⊤Z2 ≤ 0, b⊤W2 = 0),

14



where W2 =
(

U2

V2

). The �rst summand satis�es
Pα,ǫ(a

⊤Z2 b⊤Z2 ≤ 0, a⊤W2 = 0)

= Pα,ǫ

(
a⊤
(
X2

Y2

)
≤ 0, b⊤

(
X2

Y2

)
≥ 0, a⊤W2 = 0

)

+ Pα,ǫ

(
a⊤
(
X2

Y2

)
≥ 0, b⊤

(
X2

Y2

)
≤ 0, a⊤W2 = 0

)

= Pα,ǫ

(
a⊤W2 + a⊤

(
D2

E2

)
≤ 0, b⊤W2 + b⊤

(
D2

E2

)
≥ 0, a⊤W2 = 0

)

+ Pα,ǫ

(
a⊤W2 + a⊤

(
D2

E2

)
≥ 0, b⊤W2 + b⊤

(
D2

E2

)
≤ 0, a⊤W2 = 0

)

(4)
= Pα,ǫ

(
0 +B2 ≤ 0, b⊤W2 + C2 ≥ 0, a⊤W2 = 0

)

+ Pα,ǫ

(
0 +B2 ≥ 0, b⊤W2 + C2 ≤ 0, a⊤W2 = 0

)

(C)
= Pα,ǫ

(
b⊤W2 + C2 ≤ 0, a⊤W2 = 0

)
Pα,ǫ (B2 ≥ 0)

+ Pα,ǫ

(
b⊤W2 + C2 ≥ 0, a⊤W2 = 0

)
Pα,ǫ (B2 ≤ 0)

(B),(C)
= Pα,ǫ

(
b⊤W2 + C2 ≤ 0, a⊤W2 = 0

) 1

2

+ Pα,ǫ

(
b⊤W2 + C2 ≥ 0, a⊤W2 = 0

) 1

2

= Pα,ǫ

(
a⊤W2 = 0

) 1

2

(A)
= ǫ

1

2
.Analogously, it holds Pα,ǫ(a

⊤Z2 b⊤Z2 ≤ 0, b⊤W2 = 0) = (1 − ǫ) 1
2
so that

Eα,ǫ(II{dT (α, (Z1, Z2)) > 0}|Z1 = z1) = 1
2
.2Hen
e the simpli
ial depth for orthogonal regression through the origin is a degen-erated U-statisti
 as this was shown by Müller (2005) for polynomial regression,by Wellmann and Müller (2008a) for multiple regression, and by Wellmann andMüller (2008b) for orthogonal regression for a line with inter
ept. To obtain theasymptoti
 distribution of a degenerated U-statisti
, the spe
tral de
ompositionfor the 
onditional expe
tation of the kernel fun
tion II{dT (α, (Z1, Z2)) > 0} − 1

2given Z1 = z1, Z2 = z2 is needed. This spe
tral de
omposition 
onsists of in�niteeigenfun
tions for polynomial regression (Müller 2005, Wellmann et al. 2009), formultiple regression (Wellmann and Müller 2008a), and for orthogonal regressionwith inter
ept (Wellmann and Müller 2008b). Hen
e in these 
ases, the asymptoti
distribution is an in�nite sum of random variables basing on squared normal distrib-uted random variables. However, for orthogonal regression through the origin, thespe
tral de
omposition and the asymptoti
 distribution is mu
h more simple. Thisis shown in the following theorem. Thereby note, that the assertion of the followingtheorem holds also for 
lassi
al linear regression through the origin with very similararguments.Theorem 3 The asymptoti
 distribution of the simpli
ial depth for orthogonal re-gression through the origin is given by
L
(
N

(
dS(α, (Z1, . . . , ZN)) − 1

2

))
N→∞−→ L

(
1

2
(1 −W 2)

)
,where W is a random variable with standard normal distribution.15



Proof. Hoe�ding's theorem (see Lee 1990, p. 79, 80, 90) states for a degeneratedU-statisti
 U with kernel fun
tion ψ: If
E(ψ(Z1, . . . , Zq+1)|Z1 = z1, Z2 = z2) − E(ψ(Z1, . . . , Zq+1)) =

