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AbstratThis paper studies tangential and simpliial data depth for orthogonalregression through the origin. For both depth notions, it is proved that or-thogonal lines have the same depth. As robustness measure of maximumdepth estimators, exat-�t points for one line and for two orthogonal lines arede�ned and alulated. Sine the simpliial depth has a simple asymptotidistribution, tests an be easily derived. These tests are used for hekingwhether data are distributed around two orthogonal lines. But sine distri-butions whih are invariant with respet to rotations with angle of π/2 haveonstant depth funtions, the tests an only be used to rejet the hypothesisof a distribution around two orthogonal lines. To verify suh a hypothesis, itis proposed to transform the data appropriately and then to hek the depthfuntion for the transformed data. This approah is applied to hek whethermiro raks have an orientation of approximately 45◦ and 135

◦ to strain inan initial stage.Keywords: Orthogonal regression through the origin; Tangential data depth; Sim-plial data depth; Statistial tests; Crak orientation1 IntrodutionThe understanding of rak initiation and rak growth is very important for pre-diting the life time of produts as wheels of trains or hip replaement. Manyexperiments in whih material was exposed spei� strains were done in the past.Thereby photos of small raks whih an be analyzed with modern methods ofpattern reognition (see e.g. Flether et al. (2003), Iyer and Sinha 2005, Fujita etal. 2006, Gunkel et al. 2009) were also obtained by mirosopes. This provides thepossibility to analyze a huge amount of rak data. While the growth of large raks(maro raks) follows more or less the deterministi mehanial laws desribed e.g.
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in Pook (2000) and Ludwig et al. (2003), the small raks (miro raks) show muhmore a random behavior whih must be desribed by probabilisti laws. Some �rstattempts an be found in Ihara and Tanaka (2000) and Brükner-Foit et al. (2003).However, probabilisti laws should be validated by data.In this artile, a new statistial method is desribed for validating the followinghypothesis about the orientation of miro raks:A) In an initial stage of the growing proess, a miro rak has an orientationwith an angle of approximately 45◦ or 135◦ (π/4 or 3π/4) with respet to thestrain.B) When a miro rak beomes a maro rak, its orientation is tending to anorientation perpendiular to the strain.These hypotheses were heked up to now only by a qualitative analysis regardingseleted raks (see Besel et al. 2008, Besel and Brükner-Foit 2008, Brükner-Foitand Huang 2008). Here, we in partiular show how Hypothesis A) an be veri�edstatistially.Sine orientations are irular, the simple mean of the observed angles is a misleadingquantity. The only paper whih deals with statistial analysis of rak orientations,the paper of Mann et al. (2003) onerning raks in emented femoral omponents,uses irular statistis given by Fisher (1995) and Zar (1999). A mean rak angleis alulated there as tan−1
(

msin

mcos

) where msin is the mean of sin(αn) and mcos isthe mean of cos(αn) when αn are the angles of the raks. With this statisti, it istested whether the distribution of the angles is uniform distributed and whether theangles in di�erent regions have the same distribution.But every mean is sensitive to outlying observations. Hene the mean should bereplaed by the median. But every mean angle and median angle have the disad-vantage that they do not take the length of the raks into aount. Using orthogonalregression through the origin, also the length of the raks has an impat. In par-tiular, longer raks have more in�uene than short raks, an important propertysine small raks are often falsely deteted raks or aused by impurities of thematerial. While one generalization of the median for regression, the L1 regressionestimator is not outlier robust (see He et al. 1990, Mizera and Müller 1999), an-other generalization of the median whih is based on data depth leads to outlierrobust regression estimators. This was shown by Rousseeuw and Hubert (1999) forlassial linear regression and by Wellmann and Müller (2008b) for orthogonal re-gression with interept. Moreover, Wellmann and Müller (2008b) found in examplesthat often two orthogonal lines with interepts have the same data depth. This is awelome property in view of Hypothesis A). Hene, in this paper we study the datadepth for orthogonal regression without interept. In this speial ase, we an alsogive a proof for the observed property that orthogonal lines have the same depth.Using simpliial data depth, also statistial tests an be derived. This was done byMüller (2005) and Wellmann et al. (2009) for polynomial regression, by Wellmannand Müller (2008a) for multiple regression, and by Wellmann and Müller (2008b) fororthogonal regression with interept. For regression with interept, the asymptotidistribution of the simpliial depth is given by an in�nite sum of independent χ2-distributed random variables. But here we show that the asymptoti distribution isgiven only by one χ2-distributed random variable if there is no interept.2



The paper is organized as follows. Setion 2 provides preliminaries about orthogonalregression and data depth. In Setion 3, two depth notions, tangential depth andsimpliial depth, are haraterized for orthogonal regression without interept. Someproperties of these depth notions for speial distributions, in partiular for so-alledorthogonal distributions, are shown as well. Exat-�t points for one line and for twoorthogonal lines are de�ned as robustness measure and are derived for estimatorsmaximizing the tangential and simpliial depth.Setion 4 deals with the problem of verifying the hypothesis that data are distributedaround two orthogonal lines, e.g. the Hypothesis A) for raks. It is shown that testsbased on simpliial depth an rejet suh hypotheses. But they annot distinguishbetween other orthogonal distributions. Therefore an approah using transformeddata is proposed for the veri�ation. This approah is applied on rak data inSetion 5.2 Preliminaries2.1 Classial estimatorsLeast squares estimators and L1 estimators for orthogonal regression through theorigin an be de�ned as in lassial linear regression by minimizing the sum ofsquared and absolute residuals. The di�erene to lassial linear regression is thede�nition of the residuals.For de�ning the residuals, it is important to note that a line through the origin in
IR2 an be expressed in di�erent ways: as slope β ∈ IR, as angle α ∈ [0, π) betweenthe line and the x-axis, and as vetor a = (a1, a2)

⊤ ∈ IR2 so that {λa; λ ∈ IR}ontains all points of the line. Preferable, a should satisfy ‖a‖ = 1. The onnetionsbetween these representations are the following:
a = (cos(α), sin(α))⊤, β = a2/a1 = tan(α).In orthogonal regression, the residuals for a given line are given by the length of thedi�erene between the data point zn = (xn, yn)⊤ and its perpendiular projetion tothe line. The perpendiular projetion of zn to a line given by a is

a⊤zn a if ‖a‖ = 1.Hene the absolute residuum is res(a, zn) := ‖zn − a⊤zn a‖. Let
A(α) =

(
cos(α) sin(α)
− sin(α) cos(α)

) (1)the rotation matrix whih rotates the vetor a = (cos(α), sin(α))⊤ to the point
(1, 0)⊤, i.e. A(α)a = (1, 0)⊤. Then the squared absolute residuum satis�es

res(a, zn)2 = ‖zn − a⊤zn a‖2

= (zn − a⊤zn a)
⊤A(α)⊤A(α)(zn − a⊤zn a)

= ‖A(α) zn − (A(α) a)⊤A(α) zn A(α) a‖2

=

∥∥∥∥

(
cos(α)xn + sin(α)yn)
− sin(α)xn + cos(α)yn

)
−
(

cos(α)xn + sin(α)yn)
0

)∥∥∥∥
2

= (sin(α)xn − cos(α)yn)
2 = ‖z⊤n a⊥‖2,3



where a⊥ = (sin(α),− cos(α))⊤ is the unit vetor orthogonal to a. Hene we an setfor the residuum also
res(α, zn) := sin(α)xn − cos(α)yn. (2)This seond representation of a residuum has the advantage that a derivative withrespet to α an be easily alulated. This an be used to alulate the least squaresestimator by Newton's method.De�nition 1a) The least squares estimator α̂ (LS) for the angle α at z = (z1, . . . , zN ) is de�nedas
α̂LS(z) ∈ arg min

α∈[0,π)

N∑

n=1

res(α, zn)
2.b) The L1 estimator α̂ (L1) for the angle α at z = (z1, . . . , zN) is de�ned as

α̂L1(z) ∈ arg min
α∈[0,π)

N∑

n=1

|res(α, zn)|.2.2 Data depthThe L1 estimator whih minimizes the sum of absolute residuals is one possibilityto generalize the outlier robust median to regression. However, this generalizationdoes not lead to outlier robust regression estimators.Another possibilty to generalize the median to regression is data depth. Tukey (1975)used the half spae depth d to generalize the median to multivariate data in IRq.The depth d(µ, z) of a loation parameter µ ∈ IRq in a sample z = (z1, . . . , zN ) in IRqis the minimum number of observations z1, . . . , zN lying in a half spae ontaining
µ. The parameter µ whih maximizes d(µ, z) is the generalization of the median.Rousseeuw and Hubert (1999) generalized the half spae depth to linear regressionby introduing the notion of a non�t:De�nition 2 (Original de�nition of a non�t) A regression parameter β is anon�t for z1, . . . , zN if there is another parameter β̃ so that the residuals res(β̃, zn)satisfy

res(β̃, zn)2 < res(β, zn)2 for n = 1, . . . , N,whih means that the regression funtion given by β̃ is loser to the data points
z1, . . . , zN ∈ IR2 than the regression funtion given by β.Then the regression depth dR(β, z) of the regression parameter β in the data set
z1, . . . , zN is the minimum number M of observations zn1

, . . . , znM
whih must beremoved so that β beomes a non�t in {z1, . . . , zN} \ {zn1

, . . . , znM
}.The original De�nition 2 is di�ult to handle. Therefore a tangential version isusually used: 4



De�nition 3 (Tangential version of a non�t) A regression parameter β ∈ IRqis a non�t for z1, . . . , zN if there exists a vetor u ∈ IRq with
u⊤

∂

∂β
res(β, zn)2 < 0 for n = 1, . . . , N.For lassial linear regression, where the residuals are linear in β, the two de�nitionsare idential. But Mizera (2002) pointed out that there are many situations wherethey are di�erent. He alled a depth based on De�nition 2 global depth and a depthbased on De�nition 3 tangential depth. Then the tangential depth dT (β, z) of aparameter β ∈ IRq in z1, . . . , zN has the following simple de�nition

dT (β, z) =
1

N
min

06=u∈IRq
♯{n ∈ {1, . . . , N}; u⊤ ∂

∂β
res(β, zn)

2 ≥ 0},where ♯ denotes the ardinality of a set.However, any tangential depth has the disadvantage that it is di�ult to deriveits �nite sample distribution and its asymptoti distribution so that tests basedon it are di�ult to de�ne. Only few approahes exist for regression depth forlassial regression. Bai and He (1999) only derived an impliitly given asymptotidistribution of the maximum regression depth estimator while Van Aelst et al. (2002)derived an exat test based on the regression depth only for linear regression. Thedevelopment of tests beomes muh easier by using the simpliial depth.Simpliial depth of a multivariate loation parameter µ ∈ IRq was introdued by Liu(1988, 1990) using the half spae depth d of Tukey (1975). She de�ned it as
dS(µ, (z1, ..., zN )) =

(
N

q + 1

)−1 ∑

1≤n1<n2<...<nq+1≤N

II{d(µ, (zn1
, ..., znq+1

)) > 0}, (3)where II denotes the indiator funtion. This depth ounts the simplexes spannedby q+1 data points whih are ontaining the parameter µ. Replaing the half spaedepth d by any other depth notion leads to a very general onept of simpliialdepth. Any notion of simpliial depth has the advantage that it is an U-statistis andfor U-statistis the asymptoti distribution is in prinipal known from Hoe�ding'stheorem (see e.g. Lee 1990, p. 79, 80, 90). This advantage was used in Müller(2005), Wellmann (2007), Wellmann et al. (2009), Wellmann and Müller (2008a)to derive distribution free tests for polynomial and multiple regression. See alsoWellmann et al. (2007) for the alulation of maximum simpliial depth.3 Depth estimators for orthogonal regression throughthe origin3.1 Depth notions for dataGlobal and tangential depth are for example di�erent for orthogonal regression asMizera (2002) already notied and whih was worked out by Wellmann (2007) and5



Wellmann and Müller (2008b). Wellmann (2007) and Wellmann and Müller (2008b)onsidered only orthogonal regression for lines with interept. In this ase, also theuse of the tangential depth is rather ompliated.For orthogonal regression through the origin, everything beomes muh more simple.At �rst note that the derivative of the residuals are given by
∂

∂α
res(α, zn)

2 =
∂

∂α
(sin(α)xn − cos(α)yn)

2

= 2 (sin(α)xn − cos(α)yn) (cos(α)xn + sin(α)yn) = −2A2(α)⊤zn A1(α)⊤zn,where A1(α)⊤ and A1(α)⊤ are the rows of the rotation matrix A(α) given in (1), i.e.
A(α) =

(
A1(α)⊤

A2(α)⊤

). Hene tangential depth for orthogonal regression through theorigin an be de�ned as follows.De�nition 4 (Tangential depth for orthogonal regression through the ori-gin)The tangential depth dT (α, z) of an angle α ∈ IR in z1, . . . , zN ∈ IR2 is de�ned as
dT (α, z) =

1

N
min{♯{n; A2(α)⊤zn A1(α)⊤zn ≥ 0}, ♯{n; A2(α)⊤zn A1(α)⊤zn ≤ 0}}.For α = 0, i.e. for a horizontal line, we obtain
dT (α, z) =

1

N
min{♯{n; xn yn ≥ 0}, ♯{n; xn yn ≤ 0}}.This is the same de�nition of the depth of a horizontal line as for lassial regressionthrough the origin. However, for other lines the de�nitions are di�erent sine forlassial regression through the origin the derivative of the residuals is

∂

∂β
res(β, zn)

2 =
∂

∂β
(yn − β xn)2 = 2 (yn − β xn) xn.De�nition 4 for orthogonal regression an be interpreted as follows: The data arerotated with the rotation matrix A(α) so that the line given by α is the horizontalline. Then the tangential depth for lassial regression through the origin is usedfor the horizontal line and the rotated data. This interpretation was also used byWellmann and Müller (2008b) for orthogonal regression for a line with interept.Lemma 1 Orthogonal lines have the same depth, i.e.

dT (α, z) = dT (α + π/2, z).Proof. The assertion follows from
∂

∂α
res(α + π/2, zn)2

= 2 (sin(α + π/2)xn − cos(α + π/2)yn) (cos(α+ π/2)xn + sin(α + π/2)yn)

= 2 (cos(α)xn + sin(α)yn) (− sin(α)xn + cos(α)yn)

= − ∂

∂α
res(α, zn)

2.2 6



That orthogonal lines have the same tangential depth was also observed by examplesin Wellmann and Müller (2008b) for orthogonal regression for a line with interept.A proof was not given there. The examples in Wellmann and Müller (2008b) alsoshowed that this property is not satis�ed for the global depth so that global depthfor orthogonal regression through the origin should have the same property.To derive tests, the simpliial depth based on the tangential depth given by De�ni-tion 4 is introdued here as well.De�nition 5 (Simpliial depth for orthogonal regression through the ori-gin)The simpliial depth dS(α, z) of an angle α ∈ IR in z1, . . . , zN ∈ IR2 is de�ned as
dS(α, (z1, ..., zN)) =

(
N

2

)−1 ∑

1≤n1<n2≤N

II{dT (α, (zn1
, zn2

)) > 0}.Lemma 2 The simpliial depth for orthogonal regression through the origin satis�es
dS(α, (z1, ..., zN))

=

(
N

2

)−1 (
negz(α)posz(α) + negz(α)zeroz(α) + posz(α)zeroz(α) +

(
zeroz(α)

2

))where
negz(α) = ♯{n; A1(α)⊤znA2(α)⊤zn < 0},
posz(α) = ♯{n; A1(α)⊤znA2(α)⊤zn > 0},
zeroz(α) = ♯{n; A1(α)⊤znA2(α)⊤zn = 0}.Proof. Sine

dT (α, (zn1
, zn2

)) = 0if and only if A1(α)⊤zn1
A2(α)⊤zn1

and A1(α)⊤zn2
A2(α)⊤zn2

are both positive orboth negative we have
dT (α, (zn1

, zn2
)) > 0if and only if A1(α)⊤zn1

A2(α)⊤zn1
and A1(α)⊤zn2

A2(α)⊤zn2
have di�erent signs orat least one of them is zero. Hene, the assertion follows. 2Sine orthogonal lines have the same tangential depth for orthogonal regressionthrough the origin, they have also the same simpliial depth, i.e. we have dS(α, z) =

dS(α + π/2, z).3.2 Depth notions for distributionsIt is straightforward to generalize the tangential depth given in De�nition 4 toarbitrary distributions PZ where Z is an arbitrary random variable on IR2.
7



De�nition 6 (Tangential depth for distributions)The tangential depth dT (α, PZ) of an angle α ∈ IR at distribution PZ is de�ned as
dT (α, PZ) = min

{
PZ({z ∈ IR2; A2(α)⊤z A1(α)⊤z ≥ 0}),

PZ({z ∈ IR2; A2(α)⊤zn A1(α)⊤zn ≤ 0})
}
.To generalize the simpliial depth given in De�nition 5 to distributions, note that

dS(α, (z1, ..., zN)) =
1

N (N − 1)

∑

n1 6=n2

II{dT (α, (zn1
, zn2

)) > 0}.De�nition 7 (Simpliial depth for distributions)The simpliial depth dS(α, PZ) of an angle α ∈ IR at distribution PZ is de�ned as
dS(α, PZ) = PZ1,Z2({(z1, z2); dT (α, (z1, z2)) > 0}),where Z1 and Z2 are independent random variables with PZ1 = PZ2 = PZ.The following lemma is analogous to Lemma 2.Lemma 3 The simpliial depth at distribution PZ satis�es

dS(α, (z1, ..., zN)) = 2PZ(Neg(α))PZ(Pos(α))

+ 2PZ(Neg(α))PZ(Zero(α)) + 2PZ(Pos(α))PZ(Zero(α)) + PZ(Zero(α))2,where
Neg(α) = {z ∈ IR2; A1(α)⊤z A2(α)⊤z < 0},
Pos(α) = {z ∈ IR2; A1(α)⊤z A2(α)⊤z > 0},

Zero(α) = {z ∈ IR2; A1(α)⊤z A2(α)⊤z = 0}.Proof. Sine (see the proof of Lemma 2)
PZ1,Z2({(z1, z2); dT (α, (z1, z2)) > 0})

= PZ1,Z2({(z1, z2); z1 ∈ Neg(α), z2 ∈ Pos(α) or z2 ∈ Neg(α), z1 ∈ Pos(α) or
z1 ∈ Neg(α), z2 ∈ Zero(α) or z2 ∈ Neg(α), z1 ∈ Zero(α) or
z1 ∈ Pos(α), z2 ∈ Zero(α) or z2 ∈ Pos(α), z1 ∈ Zero(α) or
z2 ∈ Zero(α), z1 ∈ Zero(α)}),the assertion follows from the independene of Z1 and Z2. 2As for data, orthogonal lines have the same depth, i.e. dT (α+π/2, PZ) = dT (α, PZ)and dS(α + π/2, PZ) = dS(α, PZ). But for speial distributions, the depth an bethe same for all lines and angles, respetively. We all these speial distributionsorthogonal distributions:

8



De�nition 8 PZ is an orthogonal distribution on IR2 if
PZ/‖Z‖ = P ρ(Z)/‖ρ(Z)‖is satis�ed for any rotation ρ about ± 90◦, i.e. for

ρ1(z) := ρ1

((
x

y

))
=

(
0 −1
1 0

)(
x

y

) and ρ2(z) := ρ2

((
x

y

))
=

(
0 1
−1 0

)(
x

y

)
.Rotation invariant distributions like the uniform distribution on the two dimensionalirle or disk are orthogonal distributions. But an orthogonal distribution an alsobe onentrated on or around two orthogonal lines. Namely, if

L1 = {z ∈ IR2; z = λ(cos(α), sin(α))⊤ for α ∈ [α0 − α1, α0 + α1], λ ∈ IR}and
L2 = {z ∈ IR2; there exists z∗ ∈ L1 with z⊤z∗ = 0}are areas around two orthogonal lines so that

P ρ1(Z)(L1) = P ρ2(Z)(L1) = PZ(L1) = PZ(L2) = P ρ1(Z)(L2) = P ρ2(Z)(L2)and
PZ(L1 ∪ L2) = 1,then PZ is an orthogonal distribution. Suh kind of distribution is onentrated ontwo orthogonal lines if α1 = 0. In this ase, only PZ(L1) = PZ(L2) and PZ(L1 ∪

L2) = 1 must be heked.Theorem 1a) If PZ is an orthogonal distribution and PZ/‖Z‖ is an absolute ontinuous distrib-ution, then
dT (α, PZ) = dS(α, PZ) =

1

2
for all α ∈ [0, π).b) If PZ is an orthogonal distribution with P (Z =

(
0
0

))
= 0 whih is onentratedon two lines given by α0 and α0 + π/2, then

dT (α, PZ) = dS(α, PZ) = 1 for α = α0 and α = α0 + π/2and
dT (α, PZ) = dS(α, PZ) =

1

2
for all α ∈ [0, π) \ {α0, α0 + π/2}.) If PZ is a distribution with P (Z =
(
0
0

))
= 0 whih is onentrated on one linegiven by α0, then

dT (α, PZ) = dS(α, PZ) = 1 for α = α0 and α = α0 + π/2and
dT (α, PZ) = dS(α, PZ) = 0 for all α ∈ [0, π) \ {α0, α0 + π/2}.

9



Proof. At �rst note
dT (α, PZ) = min{PZ(Neg(α) ∪ Zero(α)), PZ(Pos(α) ∪ Zero(α))}and PZ(Neg(α)) = PZ/‖Z‖(Neg(α)), PZ(Pos(α)) = PZ/‖Z‖(Pos(α)), PZ(Zero(α)) =

PZ/‖Z‖(Zero(α)). The orthogonality of PZ and the de�nitions of A1(α) and A2(α)provide
PZ(Pos(α)) = P ρ1(Z)(Pos(α)) = P (A1(α)⊤ ρ1(Z) A2(α)⊤ ρ1(Z) > 0)

= P

(
A1(α)⊤

(
0 −1
1 0

)
Z A2(α)⊤

(
0 −1
1 0

)
Z > 0

)

= P ( (sin(α),− cos(α))Z (cos(α), sin(α))Z > 0)

= P (−A2(α)⊤Z A1(α)⊤Z > 0)

= P (A1(α)⊤Z A2(α)⊤Z < 0) = PZ(Neg(α)).a) If PZ/‖Z‖ is an absolute ontinuous distribution, then
PZ/‖Z‖(Zero(α)) = P

(
Z

‖Z‖ =

(
cos(α)

sin(α)

) or Z

‖Z‖ =

(− cos(α)

− sin(α)

) or
Z

‖Z‖ =

(
sin(α)

− cos(α)

) or Z

‖Z‖ =

(− sin(α)

cos(α)

))
= 0,so that PZ(Neg(α)) = PZ(Pos(α)) = 1

2
for all α ∈ [0, π).b) If PZ is onentrated on the two lines given by α0 and α0 + π/2, then

PZ/‖Z‖(Zero(α0)) = 1 = PZ/‖Z‖(Zero(α0 + π/2))and
PZ/‖Z‖(Zero(α)) = 0for all α ∈ [0, π) \ {α0, α0 + π/2} beause of P (Z =

(
0
0

))
= 0.) If P (Z ∈ L1) = 1 with L1 = {z ∈ IR2; z = λ(cos(α0), sin(α0))

⊤, λ ∈ IR} then
P (A2(α0)Z = 0) = 1 and P (A1(α0 + π/2)Z = 0) = 1 so that PZ(Zero(α0)) = 1 =
PZ(Zero(α0 + π/2)). For α ∈ [0, π) \ {α0, α0 + π/2}, we obtain

A1(α)⊤ z A2(α)⊤ z = λ2

(
cos(α)

sin(α)

)⊤(
cos(α0)

sin(α0)

)(− sin(α)

cos(α)

)⊤(
cos(α0)

sin(α0)

)for all z ∈ L1 whih is either positive or negative. Hene it holds either PZ(Pos(α)) =
0 = PZ(Zero(α)) or PZ(Neg(α)) = 0 = PZ(Zero(α)). 23.3 Depth estimatorsAs soon as a depth notion is given, an estimator an be de�ned as that parameterwith maximum depth. Hene, the tangential and simpliial depth for orthogonalregression through the origin lead to the following de�nitions:De�nition 9 (Depth estimators)a) The tangential depth estimator α̂T (z) is de�ned as

α̂T (z) ∈ arg max
α∈[0,π)

dT (α, z).10



b) The simpliial depth estimator α̂S(z) is de�ned as
α̂S(z) ∈ arg max

α∈[0,π)
dS(α, z).Note that the tangential and simpliial depth estimators are never unique sineorthogonal lines have the same depth (see Lemma 1). Hene with α̂T (z) and α̂S(z),also α̂T (z) + π/2 and α̂S(z) + π/2 are depth estimators.Figure 1 ompares the tangential depth estimator with the least squares estimator,the L1 estimator and the mean of the observed angles in the presene of 30% outliers.It shows that the least squares estimator as well as the L1 estimator are heavilyin�uened by the outliers. The tangential depth estimator provides two lines: onewhih follows the majority of the data and one orthogonal to the other line. Thisorthogonal line is lose to the line given by the mean of the angles. Hene the meanprovides a line whih is also far away from the majority of the data.
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Figure 1: Tangential depth estimator ompared with mean angle, LS and L1 estimatefor data with outliersTo quantify the outlier robustness of the estimators, a robustness measure shall beused. A well known robustness measure is the breakdown point of Donoho andHuber (1983). But the breakdown point makes only sense if the parameter spaeis bounded by in�nity or some other bounds so that onvergene to suh boundsmeans breakdown. But onsidering angles, the parameter spae is irular so thatno bound exists. However, the exat-�t point de�ned in Ellis and Morgenthaler(1992) an be used whih has in other ases a strong relation to the breakdownpoint. To de�ne the exat-�t point for orthogonal regression through the origin, letbe L(α) := L1(α) ∪ L2(α), where
L1(α) := {z ∈ IR2; z = λ(cos(α), sin(α))⊤ for λ ∈ IR}11



and
L2(α) := {z ∈ IR2; there exists z∗ ∈ L1(α) with z⊤z∗ = 0}.We distinguish between two exat-�t properties: one where all data are lying on oneline through the origin, i.e. zn ∈ L1(α) for n = 1, . . . , N , and one where all data arelying on two orthogonal lines, i.e. zn ∈ L(α) for n = 1, . . . , N .De�nition 10 (Exat-�t point for orthogonal regression through the origin)The �t point of an estimator α̂ for α at a sample z = (z1, . . . , zN ) is de�ned as

ǫ(α̂, z) =
1

N
min{M ; there exists z̃ ∈ ZM (z) suh that α̂(z̃) /∈ {α̂(z), α̂(z) + π/2}},where

ZM (z) := {(z̃1, . . . , z̃N); there exists m1, . . . , mN−Msuh that zmi
= z̃mi

for i = 1, . . . , N −M}.a) The exat-�t point for one line of an estimator α̂ for α is de�ned as
ǫ∗(α̂) = min{ǫ(α̂, z); there exists α suh that z1, . . . , zN ∈ L1(α)}.b) The exat-�t point for two orthogonal lines of an estimator α̂ for α is de�ned as
ǫ∗∗(α̂) = min{ǫ(α̂, z); there exists α suh that z1, . . . , zN ∈ L(α)}.Theorem 2a) The exat-�t points for one and two lines of the least squares estimator and theL1 estimator are given by

ǫ∗(α̂LS) =
1

N
= ǫ∗(α̂L1),

ǫ∗∗(α̂LS) =
1

N
= ǫ∗∗(α̂L1).b) The exat �t points for one and two lines of the tangential depth estimator aregiven by

ǫ∗(α̂T ) =
1

N

⌈
N

2

⌉
N→∞−→ 1

2
,

ǫ∗∗(α̂T ) ∈
[

1

N

⌈
N

3

⌉
,

1

N

⌈
N + 1

3

⌉]
N→∞−→ 1

3
.) The exat �t points for one and two lines of the simpliial depth estimator aregiven by

ǫ∗(α̂S) =
1

N

⌈
N

2

⌉
N→∞−→ 1

2
,

ǫ∗∗(α̂S) ∈
[

1

N

⌈
−N + 2 +

√
2N2 − 6N + 4

⌉
,

1

N

⌈
−N + 2 +

√
2N2 − 6N + 5

⌉]

N→∞−→
√

2 − 1 = 0.4142136.The proof of Theorem 2 is given in the Appendix.12



4 Veri�ation of a distribution around orthogonallines4.1 Testing parameters of orthogonal linesTo hek whether the observations are distributed around orthogonal lines, onepossibility is to test a hypothesis of the form H0 : α ∈ [α0 − η, α0 + η] ∪ [α0 +
π/2 − η, α0 + π/2 + η], where η < π/4. Tests for suh hypotheses an be basedon the simpliial depth for orthogonal regression through the origin. For derivingthe asymptoti distribution of this simpliial depth, we need some distributionalassumptions: the observations z1 = (x1, y1)

⊤, . . . , zN = (xN , yN)⊤ are realizations ofindependent and identially distributed random variables Z1 = (X1, Y1)
⊤, . . . , ZN =

(XN , YN)⊤ with
Zn =

(
Xn

Yn

)
=

(
Un

Vn

)
+

(
Dn

En

)
.We make the following assumptions on Un, Vn, Dn, En:(A) There exists ǫ ∈ [0, 1] and a, b ∈ IR2 with orresponding angles α ∈ [0, π/2)and α + π/2 suh that a⊤b = 0, ‖a‖ = 1 = ‖b‖ and

Pα,ǫ

(
a⊤
(
Un

Vn

)
= 0

)
= ǫ, Pα,ǫ

(
b⊤
(
Un

Vn

)
= 0

)
= 1 − ǫ.(B) The distribution of ( Dn

En

) is invariant with respet to all rotations, i.e. thereexist random variables Bn and Cn suh that
A(α)

(
Dn

En

)
∼ F ∼

(
Bn

Cn

)
; for all α ∈ [0, 2π],where A(α) is the rotation matrix given in (1) and F is a rotation invariantdistribution.(C) Additionally, we assume that

(
Un

Vn

)
, Bn, Cn are stohastially independent and have ontinuousdistributions.Condition (C) in partiular implies Pα,ǫ

((
Un

Vn

)
= 0
)

= 0 so that Condition (A) means
Pα,ǫ

(
a⊤
(

Un

Vn

)
= 0 or b⊤(Un

Vn

)
= 0
)

= 1. This implies that the random vetors (Un

Vn

)are lying on the two orthogonal lines given by a and b almost surely. If ǫ = 0 or
ǫ = 1, then the Assumptions (A), (B), and (C) are often made in models whereorthogonal regression shall be used like in errors-in-variables models.Aording to Condition (B), the distribution of (Dn

En

) is invariant with respet torotations about ± 90◦. If we additionally assume that (Un

Vn

) has this invariane13



property as well, then P ρ(Zn) = PZn for any rotation ρ about ± 90◦. In partiu-lar, PZn is an orthogonal distribution in the sense of De�nition 8. The invarianeof (Un

Vn

) implies for example for ρ1(z) =

(
0 −1
1 0

)
z, a = (cos(α), sin(α))⊤, and

b = (− sin(α), cos(α))⊤

1 − ǫ = Pα,ǫ

(
b⊤
(
Un

Vn

)
=0

)
= Pα,ǫ

(
b⊤ρ1

((
Un

Vn

))
=0

)
= Pα,ǫ

(
a⊤
(
Un

Vn

)
=0

)
= ǫbeause of b⊤ρ1(z) = a⊤z. Hene ǫ must be 1

2
for orthogonal distributions.The asymptoti distribution for the simpliial depth is obtained via Hoe�ding'stheorem (see e.g. Lee 1990, p. 79, 80, 90). For that, we need the onditionalexpetation of the kernel funtion II{dT (α, (Z1, Z2)) > 0} of the U-statistis dS given

Z1 = z1.Lemma 4
Eα,ǫ(II{dT (α, (Z1, Z2)) > 0}|Z1 = z1) =

1

2
.Proof. Let α be the angle orresponding to the vetor a providing the line on whihthe random variables (Un, Vn)

⊤ are lying. Then the rotation matrix A(α) given by(1) satis�es
A(α) =

(
A1(α)⊤

A2(α)⊤

)
=

(
a⊤

b⊤

)
.This implies using Condition (B)

Bn ∼ A1(α)

(
Dn

En

)
= a⊤

(
Dn

En

)
, Cn ∼ A2(α)

(
Dn

En

)
= b⊤

(
Dn

En

)
. (4)Sine dT (α, (Z1, Z2)) > 0 if and only if A1(α)⊤z1 A2(α)⊤z1 A1(α)⊤z2 A2(α)⊤z2 =

a⊤z1 b
⊤z1 a

⊤z2 b
⊤z2 ≤ 0, we have for z1 with a⊤z1 b⊤z1 ≥ 0

Eα,ǫ(II{dT (α, (Z1, Z2)) > 0}|Z1 = z1)

= Pα,ǫ(a
⊤Z1 b

⊤Z1 a
⊤Z2 b

⊤Z2 ≤ 0|a⊤Z1 b
⊤Z1 ≥ 0)

= Pα,ǫ(a
⊤Z2 b⊤Z2 ≤ 0)

(A) (C)
= Pα,ǫ(a

⊤Z2 b⊤Z2 ≤ 0, a⊤W2 = 0)

+ Pα,ǫ(a
⊤Z2 b⊤Z2 ≤ 0, b⊤W2 = 0),

14



where W2 =
(

U2

V2

). The �rst summand satis�es
Pα,ǫ(a

⊤Z2 b⊤Z2 ≤ 0, a⊤W2 = 0)

= Pα,ǫ

(
a⊤
(
X2

Y2

)
≤ 0, b⊤

(
X2

Y2

)
≥ 0, a⊤W2 = 0

)

+ Pα,ǫ

(
a⊤
(
X2

Y2

)
≥ 0, b⊤

(
X2

Y2

)
≤ 0, a⊤W2 = 0

)

= Pα,ǫ

(
a⊤W2 + a⊤

(
D2

E2

)
≤ 0, b⊤W2 + b⊤

(
D2

E2

)
≥ 0, a⊤W2 = 0

)

+ Pα,ǫ

(
a⊤W2 + a⊤

(
D2

E2

)
≥ 0, b⊤W2 + b⊤

(
D2

E2

)
≤ 0, a⊤W2 = 0

)

(4)
= Pα,ǫ

(
0 +B2 ≤ 0, b⊤W2 + C2 ≥ 0, a⊤W2 = 0

)

+ Pα,ǫ

(
0 +B2 ≥ 0, b⊤W2 + C2 ≤ 0, a⊤W2 = 0

)

(C)
= Pα,ǫ

(
b⊤W2 + C2 ≤ 0, a⊤W2 = 0

)
Pα,ǫ (B2 ≥ 0)

+ Pα,ǫ

(
b⊤W2 + C2 ≥ 0, a⊤W2 = 0

)
Pα,ǫ (B2 ≤ 0)

(B),(C)
= Pα,ǫ

(
b⊤W2 + C2 ≤ 0, a⊤W2 = 0

) 1

2

+ Pα,ǫ

(
b⊤W2 + C2 ≥ 0, a⊤W2 = 0

) 1

2

= Pα,ǫ

(
a⊤W2 = 0

) 1

2

(A)
= ǫ

1

2
.Analogously, it holds Pα,ǫ(a

⊤Z2 b⊤Z2 ≤ 0, b⊤W2 = 0) = (1 − ǫ) 1
2
so that

Eα,ǫ(II{dT (α, (Z1, Z2)) > 0}|Z1 = z1) = 1
2
.2Hene the simpliial depth for orthogonal regression through the origin is a degen-erated U-statisti as this was shown by Müller (2005) for polynomial regression,by Wellmann and Müller (2008a) for multiple regression, and by Wellmann andMüller (2008b) for orthogonal regression for a line with interept. To obtain theasymptoti distribution of a degenerated U-statisti, the spetral deompositionfor the onditional expetation of the kernel funtion II{dT (α, (Z1, Z2)) > 0} − 1

2given Z1 = z1, Z2 = z2 is needed. This spetral deomposition onsists of in�niteeigenfuntions for polynomial regression (Müller 2005, Wellmann et al. 2009), formultiple regression (Wellmann and Müller 2008a), and for orthogonal regressionwith interept (Wellmann and Müller 2008b). Hene in these ases, the asymptotidistribution is an in�nite sum of random variables basing on squared normal distrib-uted random variables. However, for orthogonal regression through the origin, thespetral deomposition and the asymptoti distribution is muh more simple. Thisis shown in the following theorem. Thereby note, that the assertion of the followingtheorem holds also for lassial linear regression through the origin with very similararguments.Theorem 3 The asymptoti distribution of the simpliial depth for orthogonal re-gression through the origin is given by
L
(
N

(
dS(α, (Z1, . . . , ZN)) − 1

2

))
N→∞−→ L

(
1

2
(1 −W 2)

)
,where W is a random variable with standard normal distribution.15



Proof. Hoe�ding's theorem (see Lee 1990, p. 79, 80, 90) states for a degeneratedU-statisti U with kernel funtion ψ: If
E(ψ(Z1, . . . , Zq+1)|Z1 = z1, Z2 = z2) − E(ψ(Z1, . . . , Zq+1)) =

∞∑

l=1

λlϕl(z1)ϕl(z2)holds almost surely, where λl ∈ IR and the funtions ϕl are L2-integrable, normal-ized, and orthogonal, then
L (N [U(Z1, . . . , ZN) − E(ψ(Z1, . . . , Zq+1))])

N→∞−→ L
((

q + 1

2

)
λl(W

2
l − 1)

)
,where W1,W2, . . . are independent random variables, eah with standard normaldistribution.The onditional expetation of II{dT (α, (Z1, Z2)) > 0} given Z1 = z1, Z2 = z2 hasthe form (ompare the proof of Lemma 4)

Eα,ǫ(II{dT (α, (Z1, Z2)) > 0}|Z1 = z1, Z2 = z1)

= II{dT (α, (z1, z2)) > 0}
= II{A1(α)⊤z1 A2(α)⊤z1 A1(α)⊤z2 A2(α)⊤z2 ≤ 0}
= II{A1(α)⊤z1 A2(α)⊤z1 ≥ 0} II{A1(α)⊤z2 A2(α)⊤z2 ≤ 0}

+ II{A1(α)⊤z1 A2(α)⊤z1 ≤ 0} II{A1(α)⊤z2 A2(α)⊤z2 ≥ 0}
= II{r(z1) ≥ 0} II{r(z2) ≤ 0} + II{r(z1) ≤ 0} II{r(z2) ≥ 0},where r(zi) = A1(α)⊤zi A2(α)⊤zi. Hene it holds almost surely

φ(z1, z2) := Eα,ǫ(II{dT (α, (Z1, Z2)) > 0}|Z1 = z1, Z2 = z1) −
1

2

= II{r(z1) > 0} II{r(z2) < 0} + II{r(z1) < 0} II{r(z2) > 0} − 1

2

= −1

2
(II{r(z1) < 0} − II{r(z1) > 0}) (II{r(z2) < 0} − II{r(z2) > 0}) .Sine ϕ(zi) = (II{r(zi) < 0} − II{r(zi) > 0}) is a L2-integrable, normalized funtionwhih is orthogonal to the onstant funtion, it is the only eigenfuntion of theoperator Φ(ϕ)(z1) =

∫
φ(z1, z2)ϕ(z2)P (dz2) with nonzero eigenvalue and the orre-sponding eigenvalue is λ = −1

2
. Hene the spetral deomposition of the onditionalexpetation is found and Hoe�ding's theorem provides the result. 2Sine

N

(
dS(α, (Z1, . . . , ZN)) − 1

2

)
≈ 1

2
− 1

2
W 2we have

Tα(Z1, . . . , ZN) := 1 − 2N

(
dS(α, (Z1, . . . , ZN)) − 1

2

)
≈W 2so that Tα(Z1, . . . , ZN) has approximately a χ2 distribution with 1 degree of freedom.If a hypothesis H0 : α ∈ A with A ⊂ [0, π) is not true, then the maximum simpliialdepth within A, i.e. maxα∈A dS(α, (Z1, . . . , ZN)) should be low. This means that

maxα∈A Tα(Z1, . . . , ZN) should be high. Hene we have the following asymptotitest, if χ2
1(γ) denotes the γ-quantile of the χ2 distribution with 1 degree of freedom.16



Corollary 1 The test given by
II{max

α∈A
Tα(Z1, . . . , ZN) > χ2

1(0.95)}

= II

{
max
α∈A

dS(α, (Z1, . . . , ZN)) <
1

2
+

1 − χ2
1(0.95)

2N

}is an asymptoti 0.05-level test for H0 : α ∈ A against H0 : α /∈ A.
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Figure 2: 20 simulated data around a line with π/3 and 20 simulated data arounda line with π/3 + π/2, upper row: original data with depth funtion, lower row:transformed data with depth funtion4.2 Further heks for orthogonality of a distributionWe an only rejet null hypotheses with statistial tests. But we are not able to verifya null hypotheses. Moreover, for distributions whih are orthogonal and ontinuous,the simpliial depth has the same value for all angles aording to Theorem 1.Hene data oming from suh a distribution will behave similarly. In partiular, weannot distinguish the two angles, whih provide the two orthogonal lines aroundwhih the data are distributed, from other angles. See the upper row of Figure 2whih shows the simulated data on the left hand side and the orresponding depthfuntion on the right hand side. Thereby, the depth funtion is only plotted on
[0, π/2), sine the depth funtions are the same for α and α+π/2. The dashed linesin the left hand plot and the right hand plot display the deepest lines and deepestangle, respetively, given by the maximum simpliial depth estimate. For the dataof Figure 2, the maximum simpliial depth estimate is 0.751, although the data weregenerated around α0 = π/3 = 1.047198 and π/3 + π/2.17
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Figure 3: 30 simulated data around a line with π/3 and 10 simulated data arounda line with π/3 + π/2, upper row: original data with depth funtion, lower row:transformed data with depth funtionBut, as soon as the majority of the data is distributed around one line given by α0as in the upper row of Figure 3, then there is peak of the depth funtion lose to
α0. This peak is the more pronouned the larger the proportion of the majority ofthe data is.This leads to the following idea: If the data are distributed around two orthogonallines, then they an be mapped to the area around one of this two lines. Thesemapped data will have then a pronouned peak lose to α0. However, the p-valueof testing H0 : α ∈ [α0 − η, α0 + η] for these mapped data is the same as before sothat a seond test makes no sense.Therefore, we propose the following proedure for heking whether the data aredistributed around two orthogonal lines given by α0 and α0 + π/2:Step 1 Test H0 : α ∈ [α0 − η, α0 + η]∪ [α0 +π/2− η, α0 +π/2+ η] for some η < π/4with the test given in Corollary 1. If the hypothesis is not rejeted, thenontinue with Step 2.Step 2 Rotate the data and the line given by α0 with respet to π/4 − α0 so thatthe line given by α0 beomes the line with angles π/4.Step 3 Mirror the rotated data at the x- and y-axis so that all data end up inthe positive quadrant, i.e. eah data point (xn, yn)⊤ beomes a data point

(x̃n, ỹn)
⊤ ∈ [0,∞)2.Step 4 Rotate the new data (x̃1, ỹ1)

⊤, . . . , (x̃N , ỹN)⊤ with respet to α0 − π/4, i.e.do the reverse rotation of Step 2. 18



Step 5 Plot the simpliial depth for the rotated new data. If this depth is high forangles inside [α0 − η, α0 + η] ∪ [α0 + π/2 − η, α0 + π/2 + η] and small outside
[α0 − η, α0 + η] ∪ [α0 + π/2 − η, α0 + π/2 + η], then the data are distributedaround the two lines given by α0 and α0 + π/4.The lower rows of Figure 2 and Figure 3 show the transformed data with the or-responding depth funtions. The dashed lines display again the deepest lines andangles, while the dotted lines indiate the lines given by α0−π/4 and α0 +π/4. Fig-ure 2 and Figure 3 show that the transformed data have a muh more pronounedpeak. The horizontal lines on the right hand sides of these �gures indiate the rit-ial values for the 0.05-level tests, i.e. their heights are given by 1

2
+

1−χ2
1
(0.95)

2 N
. Inboth examples, the p-value for testing H0 : α = π

3
is 1.
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Figure 4: Image at Time 3 with all deteted raks (upper row) and Image at Time10 with raks longer than 30 pixels (lower row)5 Appliation to the analysis of rak orientationThe proedure proposed in Setion 4.2 is used for analyzing the orientation of miroraks. The left hand side of Figure 4 shows two images of a small probe under19



strain where the strain is given in vertial diretion. One image was taken at theearly time point 3 and the other image was taken at a later time point 10. Thereby,a time point t means t · 1000 load yles. With the time, more and more miroraks are visible and the raks beome longer. The right hand side of Figure 4shows the raks whih were deteted by the R pakage desribed in Gunkel et al.(2009) using a threshold value of 180. For time point 10, only raks longer than 30pixels were plotted. The rak orientations of the plotted raks were obtained byusing the di�erene of the start and end points of the rak paths. They are shownin the left upper orners of Figure 5 and 6.
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Figure 5: Crak orientations at Time 3, upper row: original data with depth fun-tion, lower row: transformed data with depth funtionTo test the hypothesis that small raks have an orientation whih has an angle of 45◦and 135◦ to the strain, the proedure proposed in Setion 4.2 is used. We also testedthe hypothesis that longer raks have an orientation perpendiular to the strain. I.e.for small raks, the hypothesis is HA
0 : α ∈ [π/4− η, π/4+ η]∪ [3π/4− η, 3π/4+ η],and for longer raks, we have HB

0 : α ∈ [0 − η, 0 + η]. We used η = 0.05.The p-value for HA
0 is 1 for the raks at time point 3 and 0.03442 for the longerraks at time point 10. Hene the longer raks are not oriented in 45◦ diretionto the strain.However, for the raks at time point 3, we an proeed with the Steps 2 to 5.The result is shown in Figure 5: The depth funtion in the upper row is more orless onstant whih speaks for an orthogonal distribution. The lower row shows thedepth funtion for the data transformed aording to HA

0 . The maximum depthestimate is 0.785 whih is exatly π/4. This supports the hypothesis that smallraks are oriented in 45◦ diretion to the strain. However, the peak at π/4 is not verypronouned. This indiates that several small raks have also other orientations.20
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Figure 6: Crak orientations at Time 10, upper row: original data with depthfuntion, middle row: data transformed aording to HA
0 with depth funtion, lowerrow: data transformed aording to HB

0 with depth funtionFor omparison, Figure 6 shows the depth funtion for data from time point 10. Themiddle row of this Figure shows the data transformed aording to hypothesis HA
0 .There is a peak, but the peak is not lose to π/4.The p-value for testing HB

0 is 1. The maximum depth estimate for the original datashown in the upper row of Figure 6 is 0.038 indiating an orientation perpendiularto the strain. However, the peak at the estimate is not very pronouned. Thelower row of Figure 6 shows the results when the data are transformed aordingto Hypothesis HB
0 . The peak lose to 0 is now more pronouned supporting HB

0for longer raks. But the fat that the peak for the transformed data is morepronouned than for the original data indiates that there exist also many rakswith other orientations.Aknowledgment. We thank Prof. Dr. Angelika Brükner-Foit, Mihael Besel, andFrank Zeismann from the Institute for Materials Engineering of the University of21



Kassel for providing us the series of images and for the disussions about rakbehavior.AppendixProof of Theorem 2 a)Assume {z1, . . . , zN} ⊂ L1(α) or {z1, . . . , zN} ⊂ L(α). Consider z̃ = (z̃1, z2, . . . , zN) ∈
Z1(z) with z̃1 = λ(cos(α̃), sin(α̃))⊤ with α 6= α̃ 6= α + π/2. Then

N∑

n=2

res(α̃, zn)
2 = K > 0 and sin(α) cos(α̃) − cos(α) sin(α̃) 6= 0.Set λ2 > K/(sin(α) cos(α̃) − cos(α) sin(α̃))2. Then

res(α̃, z̃1)
2 +

N∑

n=2

res(α̃, zn)2 = K

< λ2(sin(α) cos(α̃) − cos(α) sin(α̃))2 = res(α, z̃1)
2 +

N∑

n=2

res(α, zn)2,so that α̂LS(z̃) 6= α. Replaing the squares by absolute values provides also theproof for the L1 estimator.2Proof of Theorem 2 b)(i) At �rst, assume {z1, . . . , zN} ⊂ L1(α).Let be M <
⌈

N
2

⌉ and z̃ ∈ ZM(z) arbitrary. Then we have zeroz̃(α) ≥ N −M > N
2so that

dT (α, z̃) =
1

N
min {posz̃(α) + zeroz̃(α), negz̃(α) + zeroz̃(α)} > N

2
.If α̃ /∈ {α, α + π/2} then posz̃(α̃) ≥ zeroz̃(α) > N

2
or negz̃(α̃) ≥ zeroz̃(α) > N

2
. Inthe �rst ase, we obtain negz̃(α̃) + zeroz̃(α̃) < N

2
and in the seond ase posz̃(α̃) +

zeroz̃(α̃) < N
2
. Hene, we have dT (α̃, z̃) < N

2
in both ases so that α̂T (z̃) ∈ {α, α +

π/2}.Now let M ≥
⌈

N
2

⌉. Chose z̃ suh that z̃n = zn for n = 1, . . . , N −M and z̃n =
(cos(α̃), sin(α̃))⊤ for n = N −M +1, . . . , N and α̃ /∈ {α, α+π/2}. Then z̃ ∈ ZM(z)and zeroz̃(α̃) ≥ M ≥ N

2
. With the same arguments as above, we obtain dT (α, z̃) ≤

N
2
≤ dT (α̃, z̃) so that there exists an estimator α̂T (z̃) /∈ {α, α+ π/2}.(ii) Assume {z1, . . . , zN} ⊂ L(α).Let beM <

⌈
N
3

⌉ and z̃ ∈ ZM (z) arbitrary. Then we have a := zeroz̃(α) ≥ N−M >
2N
3

so that
dT (α, z̃) >

1

N

2N

3
.Set b := zeroz̃(α̃) for α̃ /∈ {α, α + π/2}. Then it holds b ≤ N − a and negz̃(α̃) +

posz̃(α̃) = N − b, so that min{negz̃(α̃), posz̃(α̃)} ≤ N−b
2
. This implies

dT (α̃, z̃) ≤ 1

N

(
b+

N − b

2

)
=

1

N

(
N + b

2

)
≤ 1

N

(
2N − a

2

)

<
1

N

(
2N − 2

3
N

2

)
=

1

N

2N

3
< dT (α, z̃)22



so that α̂T (z̃) ∈ {α, α+ π/2}.Now let M ≥
⌈

N+1
3

⌉. Then {z1, . . . , zN} ⊂ L(α), z̃ ∈ ZM(z), and α̃ /∈ {α, α + π}an be hosen so that zeroz̃(α) = N −M , negz̃(α) = 0, zeroz̃(α̃) = M , negz̃(α̃) ≥
N−M−1

2
≤ posz̃(α̃). This hoie provides
dT (α, z̃) =

1

N
(N −M) ≤ 1

N

(
N − N + 1

3

)
=

1

N

(
2

3
N − 1

3

)
,

dT (α̃, z̃) ≥ 1

N

(
M +

N −M − 1

2

)
=

1

N

(
N +M − 1

2

)

≥ 1

N

(
N + N+1

3
− 1

2

)

=
1

N

(
2

3
N − 1

3

)so that an estimator α̂T (z̃) exists with α̂T (z̃) /∈ {α, α+ π/2}. 2Proof of Theorem 2 )(i) At �rst, assume again {z1, . . . , zN} ⊂ L1(α).Let be M <
⌈

N
2

⌉ and z̃ ∈ ZM(z) arbitrary. Set again a := zeroz̃(α) so that
a ≥ N − M > N

2
and negz̃(α) + posz̃(α) = N − a. Then we have aording toLemma 2

dS(α, z̃)

=
2 negz̃(α)posz̃(α) + 2(negz̃(α) + posz̃(α))zeroz̃(α) + zeroz̃(α)(zeroz̃(α) − 1)

N(N − 1)

≥ 1

N(N − 1)
(2(N − a)a + a(a− 1)) =

1

N(N − 1)
(2Na− a2 − a). (5)Let be α̃ /∈ {α, α+π/2} arbitrary. Then we have without loss of generality negz̃(α̃) =

a+ b with b ≥ 0, posz̃(α̃) = c ≥ 0, zeroz̃(α̃) = N − (a+ b+ c) so that
N(N − 1)dS(α̃, z̃)

= 2(a+ b)c + 2(a+ b+ c)(N − (a + b+ c))

+ (N − (a+ b+ c))(N − (a+ b+ c) − 1)

= 2(a+ b)c + 2(a+ b+ c)N − 2(a + b+ c)2

+ N2 −N(a + b+ c) −N −N(a + b+ c) + (a + b+ c)2 + (a+ b+ c)

= 2(a+ b)c− (a+ b+ c)2 +N2 −N + (a+ b+ c)

= 2(a+ b)c− (a+ b)2 − 2(a+ b)c− c2 +N2 −N + (a + b+ c)

= −(a + b)2 + (a+ b) − c2 + c+N2 −N

=: f(b) =: g(c).Sine f ′(b) = −2(a + b) + 1 ≤ 0 if and only if b ≥ 1
2
− a and 1

2
− a < 0, thefuntion f is dereasing on [0,∞) so that it attains its maximum at b = 0. Sine

g′(c) = −2c + 1 ≤ 0 if and only if c ≥ 1
2
and c ∈ IN , the funtion g is dereasing on

[0,∞) as well so that it attains its maximum at c = 0. This implies
N(N − 1)dS(α̃, z̃) ≤ −a2 + a+N2 −N. (6)23



Sine
−a2 + a +N2 −N < 2Na− a2 − a

⇐⇒ N2 −N < 2Na− 2a⇐⇒ N2 −N < a(2N − 2)

⇐⇒ a >
N(N − 1)

2(N − 1)
=
N

2
(7)and a > N

2
, we have dS(α̃, z̃) < dS(α, z̃) for all α̃ /∈ {α, α + π/2} so that α̂S(z̃) ∈

{α, α+ π/2}.If M ≥
⌈

N
2

⌉, then we an hoose z̃ ∈ ZM(z) and α̃ /∈ {α, α + π/2} suh that
a = N−M ≤ N

2
and equality holds in (5) and (6). In partiular we have negz̃(α̃) = a,

posz̃(α̃) = 0, zeroz̃(α̃) = N − a. Then a ≤ N
2
implies aording to (7) dS(α̃, z̃) ≥

dS(α, z̃) so that an estimator α̂S(z̃) exists with α̂S(z̃) /∈ {α, α+ π/2}.(ii) Now, assume {z1, . . . , zN} ⊂ L(α).Let be M <
⌈
−N + 2 +

√
2N2 − 6N + 4

⌉ and z̃ ∈ ZM (z) arbitrary. Set again
a := zeroz̃(α) so that a ≥ N −M > 2N − 2−

√
2N2 − 6N + 4, negz̃(α)+posz̃(α) =

N − a, and inequality (5) holds. Let be α̃ /∈ {α, α + π/2} arbitrary. Then wehave negz̃(α̃) + posz̃(α̃) = a + b with b ≥ 0 and zeroz̃(α̃) = N − (a + b) so that
negz̃(α̃)posz̃(α̃) ≤

(
a+b
2

)2 and
N(N − 1)dS(α̃, z̃)

≤ 2

(
a+ b

2

)2

+ 2(a+ b)(N − (a + b)) + (N − (a + b))(N − (a + b) − 1)

=
1

2
(a+ b)2 + 2(a+ b)N − 2(a+ b)2

+ N2 −N(a + b) −N −N(a + b) + (a+ b)2 + (a+ b)

= −1

2
(a + b)2 +N2 −N + (a+ b)

=: f(b).Sine f ′(b) = −(a + b) + 1 ≤ 0 if and only if b ≥ 1 − a and 1 − a ≤ 0, the funtion
f is dereasing on [0,∞) so that it attains its maximum at b = 0. This implies

N(N − 1)dS(α̃, z̃) ≤ −1

2
a2 + a+N2 −N. (8)Sine

−1

2
a2 + a+N2 −N < 2Na− a2 − a

⇐⇒ 1

2
a2 + 2a+N2 −N − 2Na < 0

⇐⇒ a2 + 4a+ 2N2 − 2N − 4Na < 0

⇐⇒ a2 − a4(N − 1) + 2N2 − 2N < 0

⇐⇒ a > 2(N − 1) −
√

4(N − 1)2 − 2N2 + 2N and
a < 2(N − 1) +

√
4(N − 1)2 − 2N2 + 2N

⇐⇒ a > 2(N − 1) −
√

4N2 − 8N + 4 − 2N2 + 2N and
a < 2(N − 1) +

√
4N2 − 8N + 4 − 2N2 + 2N

⇐⇒ a > 2N − 2 −
√

2N2 − 6N + 4 and
a < 2N − 2 +

√
2N2 − 6N + 4 (9)24



and N ≥ a > 2N − 2 −
√

2N2 − 6N + 4, we have dS(α̃, z̃) < dS(α, z̃) for all α̃ /∈
{α, α+ π/2} so that α̂S(z̃) ∈ {α, α+ π/2}.If M ≥

⌈
−N + 2 +

√
2N2 − 6N + 5

⌉, then we an hoose {z1, . . . , zN} ⊂ L(α),
z̃ ∈ ZM(z) and α̃ /∈ {α, α+π/2} suh that a = N −M ