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Abstract

This paper studies tangential and simplicial data depth for orthogonal
regression through the origin. For both depth notions, it is proved that or-
thogonal lines have the same depth. As robustness measure of maximum
depth estimators, exact-fit points for one line and for two orthogonal lines are
defined and calculated. Since the simplicial depth has a simple asymptotic
distribution, tests can be easily derived. These tests are used for checking
whether data are distributed around two orthogonal lines. But since distri-
butions which are invariant with respect to rotations with angle of 7/2 have
constant depth functions, the tests can only be used to reject the hypothesis
of a distribution around two orthogonal lines. To verify such a hypothesis, it
is proposed to transform the data appropriately and then to check the depth
function for the transformed data. This approach is applied to check whether
micro cracks have an orientation of approximately 45° and 135° to strain in
an initial stage.

Keywords: Orthogonal regression through the origin; Tangential data depth; Sim-
plical data depth; Statistical tests; Crack orientation

1 Introduction

The understanding of crack initiation and crack growth is very important for pre-
dicting the life time of products as wheels of trains or hip replacement. Many
experiments in which material was exposed specific strains were done in the past.
Thereby photos of small cracks which can be analyzed with modern methods of
pattern recognition (see e.g. Fletcher et al. (2003), Iyer and Sinha 2005, Fujita et
al. 2006, Gunkel et al. 2009) were also obtained by microscopes. This provides the
possibility to analyze a huge amount of crack data. While the growth of large cracks
(macro cracks) follows more or less the deterministic mechanical laws described e.g.
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in Pook (2000) and Ludwig et al. (2003), the small cracks (micro cracks) show much
more a random behavior which must be described by probabilistic laws. Some first
attempts can be found in Thara and Tanaka (2000) and Briickner-Foit et al. (2003).
However, probabilistic laws should be validated by data.

In this article, a new statistical method is described for validating the following
hypothesis about the orientation of micro cracks:

A) In an initial stage of the growing process, a micro crack has an orientation
with an angle of approximately 45° or 135° (7/4 or 37/4) with respect to the
strain.

B) When a micro crack becomes a macro crack, its orientation is tending to an
orientation perpendicular to the strain.

These hypotheses were checked up to now only by a qualitative analysis regarding
selected cracks (see Besel et al. 2008, Besel and Briickner-Foit 2008, Briickner-Foit
and Huang 2008). Here, we in particular show how Hypothesis A) can be verified
statistically.

Since orientations are circular, the simple mean of the observed angles is a misleading
quantity. The only paper which deals with statistical analysis of crack orientations,
the paper of Mann et al. (2003) concerning cracks in cemented femoral components,
uses circular statistics given by Fisher (1995) and Zar (1999). A mean crack angle

is calculated there as tan™! <%) where myg;, is the mean of sin(«,) and mg; is
COS

the mean of cos(a,) when «,, are the angles of the cracks. With this statistic, it is
tested whether the distribution of the angles is uniform distributed and whether the
angles in different regions have the same distribution.

But every mean is sensitive to outlying observations. Hence the mean should be
replaced by the median. But every mean angle and median angle have the disad-
vantage that they do not take the length of the cracks into account. Using orthogonal
regression through the origin, also the length of the cracks has an impact. In par-
ticular, longer cracks have more influence than short cracks, an important property
since small cracks are often falsely detected cracks or caused by impurities of the
material. While one generalization of the median for regression, the L; regression
estimator is not outlier robust (see He et al. 1990, Mizera and Miiller 1999), an-
other generalization of the median which is based on data depth leads to outlier
robust regression estimators. This was shown by Rousseeuw and Hubert (1999) for
classical linear regression and by Wellmann and Miiller (2008b) for orthogonal re-
gression with intercept. Moreover, Wellmann and Miiller (2008b) found in examples
that often two orthogonal lines with intercepts have the same data depth. This is a
welcome property in view of Hypothesis A). Hence, in this paper we study the data
depth for orthogonal regression without intercept. In this special case, we can also
give a proof for the observed property that orthogonal lines have the same depth.

Using simplicial data depth, also statistical tests can be derived. This was done by
Miiller (2005) and Wellmann et al. (2009) for polynomial regression, by Wellmann
and Miiller (2008a) for multiple regression, and by Wellmann and Miiller (2008b) for
orthogonal regression with intercept. For regression with intercept, the asymptotic
distribution of the simplicial depth is given by an infinite sum of independent -
distributed random variables. But here we show that the asymptotic distribution is
given only by one y2-distributed random variable if there is no intercept.



The paper is organized as follows. Section 2 provides preliminaries about orthogonal
regression and data depth. In Section 3, two depth notions, tangential depth and
simplicial depth, are characterized for orthogonal regression without intercept. Some
properties of these depth notions for special distributions, in particular for so-called
orthogonal distributions, are shown as well. Exact-fit points for one line and for two
orthogonal lines are defined as robustness measure and are derived for estimators
maximizing the tangential and simplicial depth.

Section 4 deals with the problem of verifying the hypothesis that data are distributed
around two orthogonal lines, e.g. the Hypothesis A) for cracks. It is shown that tests
based on simplicial depth can reject such hypotheses. But they cannot distinguish
between other orthogonal distributions. Therefore an approach using transformed
data is proposed for the verification. This approach is applied on crack data in
Section 5.

2 Preliminaries

2.1 Classical estimators

Least squares estimators and L estimators for orthogonal regression through the
origin can be defined as in classical linear regression by minimizing the sum of
squared and absolute residuals. The difference to classical linear regression is the
definition of the residuals.

For defining the residuals, it is important to note that a line through the origin in
IR? can be expressed in different ways: as slope § € IR, as angle a € [0, 7) between
the line and the x-axis, and as vector a = (a1,ay)" € IR? so that {\a; A\ € IR}
contains all points of the line. Preferable, a should satisfy ||a|| = 1. The connections
between these representations are the following;:

a = (cos(a),sin(a))’, B =as/a; = tan(a).

In orthogonal regression, the residuals for a given line are given by the length of the
difference between the data point z, = (z,,,y,)" and its perpendicular projection to
the line. The perpendicular projection of z, to a line given by a is

a'z, a if |a|| = 1.

Hence the absolute residuum is res(a, z,,) := ||z, — a' 2, al|. Let
[ cos(o) sin(a)
Ala) = ( —sin(a) cos(a) ) (1)

the rotation matrix which rotates the vector a = (cos(a),sin(a))’ to the point
(1,0)7, i.e. A(a)a = (1,0)". Then the squared absolute residuum satisfies

res(a, zn)? = ||zn — a2, al|?

= (2 —a'z,a)"Ala)TA(a) (2, — a' 2, a)
= [[A(a) 2, — (A(a) a) " Ae) 2 A(e) al|*
_ ’ ( cos(a)z, + sin(a)y,) ) B ( cos(a)z, + sin(a)y,) )

— sin(a)x, + cos(a)ys, 0
= (sin(e)zy — cos(@)ya)” = |z, " |1%,
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where a* = (sin(a), — cos(a)) " is the unit vector orthogonal to a. Hence we can set
for the residuum also

res(q, z,) = sin(a)x, — cos(a)y,. (2)

This second representation of a residuum has the advantage that a derivative with
respect to a can be easily calculated. This can be used to calculate the least squares
estimator by Newton’s method.

Definition 1

a) The least squares estimator & (LS) for the angle o at z = (21, ..., 2N) is defined
as
N
ars(z) € arg min res(a, 2,)°.
a€l0,m)

b) The Ly estimator & (L1) for the angle a at z = (z,...,2zn) is defined as

N
ari(z) € arg min) Z [res(av, z,)].
n=1

acl0,m

2.2 Data depth

The L estimator which minimizes the sum of absolute residuals is one possibility
to generalize the outlier robust median to regression. However, this generalization
does not lead to outlier robust regression estimators.

Another possibilty to generalize the median to regression is data depth. Tukey (1975)
used the half space depth d to generalize the median to multivariate data in IR9.
The depth d(u, z) of a location parameter 1 € IR? in a sample z = (z1,..., zy) in IR?
is the minimum number of observations zq,..., zy lying in a half space containing
p. The parameter p which maximizes d(u, z) is the generalization of the median.
Rousseeuw and Hubert (1999) generalized the half space depth to linear regression
by introducing the notion of a nonfit:

Definition 2 (Original definition of a nonfit) A regression parameter 3 is a
nonfit for z,...,zn if there is another parameter B so that the residuals res(ﬁ, Zn)
satisfy

res(ﬁ, 2n)? < res(B, 2,)? for n=1,... N,

which means that the regression function given by B is closer to the data points
21,...,2y € IR? than the regression function given by [3.

Then the regression depth dg(/3, z) of the regression parameter 3 in the data set
21,...,2n is the minimum number M of observations z,,, ..., z,,, which must be
removed so that § becomes a nonfit in {z1,....2x} \ {201y 20y |

The original Definition 2 is difficult to handle. Therefore a tangential version is
usually used:



Definition 3 (Tangential version of a nonfit) A regression parameter 5 € IR?
is a nonfit for z, ..., zy if there exists a vector u € IR? with

0
u' —=res(f,2,)2 <0 for n=1,..., N.

9B

For classical linear regression, where the residuals are linear in 3, the two definitions
are identical. But Mizera (2002) pointed out that there are many situations where
they are different. He called a depth based on Definition 2 global depth and a depth
based on Definition 3 tangential depth. Then the tangential depth dr(5,z) of a
parameter 3 € IR? in zy, ..., zy has the following simple definition

1 . 0
dr(B,z) = Nogé%q tH{ne{l,...,N}; u' %res(ﬁ, z,)? > 0},

where # denotes the cardinality of a set.

However, any tangential depth has the disadvantage that it is difficult to derive
its finite sample distribution and its asymptotic distribution so that tests based
on it are difficult to define. Only few approaches exist for regression depth for
classical regression. Bai and He (1999) only derived an implicitly given asymptotic
distribution of the maximum regression depth estimator while Van Aelst et al. (2002)
derived an exact test based on the regression depth only for linear regression. The
development of tests becomes much easier by using the simplicial depth.

Simplicial depth of a multivariate location parameter p € IR? was introduced by Liu
(1988, 1990) using the half space depth d of Tukey (1975). She defined it as

dstos ) = () S Hdn Gz ) > 0h (3)

+1
q 1<ni<na<..<ngp1<N

where II denotes the indicator function. This depth counts the simplexes spanned
by ¢+ 1 data points which are containing the parameter y. Replacing the half space
depth d by any other depth notion leads to a very general concept of simplicial
depth. Any notion of simplicial depth has the advantage that it is an U-statistics and
for U-statistics the asymptotic distribution is in principal known from Hoeffding’s
theorem (see e.g. Lee 1990, p. 79, 80, 90). This advantage was used in Miiller
(2005), Wellmann (2007), Wellmann et al. (2009), Wellmann and Miiller (2008a)
to derive distribution free tests for polynomial and multiple regression. See also
Wellmann et al. (2007) for the calculation of maximum simplicial depth.

3 Depth estimators for orthogonal regression through
the origin

3.1 Depth notions for data

Global and tangential depth are for example different for orthogonal regression as
Mizera (2002) already noticed and which was worked out by Wellmann (2007) and



Wellmann and Miiller (2008b). Wellmann (2007) and Wellmann and Miiller (2008b)
considered only orthogonal regression for lines with intercept. In this case, also the
use of the tangential depth is rather complicated.

For orthogonal regression through the origin, everything becomes much more simple.
At first note that the derivative of the residuals are given by

3}
—_— 2 — — (g1 — 2
e res(a, z,) 5 (sin(a)x, — cos(a)y,)

= 2(sin(a)z, — cos(a)y,) (cos(a)z, + sin(a)y,) = —2 Ag(a)Tzn Al(a)Tzn,
where A;(a)" and A;(a)" are the rows of the rotation matrix A(a) given in (1), i.e.

-
Ala) = ( ﬁ; EZ;T ) . Hence tangential depth for orthogonal regression through the

origin can be defined as follows.

Definition 4 (Tangential depth for orthogonal regression through the ori-
gin)
The tangential depth dr(c, 2) of an angle « € IR in zy, ..., zy € IR? is defined as

dr(a, z) = %min{ﬂ{n; Ag(a) 2, Ar(a) 2, > 0}, #{n; As(a)" 2, Ai(a)"z, <0}

For o = 0, i.e. for a horizontal line, we obtain

dr(0,2) = min{s{n: 2,9, > 0}, 5{n: 2.y, < 0}).

This is the same definition of the depth of a horizontal line as for classical regression
through the origin. However, for other lines the definitions are different since for
classical regression through the origin the derivative of the residuals is

_ 9

Spres(fsa)?
Definition 4 for orthogonal regression can be interpreted as follows: The data are
rotated with the rotation matrix A(a) so that the line given by « is the horizontal
line. Then the tangential depth for classical regression through the origin is used
for the horizontal line and the rotated data. This interpretation was also used by
Wellmann and Miiller (2008b) for orthogonal regression for a line with intercept.

— B2,)? =2 (Y — Ban) Tn.

Lemma 1 Orthogonal lines have the same depth, i.e.

dr(a, z) =dp(a+7/2, 2).

Proof. The assertion follows from

9 2
a—ares(a +7/2,2,)

= 2(sin(a+ 7/2)x, — cos(a + 7/2)y,) (cos(a + 7/2)x,, + sin(a + 7/2)y,)
= 2(cos()x, + sin(a)yy,) (— sin(a)z,, + cos(a)y,)

= —a—ares(a, 2,)%.0



That orthogonal lines have the same tangential depth was also observed by examples
in Wellmann and Miiller (2008b) for orthogonal regression for a line with intercept.
A proof was not given there. The examples in Wellmann and Miiller (2008b) also
showed that this property is not satisfied for the global depth so that global depth
for orthogonal regression through the origin should have the same property.

To derive tests, the simplicial depth based on the tangential depth given by Defini-
tion 4 is introduced here as well.

Definition 5 (Simplicial depth for orthogonal regression through the ori-
gin)
The simplicial depth ds(c, 2) of an angle o € R in zy, ..., zy € IR? is defined as

ds(a,(zl,...,zN)):(g) > I{dr(a, (2n,, 20,)) > 0},

1<ni<n2<N

Lemma 2 The simplicial depth for orthogonal regression through the origin satisfies
ds(Oé, (21, ey ZN))

_ (J;[ ) B (negz(a)posz(oc) + neg, (a)zero, (@) + pos, (a)zero. (a) + (ZerOQZ (0‘)))

where
neg.(a) = #{n; Ai(a) 2, As(a) 2, < 0},

pos, («) #{n; Ai(a)z, Ay(a)' 2z, > 0},
zero,(a) = #{n; Ai(a)' 2, Ay(a) 2, = 0}.

Proof. Since

dT(av (Zm’ 2712)) =0
if and only if A;(a)"2,, As(a)"z,, and Aj(a)"2,, As(a)"z,, are both positive or
both negative we have

dr(a, (Zn,, Zny)) > 0
if and only if A;(a)"2,, As(a)"2,, and A;(a)' z,, As(a)' 2, have different signs or
at least one of them is zero. Hence, the assertion follows. O

Since orthogonal lines have the same tangential depth for orthogonal regression
through the origin, they have also the same simplicial depth, i.e. we have dg(a, 2) =
ds(a+m/2, 2).

3.2 Depth notions for distributions

It is straightforward to generalize the tangential depth given in Definition 4 to
arbitrary distributions P? where Z is an arbitrary random variable on IR?.



Definition 6 (Tangential depth for distributions)
The tangential depth dr(c, P?) of an angle o € IR at distribution PZ is defined as
dr(a, P?) = min {PZ({Z € R* Ay(a)"z Ai(a)"z > 0}),
PZ({Z € B2; A2(a Tzn Al(a)Tzn S O})} :

To generalize the simplicial depth given in Definition 5 to distributions, note that

1

ds(e, (21, ..., 2x)) = N0 > I{dr(, (20, 20,)) > 0}.
n1#n2

Definition 7 (Simplicial depth for distributions)
The simplicial depth ds(c, P?) of an angle o € IR at distribution PZ is defined as

ds(Oé, PZ) - PZLZQ({(Zla 22)) dT(av (Zl7 22)) > O})7

where Zy and Zy are independent random variables with P%' = P%? = PZ,
The following lemma is analogous to Lemma 2.

Lemma 3 The simplicial depth at distribution P? satisfies

ds(a, (21, ..., z2v)) = 2 P#(Neg(a)) P?(Pos(a))
+ 2 P?(Neg(a)) P?(Zero(a)) 4 2 P#(Pos(a)) P?(Zero(a)) 4+ P?(Zero(a))?,

where

Neg(a) = {z€ R?* Ai(a)" 2z Ay(a) 2z <0},
Pos(a) = {ze€ R* Ai(a) 2A5(a)"z > 0},
Zero(a) = {z€ IR?* Aj(a)'zAy(a)" 2z =0}

Proof. Since (see the proof of Lemma 2)

P22 ({(21, 22); dr(e, (21, 22)) > 0})
= P??%({(z,2); 21 € Neg(a), z € Pos(a) or z € Neg(a), 2 € Pos(a) or
21 € Neg(a), 29 € Zero(a) or 29 € Neg(a), 21 € Zero(a) or
21 € Pos(a), 29 € Zero(a) or z5 € Pos(a), 21 € Zero(a) or
29 € Zero(av), z1 € Zero(w)}),

the assertion follows from the independence of Z; and Z5. O

As for data, orthogonal lines have the same depth, i.e. dy(a+m/2, P?) = dr(a, P?)
and dg(a + 7/2, P?) = dg(a, P?). But for special distributions, the depth can be
the same for all lines and angles, respectively. We call these special distributions
orthogonal distributions:



Definition 8 P?Z is an orthogonal distribution on IR? if

pZIZIl — pe(2)/llp(2)]

is satisfied for any rotation p about +90°, i.e. for

p=n ()2 36 memeron () -(% 1))

Rotation invariant distributions like the uniform distribution on the two dimensional
circle or disk are orthogonal distributions. But an orthogonal distribution can also
be concentrated on or around two orthogonal lines. Namely, if

Ly = {z € IR* z = \(cos(a),sin(a))" for a € [ag — a1, a0 + ay], A € IR}
and
Ly = {z € IR?; there exists z, € L, with 2"z, = 0}
are areas around two orthogonal lines so that
Pr(Ly) = PO (L)) = PZ(Ly) = P%(Ly) = P"D)(Ly) = PPA)(L,)
and
PZ(LiU Ly) =1,

then PZ is an orthogonal distribution. Such kind of distribution is concentrated on
two orthogonal lines if a; = 0. In this case, only P#(L,) = P?(Ly) and P?(L, U
Ly) = 1 must be checked.

Theorem 1
a) If PZ is an orthogonal distribution and P?/2 is an absolute continuous distrib-
ution, then

1
dr(a, P?) = dg(a, P?) = 5 for all « €[0,m).

b) If PZ is an orthogonal distribution with P (Z = (8)) = 0 which is concentrated
on two lines given by o and ag + 7/2, then

dr(a, P?) = dg(a, P?) =1 for a=ag and o = ay + /2

and
1
dr(a, P?) = dg(a, P?) = 5 for all a € [0,7)\ {a, 0 + 7/2}.

c¢) If P? is a distribution with P (Z = (8)) = 0 which is concentrated on one line
given by ag, then

dr(a, P?) = dg(a, P?) =1 for a=ay and o = og + /2

and
dr(a, P?) = dg(a, P?) =0 forall a€[0,7)\ {ag, g+ 7/2}.



Proof. At first note
dr(a, P?) = min{ P?(Neg(a) U Zero(a)), P?(Pos(a) U Zero(a))}

and P?(Neg(a)) = P?/1Zl(Neg(a)), P?(Pos(a)) = P#/1ZIl(Pos(a)), P?(Zero(a)) =
PZ/2ll(Zero(a)). The orthogonality of PZ and the definitions of A;(a) and Ay(a)
provide

P?(Pos(a)) = P*?)(Pos(a)) = P(Ai(a)" pi(Z) Az(a)" pi1(Z) > 0)

_ (Al(&( 01>ZA2a( O>Z>O)

= P((sin(a), —cos(a))Z (cos(a),sin())Z > 0)
= P(—A3(a)"Z Ay()"Z > 0)
= P(A1(a)"Z Ay(a)TZ < 0) = P#(Neg(a)).

a) If PZ/IZll is an absolute continuous distribution, then

P22l (Zero(a)) = P ( H—gH _ (098(04)) o H—gH _ (— CéS(oz)) o

sin(«) —sin(a)

171~ (Coston) 721 = (ot )) =°
so that P?(Neg(a)) = P?(Pos(a)) = & for all a € [0, 7).

b) If PZ is concentrated on the two lines given by g and ag + 7/2, then

PZN2l(Zero(ag)) = 1 = PZ/121(Zero(ag + 7/2))

and
PZNZl(Zero(a)) =0
for all a« € [0, 7) \ {a, g + 7/2} because of P (Z = ( )) =0.
¢) If P(Z € Ly) =1 with L; = {z € R*; 2 = \(cos(ap),sin(ap))", A € IR} then
P(Ay(ag)Z =0) =1 and P(A;(ag + 7T/2) = 0) = 1 so that PZ(Zero(ao)) =1=
PZ(Zero(ag + 7/2)). For a € [0,7) \ {ag, ap + 7r/2} we obtain

cos(a)\ ' fcos(ap)\ [—sin(a)\ " [cos(ap)
A()T 2 Ay(a) T 2 = N, , .
sin(a) sin(ay) cos(a) sin(ayp)
for all z € Ly which is either positive or negative. Hence it holds either PZ(Pos(a)) =
0 = P?(Zero(a)) or P?(Neg(a)) = 0 = P?(Zero()). O

3.3 Depth estimators

As soon as a depth notion is given, an estimator can be defined as that parameter
with maximum depth. Hence, the tangential and simplicial depth for orthogonal
regression through the origin lead to the following definitions:

Definition 9 (Depth estimators)
a) The tangential depth estimator ar(z) is defined as

ar(z) € arg max dr(a, z).
a€l0,m)

10



b) The simplicial depth estimator as(z) is defined as

as(z) € arg max dg(a, 2).

a€l0,

Note that the tangential and simplicial depth estimators are never unique since
orthogonal lines have the same depth (see Lemma 1). Hence with ar(z) and ag(z),
also ar(z) + m/2 and ag(z) + m/2 are depth estimators.

Figure 1 compares the tangential depth estimator with the least squares estimator,
the L; estimator and the mean of the observed angles in the presence of 30% outliers.
It shows that the least squares estimator as well as the L; estimator are heavily
influenced by the outliers. The tangential depth estimator provides two lines: one
which follows the majority of the data and one orthogonal to the other line. This
orthogonal line is close to the line given by the mean of the angles. Hence the mean
provides a line which is also far away from the majority of the data.

Data from angle 0 with 30% outliers
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Figure 1: Tangential depth estimator compared with mean angle, LS and L1 estimate
for data with outliers

To quantify the outlier robustness of the estimators, a robustness measure shall be
used. A well known robustness measure is the breakdown point of Donoho and
Huber (1983). But the breakdown point makes only sense if the parameter space
is bounded by infinity or some other bounds so that convergence to such bounds
means breakdown. But considering angles, the parameter space is circular so that
no bound exists. However, the exact-fit point defined in Ellis and Morgenthaler
(1992) can be used which has in other cases a strong relation to the breakdown
point. To define the exact-fit point for orthogonal regression through the origin, let
be L(«) := Li(a) U Lo(cx), where

Li(a) == {z € IR* z = X(cos(a),sin(a))" for X\ € IR}

11



and
Ly(a) := {z € IR*; there exists z, € L;(a) with 2"z, = 0}.

We distinguish between two exact-fit properties: one where all data are lying on one
line through the origin, i.e. z, € Li(a) forn =1,..., N, and one where all data are
lying on two orthogonal lines, i.e. z, € L(a) forn=1,..., N.

Definition 10 (Exact-fit point for orthogonal regression through the origin)
The fit point of an estimator & for a at a sample z = (21, ...,2zyN) is defined as

1
e(a,z) = —=min{M; there exists Z € Zy;(z) such that a(Z a(z),a(z)+x/2}},
N

Zyu(z) = {(Z1,...,2n); there exists my,...,my_n
such that z,, = Z,, fori=1,...,N — M}.

a) The exact-fit point for one line of an estimator a for « is defined as
e*(@) = min{e(a, z); there erxists a such that z1,...,zy € Li(a)}.
b) The exact-fit point for two orthogonal lines of an estimator a for « is defined as
e (a) = min{e(q, z); there exists o such that zy, ..., zy € L(a)}.
Theorem 2

a) The ezxact-fit points for one and two lines of the least squares estimator and the
Ly estimator are given by
6*(aLS) = = 6*(aL1)7

€*(ALs) = — = € (aL1).

===l

b) The ezxact fit points for one and two lines of the tangential depth estimator are
given by

= — | — - —
TN |2 2

“(ar) € 1 [NT 1 [N+1]] veoo 1
—_— —_— —_— —_— H_.
CNT)SINISI N | 3 3

¢) The exact fit points for one and two lines of the simplicial depth estimator are
given by

= — —_— _— —
CASITN |2 2
1
e (as) € N{—N+2+¢2N2—6N+4W,—{—N+2+\/2N2—6N+5H

Mo V2 — 1= 0.4142136.
The proof of Theorem 2 is given in the Appendix.
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4 Verification of a distribution around orthogonal
lines

4.1 Testing parameters of orthogonal lines

To check whether the observations are distributed around orthogonal lines, one
possibility is to test a hypothesis of the form Hy : o € [ag — 1,0 + 0] U [ +
/2 —n,a0 + 7/2 4+ n], where n < 7/4. Tests for such hypotheses can be based
on the simplicial depth for orthogonal regression through the origin. For deriving
the asymptotic distribution of this simplicial depth, we need some distributional
assumptions: the observations z; = (z1,y1)",..., 2y = (zn,yn) ' are realizations of
independent and identically distributed random variables Z; = (X, Y))",..., Zy =

(Xn, Yy)T with

We make the following assumptions on U,, V,,, D,,, E,:

(A) There exists € € [0,1] and a,b € IR? with corresponding angles a € [0, 7/2)
and « + /2 such that a"b =0, |ja|| = 1 = ||b|| and

PCV,G (a/T (‘U/,n) - O> = €, Pa@ (bT (‘U/,n> — O> — 1 — €.

(B) The distribution of is invariant with respect to all rotations, i.e. there

D,
E,
exist random variables B,, and C,, such that

A(a)(l];: > ~F ~ ( g:); for all o € [0, 2x],

where A(«) is the rotation matrix given in (1) and F' is a rotation invariant
distribution.

(C) Additionally, we assume that

U, : : .
( V” > , B, C, are stochastically independent and have continuous
n

distributions.

Condition (C) in particular implies P, . <(‘U/:) = 0) = 0 so that Condition (A) means
P,. <aT (g:) =0or b (g:) = O) = 1. This implies that the random vectors (\(i:)
are lying on the two orthogonal lines given by a and b almost surely. If ¢ = 0 or
¢ = 1, then the Assumptions (A), (B), and (C) are often made in models where
orthogonal regression shall be used like in errors-in-variables models.

According to Condition (B), the distribution of (g") is invariant with respect to
rotations about £90°. If we additionally assume that (g") has this invariance
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property as well, then PP(%») = PZ» for any rotation p about 490°. In particu-
lar, P? is an orthogonal distribution in the sense of Definition 8. The invariance

Lo )2 a = (cos(a),sin(a))”, and

of ( :) implies for example for p;(z) = ( .

b = (—sin(a),cos(a))”

e () =0) = (0 () ) = e (1 (2) ) =

because of b py(z) = a'z. Hence € must be § for orthogonal distributions.

The asymptotic distribution for the simplicial depth is obtained via Hoeffding’s
theorem (see e.g. Lee 1990, p. 79, 80, 90). For that, we need the conditional
expectation of the kernel function I{dr(«, (Z1, Z5)) > 0} of the U-statistics dg given
Z1 = Z1.

Lemma 4
ane(ﬂ{dT(a, (Z1,25)) >0} Z1 = 2z) = =

Proof. Let a be the angle corresponding to the vector a providing the line on which
the random variables (U,,,V,,)" are lying. Then the rotation matrix A(«a) given by

(1) satisfies ey
Ao = (e ) = (i)

This implies using Condition (B)

BnNAl(oz)(gZ):aT<g:),anAg(a)<g:):bT(g:). (4)

Since dr(«, (Zy,Z5)) > 0 if and only if Aj(a)T2; Az(a)T21 Aj(a) 29 Ag(a) 29 =

a2 b 2 a2 b2 <0, we have for 2; with a2z, 672, >0

Ee. (I {dr(a, (21, Z3)) > 0}|Z) = 21)
Poca'Zyb"Zy a" Zy b Zy < 0la’ Z1 b" Z; > 0)
P.(a"Zy, b'Zy <0)

P..(a"Zy b Z,<0, a"Wy=0)
+ Pocla"Zy 072, <0, bWy =0),

=
8

14



where Wy = (‘Ufz) The first summand satisfies

Po(a'Zy b7, <0, a'Wy=0)

X5 X5
= P T < T > T[/‘/ =
o (a (Yz) =0, b (Yz) =0t O)
X5 X5
P, .(a" >0, b’ <0, a'Wy =0
+((Y>— (Y>— 2

D D
= Pa,e (QTWQ+QT( 2> S O, bTWQ—f-bT( 2) Z 0, (ITWQ = )

D D
-+ Pa,e (CLTWQ -+ CLT (E2> Z O, bTW2 -+ bT (E2> S O, CI,TW2 = >

2
= P (04B,<0, "W+ Co >0, a'Wo=0)
+ Poc (04 By >0, b"Wo+Cy <0, a' Wo=0)

C P (Wt G2 <0, a Wy =0) Po(By>0)
+ Pa,e (bTW2 + CQ Z 07 aTW2 = 0) Pa,e (B2 S 0)
1
PED Pa (bW + G2 0, W2 =0) 5
1
+ Pa,e (bTW2 + 02 Z O, CLTWQ = ) 5
1 @ 1
= P (a"Wy=0) = = e-.
(aWe=0) 5 = €3

Analogously, it holds P, (a"Zy b'Zy < 0, b'W, = 0) = (1 — €)% so that
Boo(I{dr(a, (21, 22)) > 0}| 21 = 21) = 3.0

Hence the simplicial depth for orthogonal regression through the origin is a degen-
erated U-statistic as this was shown by Miiller (2005) for polynomial regression,
by Wellmann and Miiller (2008a) for multiple regression, and by Wellmann and
Miiller (2008b) for orthogonal regression for a line with intercept. To obtain the
asymptotic distribution of a degenerated U-statistic, the spectral decomposition
for the conditional expectation of the kernel function I{dr(w,(Z1,Z5)) >0} — 3
given 7, = 21, Zy = 2o is needed. This spectral decomposition consists of infinite
eigenfunctions for polynomial regression (Miiller 2005, Wellmann et al. 2009), for
multiple regression (Wellmann and Miiller 2008a), and for orthogonal regression
with intercept (Wellmann and Miiller 2008b). Hence in these cases, the asymptotic
distribution is an infinite sum of random variables basing on squared normal distrib-
uted random variables. However, for orthogonal regression through the origin, the
spectral decomposition and the asymptotic distribution is much more simple. This
is shown in the following theorem. Thereby note, that the assertion of the following
theorem holds also for classical linear regression through the origin with very similar
arguments.

Theorem 3 The asymptotic distribution of the simplicial depth for orthogonal re-
gression through the origin is given by

c (N (ds(a, (Zv, ... Zy)) — %)) Ry (%(1 - W2)> ,

where W 1s a random variable with standard normal distribution.
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Proof. Hoeffding’s theorem (see Lee 1990, p. 79, 80, 90) states for a degenerated
U-statistic U with kernel function v: If

E(w(Zla ) ZQ+1>|Zl = 21, ZQ = Z2) - E(w(Zla ceey ZQ+1>> = Z Al@l(zl)@l(z2>

holds almost surely, where \; € IR and the functions ¢; are Ls-integrable, normal-
ized, and orthogonal, then

LN U1, Zx) — B@(Ze, .. Zy)]) =3 £ ((q ; 1) N(W? — 1)) ,

where Wy, Ws, ... are independent random variables, each with standard normal
distribution.

The conditional expectation of T{dr(«,(Z1,Z5)) > 0} given Z; = 2y, Zy = 2z has
the form (compare the proof of Lemma 4)

Eo(I{dr(a, (Z1,Z5)) > 0}|Z1 = 21, Zo = z1)
= I{dr(o,(z1,22)) > 0}
= T{A(a)"2z Ay(a) 2 Aj(a) 2 Ay(a) 2 <0}
= I{A(a)"z Ay(a)" 2 > 0} T{A1(a)" 2 Ay(a) 2, <0}
+ T{A1(a) "2 Ay(a)T 2 <0} T{A1(a) 2z Ay(a) 2, > 0}
= I{r(z) >0} I{r(z) <0} + I{r(z) <0} I{r(z) > 0},

where 7(z;) = Aj(a) "2 Ay(a) "z, Hence it holds almost surely

gb(Zl, ZQ) = Ea’s(][{dT(Oé, (Zl, Zg)) > 0}|Z1 =z, Z2 = Zl) — %
= I{r(z) >0} I{r(z) <0} +I{r(z) <0} I{r(z) >0} — %

= 5 (I{r(z) < 0}~ T{r(=) > 0}) (I{r() < 0} — I{r(zs) > 0}).

Since p(z;) = (I{r(z;) < 0} — I{r(z;) > 0}) is a Lo-integrable, normalized function
which is orthogonal to the constant function, it is the only eigenfunction of the
operator @ (¢ = [ ¢(=, 22 ©(z2) P(dzy) with nonzero eigenvalue and the corre-
sponding elgenvalue is A = —=. Hence the spectral decomposition of the conditional
expectation is found and Hoeffding’s theorem provides the result. O

Since
N (ds(a,(Z Z Ly oL Ly
s\&, 159+ N)>_§ N§_§
we have
1
T.(Zy,...,2y):=1—2N (ds(a, (Zl,...,ZN))—§) ~ W?

so that T,,(Zy, ..., Zy) has approximately a x? distribution with 1 degree of freedom.
If a hypothesis Hy : @ € A with A C [0, 7) is not true, then the maximum simplicial
depth within A, i.e. maxueads(a, (Zy,...,Zy)) should be low. This means that
maxXaeq 1o(Z1,...,Zy) should be high. Hence we have the following asymptotic
test, if x?(7) denotes the y-quantile of the x? distribution with 1 degree of freedom.
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Corollary 1 The test given by
I{maxTo(Zy,..., Zy) > X3(0.95)}
(¢S

1 —x3(0.95
= H{meaj(dg(&, (Zl,...,ZN)) < + L}

1
2 2N
is an asymptotic 0.05-level test for Hy: o € A against Hy : a ¢ A.
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Figure 2: 20 simulated data around a line with /3 and 20 simulated data around
a line with w/3 4+ 7 /2, upper row: original data with depth function, lower row:
transformed data with depth function

4.2 Further checks for orthogonality of a distribution

We can only reject null hypotheses with statistical tests. But we are not able to verify
a null hypotheses. Moreover, for distributions which are orthogonal and continuous,
the simplicial depth has the same value for all angles according to Theorem 1.
Hence data coming from such a distribution will behave similarly. In particular, we
cannot distinguish the two angles, which provide the two orthogonal lines around
which the data are distributed, from other angles. See the upper row of Figure 2
which shows the simulated data on the left hand side and the corresponding depth
function on the right hand side. Thereby, the depth function is only plotted on
[0,7/2), since the depth functions are the same for o and a+ 7 /2. The dashed lines
in the left hand plot and the right hand plot display the deepest lines and deepest
angle, respectively, given by the maximum simplicial depth estimate. For the data
of Figure 2, the maximum simplicial depth estimate is 0.751, although the data were
generated around oy = 7/3 = 1.047198 and 7/3 + 7/2.
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Figure 3: 30 simulated data around a line with /3 and 10 simulated data around
a line with w/3 4+ 7 /2, upper row: original data with depth function, lower row:
transformed data with depth function

But, as soon as the majority of the data is distributed around one line given by «y
as in the upper row of Figure 3, then there is peak of the depth function close to
ap. This peak is the more pronounced the larger the proportion of the majority of
the data is.

This leads to the following idea: If the data are distributed around two orthogonal
lines, then they can be mapped to the area around one of this two lines. These
mapped data will have then a pronounced peak close to ay. However, the p-value
of testing Hy : « € [avg — 1), g + 7] for these mapped data is the same as before so
that a second test makes no sense.

Therefore, we propose the following procedure for checking whether the data are
distributed around two orthogonal lines given by «y and ag + 7/2:

Step 1 Test Hy: v € [og —m, o+ 1| U g +7/2 =1, 09+ /24 1] for some n < /4
with the test given in Corollary 1. If the hypothesis is not rejected, then
continue with Step 2.

Step 2 Rotate the data and the line given by «g with respect to /4 — « so that
the line given by oy becomes the line with angles /4.

Step 3 Mirror the rotated data at the x- and y-axis so that all data end up in
the positive quadrant, i.e. each data point (z,,y,)" becomes a data point
(Zn, Gn) " € [0, 00)%

Step 4 Rotate the new data (Z,,%;)",..., (Zxn,%n) with respect to o — /4, i.e.
do the reverse rotation of Step 2.
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Step 5 Plot the simplicial depth for the rotated new data. If this depth is high for
angles inside [y — 1, g + ] U [og + 7/2 — 1, ap + 7/2 + 1] and small outside
[ag —n, a0+ 1] U [ag +7/2 — 10,00 + 7/2 + ], then the data are distributed
around the two lines given by oy and o + 7/4.

The lower rows of Figure 2 and Figure 3 show the transformed data with the cor-
responding depth functions. The dashed lines display again the deepest lines and
angles, while the dotted lines indicate the lines given by oy — /4 and o+ /4. Fig-
ure 2 and Figure 3 show that the transformed data have a much more pronounced

peak. The horizontal lines on the right hand sides of these figures indicate the crit-
_v2
ical values for the 0.05-level tests, i.e. their heights are given by % + 1)6217](8'95). In

both examples, the p-value for testing Ho : v = % is 1.
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Figure 4: Image at Time 3 with all detected cracks (upper row) and Image at Time
10 with cracks longer than 30 pixels (lower row)

5 Application to the analysis of crack orientation

The procedure proposed in Section 4.2 is used for analyzing the orientation of micro
cracks. The left hand side of Figure 4 shows two images of a small probe under
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strain where the strain is given in vertical direction. One image was taken at the
early time point 3 and the other image was taken at a later time point 10. Thereby,
a time point £ means ¢ - 1000 load cycles. With the time, more and more micro
cracks are visible and the cracks become longer. The right hand side of Figure 4
shows the cracks which were detected by the R package described in Gunkel et al.
(2009) using a threshold value of 180. For time point 10, only cracks longer than 30
pixels were plotted. The crack orientations of the plotted cracks were obtained by
using the difference of the start and end points of the crack paths. They are shown
in the left upper corners of Figure 5 and 6.
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Figure 5: Crack orientations at Time 3, upper row: original data with depth func-
tion, lower row: transformed data with depth function

To test the hypothesis that small cracks have an orientation which has an angle of 45°
and 135° to the strain, the procedure proposed in Section 4.2 is used. We also tested
the hypothesis that longer cracks have an orientation perpendicular to the strain. IL.e.
for small cracks, the hypothesis is H{' : o« € [7/4—n, 7/4+n]U[37/4—n,37/4+1n),
and for longer cracks, we have HP : o« € [0 — 1,0+ n]. We used n = 0.05.

The p-value for H{' is 1 for the cracks at time point 3 and 0.03442 for the longer
cracks at time point 10. Hence the longer cracks are not oriented in 45° direction
to the strain.

However, for the cracks at time point 3, we can proceed with the Steps 2 to 5.
The result is shown in Figure 5: The depth function in the upper row is more or
less constant which speaks for an orthogonal distribution. The lower row shows the
depth function for the data transformed according to Hg'. The maximum depth
estimate is 0.785 which is exactly m/4. This supports the hypothesis that small
cracks are oriented in 45° direction to the strain. However, the peak at 7/4 is not very
pronounced. This indicates that several small cracks have also other orientations.
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depth est = 0.038 (+ pi/2)
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Figure 6: Crack orientations at Time 10, upper row: original data with depth
function, middle row: data transformed according to H{' with depth function, lower
row: data transformed according to HP with depth function

For comparison, Figure 6 shows the depth function for data from time point 10. The
middle row of this Figure shows the data transformed according to hypothesis H{'.
There is a peak, but the peak is not close to 7/4.

The p-value for testing HP is 1. The maximum depth estimate for the original data
shown in the upper row of Figure 6 is 0.038 indicating an orientation perpendicular
to the strain. However, the peak at the estimate is not very pronounced. The
lower row of Figure 6 shows the results when the data are transformed according
to Hypothesis HP. The peak close to 0 is now more pronounced supporting HP
for longer cracks. But the fact that the peak for the transformed data is more
pronounced than for the original data indicates that there exist also many cracks
with other orientations.
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Appendix

Proof of Theorem 2 a)
Assume {z,..., 2y} C Li(a) or {zl, ...,2n} C L(«). Consider 2 = (21, 29,...,2n) €
Z(2) with z; = A(cos(a), sin(a)) " Wlth a#a# a+ /2. Then

N

Zres(&, 2,)? = K > 0 and sin(a) cos(@) — cos(a) sin(a) # 0.
Set A? > K/(sin(a) cos(@) — cos(a) sin(@))?. Then
N
res(@, %)% + Z res(@, z,)? = K

res(a, 2,)?,

WE

< A(sin(a) cos(a) — cos(a) sin(@))? = res(a, £1)* +

[|
N

n

so that ars(Z) # a. Replacing the squares by absolute values provides also the
proof for the L; estimator.O

Proof of Theorem 2 b)

(i) At first, assume {z1,..., 25} C Ly().

Let be M < [§] and Z € Z(2) arbitrary. Then we have zeroz(a) > N — M > &
so that

=

N
dr(a, z) = N min {pos;(a) + zeroz(«), neg;(«) + zeroz(a) } > 5
If & ¢ {o, o+ 7/2} then pos;(&) > zeroz(a) > I or neg; (@) > zeroz(a) > £. In
the first case, we obtain neg:(&) + zeroz (&) < % and in the second case pos;(&
zeroz(@) < I. Hence, we have dr(&,Z) < & in both cases so that ar(Z) € {a, «

7/2}.

Now let M > ( W Chose Z such that z, = 2z, forn =1,...,.N — M and z, =
(cos(@),sin(@))" forn=N—-M+1,...,N and @ ¢ {a,a+7/2}. Then Z € Zy(2)
and zeroz(@) > M > 5. With the same arguments as above, we obtain dr(«q, 2) <
% <dr(a, 2) so that there exists an estimator ar(2) ¢ {«, o + 7/2}.

(i) Assume {z1,..., 2y} C L(a).
Let be M < [£] and Z € Z)/(2) arbitrary. Then we have a := zeroz(a) > N —M >
2N
= so that
12N
d — 2
(o, 2) > N3

Set b := zeroz(&) for & ¢ {«,a + w/2}. Then it holds b < N — a and neg;(a) +

pos; (@) = N — b, so that min{neg: (@), pos;(&)} < £=L. This implies

- 1 N —D 1 (N+0Db 1 (2N —a
< — — == — ) < =
inas) < 5 (04 577) N( 2 =v (55

1 (2N — 2N 12N
Sl e S R
< N( 5 ) N3 < (o, 2)
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so that ar(2) € {a,a + 7/2}.

Now let M > [®FL]. Then {z1,...,2x} C L(a), 2 € Zy(z), and & ¢ {a, o + 7}
can be chosen so that zeroz(a) = N — M, neg:(«a) = 0, zeroz(&) = M, neg;(&) >

B2 < posz(a@). This choice provides

1 1 N+1 1 /2 1
N o= S (N-M < (N2~ (iny_ 2
dr(a. ) N >_N( 3) N(B 3)’
o 1 N-—M-1 1 [N+M—1
> — _— = — -
dr(a,2) 2 N(MJr 2 > N( 2 >

N+ ML
SN S it N O N
=N 2 N \3 3

so that an estimator ar(2) exists with ar(2) ¢ {o,a +7/2}. O

Proof of Theorem 2 c)

(i) At first, assume again {z1,..., 25} C Li(«).

Let be M < [§] and Z € Zy(z) arbitrary. Set again a := zeroz(a) so that

a> N—M > % and neg;(a) + pos;(a) = N — a. Then we have according to
Lemma 2

dS(Oé, 5)
_ 2 neg;(a)pos;(a) + 2(neg;(a) + pos;(«))zeroz(a) + zeroz(a)(zeroz(a) — 1)
N(N —-1)
Z m(Q(N—a)a—ka(a—l)):m (QNCL—(IQ—(I). (5)

Let be & ¢ {a, a+7/2} arbitrary. Then we have without loss of generality neg: (&) =
a+ b with b > 0, pos;(&) = ¢ > 0, zeroz(&) = N — (a + b+ ¢) so that

N(N —1)ds(a, 2)
= 2(a+b)c+2a+b+c)(N—(a+b+c))
+(N—(a+b+c¢))(N—(a+b+c)—1)
= 2(a+bc+2a+b+c)N—2(a+b+c)?
+ N*—~N(a+b+c)—N—N@a+b+c)+(a+b+c)’+(a+b+c)
= 2(a+bc—(a+b+c)’+N*—~N+(a+b+c)
= 2(a+bc—(a+b)?*—2@a+bc—c+N*~N+(a+b+c)
= —(a+b?*+(a+b)—c+c+N*—N
= 1) = (o).

Since f'(b) = —2(a+b) +1 < 0 if and only if b > 3 — @ and § —a < 0, the
function f is decreasing on [0, 00) so that it attains its maximum at b = 0. Since
¢'(c) = —=2c+1<0if and only if ¢ > § and ¢ € IV, the function g is decreasing on

[0,00) as well so that it attains its maximum at ¢ = 0. This implies

N(N —1)ds(a, 2) < —a* +a+ N* — N. (6)
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Since

—a*+a+N*—N<2Na—da*>—a
<= N?- N <2Na—2a+= N?— N < a(2N —2)
N(N-1) N

and a > &, we have dg(a, 2) < ds(a, 2) for all @ ¢ {a,a + 7/2} so that ags(2) €
{a,a+7/2}.

If M > [F], then we can choose Z € Zy(z) and @ ¢ {o,a + 7/2} such that
a = N—-M < & and equality holds in (5) and (6). In particular we have neg: (&) = a,
pos; (&) = 0, zeroz(@) = N —a. Then a < & implies according to (7) ds(a, z) >

ds(a, Z) so that an estimator ag(Z) exists with ag(2) ¢ {a, o + 7/2}.

(ii) Now, assume {z1,...,2n} C L(«).

Let be M < [-N+2++v2N2—-6N +4]| and Z € Z(z) arbitrary. Set again
a := zeroz(a) so that a > N — M > 2N —2 —+/2N? — 6N + 4, neg:(a) + pos;(a) =
N — a, and inequality (5) holds. Let be & ¢ {a,a + m/2} arbitrary. Then we
have neg: (&) + pos;(&@) = a + b with b > 0 and zeroz;(&) = N — (a + b) so that
neg:(@)pos; (a) < (43)° and

z

N(N - 1)dg(a, 2)

< 2(a;b)2+2(a+b)(N—(a+b))+(N—(a+b))(N—(a+b)—1)

= @b 20t BN —2a+ 1)
+ N?—~N(a+b)—N—N(a+b)+ (a+0b)*+ (a+0)
= —%(a—l—b)2—|—N2—N—|—(a+b)

= f(b).

Since f'(b) = —(a+b)+ 1 <0if and only if b > 1 —a and 1 — a < 0, the function
f is decreasing on [0, 00) so that it attains its maximum at b = 0. This implies

1
N(N —1)ds(a, 2) < —§a2 +a+ N*— N. (8)
Since

—~a*+a+N?>-—N<2Na—a*>—a

DO | =

1
§a2—|—2a—|—N2—N—2Na<O

a® +4a +2N* — 2N —4Na < 0
a* — a4(N — 1) +2N* - 2N <0
a>2(N—1)— /4N —1)2—2N2 + 2N and
a <2(N —1)+/4(N —1)2 —2N2 4 2N
a>2(N—1)—+V4N2 — 8N +4 —2N2 + 2N and
a<2(N—1)+V4N2 — 8N +4 —2N2 + 2N
a>2N —2—+V2N2 — 6N +4 and
a<2N —2++v2N2 - 6N +4 (9)

[

!

l
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and N > a > 2N — 2 — /2N2 — 6N + 4, we have dg(a, 2) < dg(a, 2) for all & ¢
{a,a+ 7/2} so that ag(2) € {a, v + 7/2}.

If M > [-N+24+V2N?—6N +5], then we can choose {z1,...,2y} C L(w),
ze€ Zy(z)and & ¢ {o,a+m/2} such that a = N — M < 2N —2—+/2N2 — 6N + 5,

equality holds in (5) and neg:(d) = % = pos;(@) if a is even and neg;(a) = “H,

pos;: (&) = “T_l, respectively, if a is odd. If a is even, then equality holds in (8) as
well. Then a < 2N —2—+/2N2? — 6N + 4 implies according to (9) ds(a, 2) > ds(a, 2)
so that an estimator ag(Z) exists with ag(2) ¢ {«,a + 7/2}. If a is odd, then we

have analogously to (9)

dS(da %> > dS(aa 5) (10)
1 —1

= 2(61_2F )(a2 )—|—2a(N—a)—|—(N—a)(N—a—1)ZZNa—aQ—a
1

<= §(a2—1)+2aN—2a2+N2—Na—N—Na+a2+a22Na—a2—a
1 1

<= —§a2—§+a+N2—N22Na—a2—a
1 1

<= §a2—|—2a—|—N2—N—2Na—§ZO

< a*—ad(N—-1)+2N*-2N—-1>0

— a<2N—-2—V2N2—6N+4+1or

a>2N —2++V2N2 —6N +4+ 1.

Since @ < 2N — 2 — v/2N2 — 6N + 5, the inequality (10) is satisfied so that also in
this case an estimator ag(Z2) exists with ag(2) ¢ {a,a+ 7/2}.0
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