∞∑

l=1

λlϕl(z1)ϕl(z2)holds almost surely, where λl ∈ IR and the fun
tions ϕl are L2-integrable, normal-ized, and orthogonal, then
L (N [U(Z1, . . . , ZN) − E(ψ(Z1, . . . , Zq+1))])

N→∞−→ L
((

q + 1

2

)
λl(W

2
l − 1)

)
,where W1,W2, . . . are independent random variables, ea
h with standard normaldistribution.The 
onditional expe
tation of II{dT (α, (Z1, Z2)) > 0} given Z1 = z1, Z2 = z2 hasthe form (
ompare the proof of Lemma 4)

Eα,ǫ(II{dT (α, (Z1, Z2)) > 0}|Z1 = z1, Z2 = z1)

= II{dT (α, (z1, z2)) > 0}
= II{A1(α)⊤z1 A2(α)⊤z1 A1(α)⊤z2 A2(α)⊤z2 ≤ 0}
= II{A1(α)⊤z1 A2(α)⊤z1 ≥ 0} II{A1(α)⊤z2 A2(α)⊤z2 ≤ 0}

+ II{A1(α)⊤z1 A2(α)⊤z1 ≤ 0} II{A1(α)⊤z2 A2(α)⊤z2 ≥ 0}
= II{r(z1) ≥ 0} II{r(z2) ≤ 0} + II{r(z1) ≤ 0} II{r(z2) ≥ 0},where r(zi) = A1(α)⊤zi A2(α)⊤zi. Hen
e it holds almost surely

φ(z1, z2) := Eα,ǫ(II{dT (α, (Z1, Z2)) > 0}|Z1 = z1, Z2 = z1) −
1

2

= II{r(z1) > 0} II{r(z2) < 0} + II{r(z1) < 0} II{r(z2) > 0} − 1

2

= −1

2
(II{r(z1) < 0} − II{r(z1) > 0}) (II{r(z2) < 0} − II{r(z2) > 0}) .Sin
e ϕ(zi) = (II{r(zi) < 0} − II{r(zi) > 0}) is a L2-integrable, normalized fun
tionwhi
h is orthogonal to the 
onstant fun
tion, it is the only eigenfun
tion of theoperator Φ(ϕ)(z1) =

∫
φ(z1, z2)ϕ(z2)P (dz2) with nonzero eigenvalue and the 
orre-sponding eigenvalue is λ = −1

2
. Hen
e the spe
tral de
omposition of the 
onditionalexpe
tation is found and Hoe�ding's theorem provides the result. 2Sin
e

N

(
dS(α, (Z1, . . . , ZN)) − 1

2

)
≈ 1

2
− 1

2
W 2we have

Tα(Z1, . . . , ZN) := 1 − 2N

(
dS(α, (Z1, . . . , ZN)) − 1

2

)
≈W 2so that Tα(Z1, . . . , ZN) has approximately a χ2 distribution with 1 degree of freedom.If a hypothesis H0 : α ∈ A with A ⊂ [0, π) is not true, then the maximum simpli
ialdepth within A, i.e. maxα∈A dS(α, (Z1, . . . , ZN)) should be low. This means that

maxα∈A Tα(Z1, . . . , ZN) should be high. Hen
e we have the following asymptoti
test, if χ2
1(γ) denotes the γ-quantile of the χ2 distribution with 1 degree of freedom.16



Corollary 1 The test given by
II{max

α∈A
Tα(Z1, . . . , ZN) > χ2

1(0.95)}

= II

{
max
α∈A

dS(α, (Z1, . . . , ZN)) <
1

2
+

1 − χ2
1(0.95)

2N

}is an asymptoti
 0.05-level test for H0 : α ∈ A against H0 : α /∈ A.
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Figure 2: 20 simulated data around a line with π/3 and 20 simulated data arounda line with π/3 + π/2, upper row: original data with depth fun
tion, lower row:transformed data with depth fun
tion4.2 Further 
he
ks for orthogonality of a distributionWe 
an only reje
t null hypotheses with statisti
al tests. But we are not able to verifya null hypotheses. Moreover, for distributions whi
h are orthogonal and 
ontinuous,the simpli
ial depth has the same value for all angles a

ording to Theorem 1.Hen
e data 
oming from su
h a distribution will behave similarly. In parti
ular, we
annot distinguish the two angles, whi
h provide the two orthogonal lines aroundwhi
h the data are distributed, from other angles. See the upper row of Figure 2whi
h shows the simulated data on the left hand side and the 
orresponding depthfun
tion on the right hand side. Thereby, the depth fun
tion is only plotted on
[0, π/2), sin
e the depth fun
tions are the same for α and α+π/2. The dashed linesin the left hand plot and the right hand plot display the deepest lines and deepestangle, respe
tively, given by the maximum simpli
ial depth estimate. For the dataof Figure 2, the maximum simpli
ial depth estimate is 0.751, although the data weregenerated around α0 = π/3 = 1.047198 and π/3 + π/2.17
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Figure 3: 30 simulated data around a line with π/3 and 10 simulated data arounda line with π/3 + π/2, upper row: original data with depth fun
tion, lower row:transformed data with depth fun
tionBut, as soon as the majority of the data is distributed around one line given by α0as in the upper row of Figure 3, then there is peak of the depth fun
tion 
lose to
α0. This peak is the more pronoun
ed the larger the proportion of the majority ofthe data is.This leads to the following idea: If the data are distributed around two orthogonallines, then they 
an be mapped to the area around one of this two lines. Thesemapped data will have then a pronoun
ed peak 
lose to α0. However, the p-valueof testing H0 : α ∈ [α0 − η, α0 + η] for these mapped data is the same as before sothat a se
ond test makes no sense.Therefore, we propose the following pro
edure for 
he
king whether the data aredistributed around two orthogonal lines given by α0 and α0 + π/2:Step 1 Test H0 : α ∈ [α0 − η, α0 + η]∪ [α0 +π/2− η, α0 +π/2+ η] for some η < π/4with the test given in Corollary 1. If the hypothesis is not reje
ted, then
ontinue with Step 2.Step 2 Rotate the data and the line given by α0 with respe
t to π/4 − α0 so thatthe line given by α0 be
omes the line with angles π/4.Step 3 Mirror the rotated data at the x- and y-axis so that all data end up inthe positive quadrant, i.e. ea
h data point (xn, yn)⊤ be
omes a data point

(x̃n, ỹn)
⊤ ∈ [0,∞)2.Step 4 Rotate the new data (x̃1, ỹ1)

⊤, . . . , (x̃N , ỹN)⊤ with respe
t to α0 − π/4, i.e.do the reverse rotation of Step 2. 18



Step 5 Plot the simpli
ial depth for the rotated new data. If this depth is high forangles inside [α0 − η, α0 + η] ∪ [α0 + π/2 − η, α0 + π/2 + η] and small outside
[α0 − η, α0 + η] ∪ [α0 + π/2 − η, α0 + π/2 + η], then the data are distributedaround the two lines given by α0 and α0 + π/4.The lower rows of Figure 2 and Figure 3 show the transformed data with the 
or-responding depth fun
tions. The dashed lines display again the deepest lines andangles, while the dotted lines indi
ate the lines given by α0−π/4 and α0 +π/4. Fig-ure 2 and Figure 3 show that the transformed data have a mu
h more pronoun
edpeak. The horizontal lines on the right hand sides of these �gures indi
ate the 
rit-i
al values for the 0.05-level tests, i.e. their heights are given by 1

2
+

1−χ2
1
(0.95)

2 N
. Inboth examples, the p-value for testing H0 : α = π

3
is 1.
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Figure 4: Image at Time 3 with all dete
ted 
ra
ks (upper row) and Image at Time10 with 
ra
ks longer than 30 pixels (lower row)5 Appli
ation to the analysis of 
ra
k orientationThe pro
edure proposed in Se
tion 4.2 is used for analyzing the orientation of mi
ro
ra
ks. The left hand side of Figure 4 shows two images of a small probe under19



strain where the strain is given in verti
al dire
tion. One image was taken at theearly time point 3 and the other image was taken at a later time point 10. Thereby,a time point t means t · 1000 load 
y
les. With the time, more and more mi
ro
ra
ks are visible and the 
ra
ks be
ome longer. The right hand side of Figure 4shows the 
ra
ks whi
h were dete
ted by the R pa
kage des
ribed in Gunkel et al.(2009) using a threshold value of 180. For time point 10, only 
ra
ks longer than 30pixels were plotted. The 
ra
k orientations of the plotted 
ra
ks were obtained byusing the di�eren
e of the start and end points of the 
ra
k paths. They are shownin the left upper 
orners of Figure 5 and 6.
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Figure 5: Cra
k orientations at Time 3, upper row: original data with depth fun
-tion, lower row: transformed data with depth fun
tionTo test the hypothesis that small 
ra
ks have an orientation whi
h has an angle of 45◦and 135◦ to the strain, the pro
edure proposed in Se
tion 4.2 is used. We also testedthe hypothesis that longer 
ra
ks have an orientation perpendi
ular to the strain. I.e.for small 
ra
ks, the hypothesis is HA
0 : α ∈ [π/4− η, π/4+ η]∪ [3π/4− η, 3π/4+ η],and for longer 
ra
ks, we have HB

0 : α ∈ [0 − η, 0 + η]. We used η = 0.05.The p-value for HA
0 is 1 for the 
ra
ks at time point 3 and 0.03442 for the longer
ra
ks at time point 10. Hen
e the longer 
ra
ks are not oriented in 45◦ dire
tionto the strain.However, for the 
ra
ks at time point 3, we 
an pro
eed with the Steps 2 to 5.The result is shown in Figure 5: The depth fun
tion in the upper row is more orless 
onstant whi
h speaks for an orthogonal distribution. The lower row shows thedepth fun
tion for the data transformed a

ording to HA

0 . The maximum depthestimate is 0.785 whi
h is exa
tly π/4. This supports the hypothesis that small
ra
ks are oriented in 45◦ dire
tion to the strain. However, the peak at π/4 is not verypronoun
ed. This indi
ates that several small 
ra
ks have also other orientations.20
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Figure 6: Cra
k orientations at Time 10, upper row: original data with depthfun
tion, middle row: data transformed a

ording to HA
0 with depth fun
tion, lowerrow: data transformed a

ording to HB

0 with depth fun
tionFor 
omparison, Figure 6 shows the depth fun
tion for data from time point 10. Themiddle row of this Figure shows the data transformed a

ording to hypothesis HA
0 .There is a peak, but the peak is not 
lose to π/4.The p-value for testing HB

0 is 1. The maximum depth estimate for the original datashown in the upper row of Figure 6 is 0.038 indi
ating an orientation perpendi
ularto the strain. However, the peak at the estimate is not very pronoun
ed. Thelower row of Figure 6 shows the results when the data are transformed a

ordingto Hypothesis HB
0 . The peak 
lose to 0 is now more pronoun
ed supporting HB

0for longer 
ra
ks. But the fa
t that the peak for the transformed data is morepronoun
ed than for the original data indi
ates that there exist also many 
ra
kswith other orientations.A
knowledgment. We thank Prof. Dr. Angelika Brü
kner-Foit, Mi
hael Besel, andFrank Zeismann from the Institute for Materials Engineering of the University of21



Kassel for providing us the series of images and for the dis
ussions about 
ra
kbehavior.AppendixProof of Theorem 2 a)Assume {z1, . . . , zN} ⊂ L1(α) or {z1, . . . , zN} ⊂ L(α). Consider z̃ = (z̃1, z2, . . . , zN) ∈
Z1(z) with z̃1 = λ(cos(α̃), sin(α̃))⊤ with α 6= α̃ 6= α + π/2. Then

N∑

n=2

res(α̃, zn)
2 = K > 0 and sin(α) cos(α̃) − cos(α) sin(α̃) 6= 0.Set λ2 > K/(sin(α) cos(α̃) − cos(α) sin(α̃))2. Then

res(α̃, z̃1)
2 +

N∑

n=2

res(α̃, zn)2 = K

< λ2(sin(α) cos(α̃) − cos(α) sin(α̃))2 = res(α, z̃1)
2 +

N∑

n=2

res(α, zn)2,so that α̂LS(z̃) 6= α. Repla
ing the squares by absolute values provides also theproof for the L1 estimator.2Proof of Theorem 2 b)(i) At �rst, assume {z1, . . . , zN} ⊂ L1(α).Let be M <
⌈

N
2

⌉ and z̃ ∈ ZM(z) arbitrary. Then we have zeroz̃(α) ≥ N −M > N
2so that

dT (α, z̃) =
1

N
min {posz̃(α) + zeroz̃(α), negz̃(α) + zeroz̃(α)} > N

2
.If α̃ /∈ {α, α + π/2} then posz̃(α̃) ≥ zeroz̃(α) > N

2
or negz̃(α̃) ≥ zeroz̃(α) > N

2
. Inthe �rst 
ase, we obtain negz̃(α̃) + zeroz̃(α̃) < N

2
and in the se
ond 
ase posz̃(α̃) +

zeroz̃(α̃) < N
2
. Hen
e, we have dT (α̃, z̃) < N

2
in both 
ases so that α̂T (z̃) ∈ {α, α +

π/2}.Now let M ≥
⌈

N
2

⌉. Chose z̃ su
h that z̃n = zn for n = 1, . . . , N −M and z̃n =
(cos(α̃), sin(α̃))⊤ for n = N −M +1, . . . , N and α̃ /∈ {α, α+π/2}. Then z̃ ∈ ZM(z)and zeroz̃(α̃) ≥ M ≥ N

2
. With the same arguments as above, we obtain dT (α, z̃) ≤

N
2
≤ dT (α̃, z̃) so that there exists an estimator α̂T (z̃) /∈ {α, α+ π/2}.(ii) Assume {z1, . . . , zN} ⊂ L(α).Let beM <

⌈
N
3

⌉ and z̃ ∈ ZM (z) arbitrary. Then we have a := zeroz̃(α) ≥ N−M >
2N
3

so that
dT (α, z̃) >

1

N

2N

3
.Set b := zeroz̃(α̃) for α̃ /∈ {α, α + π/2}. Then it holds b ≤ N − a and negz̃(α̃) +

posz̃(α̃) = N − b, so that min{negz̃(α̃), posz̃(α̃)} ≤ N−b
2
. This implies

dT (α̃, z̃) ≤ 1

N

(
b+

N − b

2

)
=

1

N

(
N + b

2

)
≤ 1

N

(
2N − a

2

)

<
1

N

(
2N − 2

3
N

2

)
=

1

N

2N

3
< dT (α, z̃)22



so that α̂T (z̃) ∈ {α, α+ π/2}.Now let M ≥
⌈

N+1
3

⌉. Then {z1, . . . , zN} ⊂ L(α), z̃ ∈ ZM(z), and α̃ /∈ {α, α + π}
an be 
hosen so that zeroz̃(α) = N −M , negz̃(α) = 0, zeroz̃(α̃) = M , negz̃(α̃) ≥
N−M−1

2
≤ posz̃(α̃). This 
hoi
e provides
dT (α, z̃) =

1

N
(N −M) ≤ 1

N

(
N − N + 1

3

)
=

1

N

(
2

3
N − 1

3

)
,

dT (α̃, z̃) ≥ 1

N

(
M +

N −M − 1

2

)
=

1

N

(
N +M − 1

2

)

≥ 1

N

(
N + N+1

3
− 1

2

)

=
1

N

(
2

3
N − 1

3

)so that an estimator α̂T (z̃) exists with α̂T (z̃) /∈ {α, α+ π/2}. 2Proof of Theorem 2 
)(i) At �rst, assume again {z1, . . . , zN} ⊂ L1(α).Let be M <
⌈

N
2

⌉ and z̃ ∈ ZM(z) arbitrary. Set again a := zeroz̃(α) so that
a ≥ N − M > N

2
and negz̃(α) + posz̃(α) = N − a. Then we have a

ording toLemma 2

dS(α, z̃)

=
2 negz̃(α)posz̃(α) + 2(negz̃(α) + posz̃(α))zeroz̃(α) + zeroz̃(α)(zeroz̃(α) − 1)

N(N − 1)

≥ 1

N(N − 1)
(2(N − a)a + a(a− 1)) =

1

N(N − 1)
(2Na− a2 − a). (5)Let be α̃ /∈ {α, α+π/2} arbitrary. Then we have without loss of generality negz̃(α̃) =

a+ b with b ≥ 0, posz̃(α̃) = c ≥ 0, zeroz̃(α̃) = N − (a+ b+ c) so that
N(N − 1)dS(α̃, z̃)

= 2(a+ b)c + 2(a+ b+ c)(N − (a + b+ c))

+ (N − (a+ b+ c))(N − (a+ b+ c) − 1)

= 2(a+ b)c + 2(a+ b+ c)N − 2(a + b+ c)2

+ N2 −N(a + b+ c) −N −N(a + b+ c) + (a + b+ c)2 + (a+ b+ c)

= 2(a+ b)c− (a+ b+ c)2 +N2 −N + (a+ b+ c)

= 2(a+ b)c− (a+ b)2 − 2(a+ b)c− c2 +N2 −N + (a + b+ c)

= −(a + b)2 + (a+ b) − c2 + c+N2 −N

=: f(b) =: g(c).Sin
e f ′(b) = −2(a + b) + 1 ≤ 0 if and only if b ≥ 1
2
− a and 1

2
− a < 0, thefun
tion f is de
reasing on [0,∞) so that it attains its maximum at b = 0. Sin
e

g′(c) = −2c + 1 ≤ 0 if and only if c ≥ 1
2
and c ∈ IN , the fun
tion g is de
reasing on

[0,∞) as well so that it attains its maximum at c = 0. This implies
N(N − 1)dS(α̃, z̃) ≤ −a2 + a+N2 −N. (6)23



Sin
e
−a2 + a +N2 −N < 2Na− a2 − a

⇐⇒ N2 −N < 2Na− 2a⇐⇒ N2 −N < a(2N − 2)

⇐⇒ a >
N(N − 1)

2(N − 1)
=
N

2
(7)and a > N

2
, we have dS(α̃, z̃) < dS(α, z̃) for all α̃ /∈ {α, α + π/2} so that α̂S(z̃) ∈

{α, α+ π/2}.If M ≥
⌈

N
2

⌉, then we 
an 
hoose z̃ ∈ ZM(z) and α̃ /∈ {α, α + π/2} su
h that
a = N−M ≤ N

2
and equality holds in (5) and (6). In parti
ular we have negz̃(α̃) = a,

posz̃(α̃) = 0, zeroz̃(α̃) = N − a. Then a ≤ N
2
implies a

ording to (7) dS(α̃, z̃) ≥

dS(α, z̃) so that an estimator α̂S(z̃) exists with α̂S(z̃) /∈ {α, α+ π/2}.(ii) Now, assume {z1, . . . , zN} ⊂ L(α).Let be M <
⌈
−N + 2 +

√
2N2 − 6N + 4

⌉ and z̃ ∈ ZM (z) arbitrary. Set again
a := zeroz̃(α) so that a ≥ N −M > 2N − 2−

√
2N2 − 6N + 4, negz̃(α)+posz̃(α) =

N − a, and inequality (5) holds. Let be α̃ /∈ {α, α + π/2} arbitrary. Then wehave negz̃(α̃) + posz̃(α̃) = a + b with b ≥ 0 and zeroz̃(α̃) = N − (a + b) so that
negz̃(α̃)posz̃(α̃) ≤

(
a+b
2

)2 and
N(N − 1)dS(α̃, z̃)

≤ 2

(
a+ b

2

)2

+ 2(a+ b)(N − (a + b)) + (N − (a + b))(N − (a + b) − 1)

=
1

2
(a+ b)2 + 2(a+ b)N − 2(a+ b)2

+ N2 −N(a + b) −N −N(a + b) + (a+ b)2 + (a+ b)

= −1

2
(a + b)2 +N2 −N + (a+ b)

=: f(b).Sin
e f ′(b) = −(a + b) + 1 ≤ 0 if and only if b ≥ 1 − a and 1 − a ≤ 0, the fun
tion
f is de
reasing on [0,∞) so that it attains its maximum at b = 0. This implies

N(N − 1)dS(α̃, z̃) ≤ −1

2
a2 + a+N2 −N. (8)Sin
e

−1

2
a2 + a+N2 −N < 2Na− a2 − a

⇐⇒ 1

2
a2 + 2a+N2 −N − 2Na < 0

⇐⇒ a2 + 4a+ 2N2 − 2N − 4Na < 0

⇐⇒ a2 − a4(N − 1) + 2N2 − 2N < 0

⇐⇒ a > 2(N − 1) −
√

4(N − 1)2 − 2N2 + 2N and
a < 2(N − 1) +

√
4(N − 1)2 − 2N2 + 2N

⇐⇒ a > 2(N − 1) −
√

4N2 − 8N + 4 − 2N2 + 2N and
a < 2(N − 1) +

√
4N2 − 8N + 4 − 2N2 + 2N

⇐⇒ a > 2N − 2 −
√

2N2 − 6N + 4 and
a < 2N − 2 +

√
2N2 − 6N + 4 (9)24



and N ≥ a > 2N − 2 −
√

2N2 − 6N + 4, we have dS(α̃, z̃) < dS(α, z̃) for all α̃ /∈
{α, α+ π/2} so that α̂S(z̃) ∈ {α, α+ π/2}.If M ≥

⌈
−N + 2 +

√
2N2 − 6N + 5

⌉, then we 
an 
hoose {z1, . . . , zN} ⊂ L(α),
z̃ ∈ ZM(z) and α̃ /∈ {α, α+π/2} su
h that a = N −M ≤ 2N−2−

√
2N2 − 6N + 5,equality holds in (5) and negz̃(α̃) = a

2
= posz̃(α̃) if a is even and negz̃(α̃) = a+1

2
,

posz̃(α̃) = a−1
2
, respe
tively, if a is odd. If a is even, then equality holds in (8) aswell. Then a ≤ 2N−2−

√
2N2 − 6N + 4 implies a

ording to (9) dS(α̃, z̃) ≥ dS(α, z̃)so that an estimator α̂S(z̃) exists with α̂S(z̃) /∈ {α, α + π/2}. If a is odd, then wehave analogously to (9)

dS(α̃, z̃) ≥ dS(α, z̃) (10)
⇐⇒ 2

(
a+ 1

2

)(
a− 1

2

)
+ 2a(N − a) + (N − a)(N − a− 1) ≥ 2Na− a2 − a

⇐⇒ 1

2

(
a2 − 1

)
+ 2aN − 2a2 +N2 −Na−N −Na+ a2 + a ≥ 2Na− a2 − a

⇐⇒ −1

2
a2 − 1

2
+ a+N2 −N ≥ 2Na− a2 − a

⇐⇒ 1

2
a2 + 2a+N2 −N − 2Na− 1

2
≥ 0

⇐⇒ a2 − a4(N − 1) + 2N2 − 2N − 1 ≥ 0

⇐⇒ a ≤ 2N − 2 −
√

2N2 − 6N + 4 + 1 or
a ≥ 2N − 2 +

√
2N2 − 6N + 4 + 1.Sin
e a ≤ 2N − 2 −

√
2N2 − 6N + 5, the inequality (10) is satis�ed so that also inthis 
ase an estimator α̂S(z̃) exists with α̂S(z̃) /∈ {α, α+ π/2}.2Referen
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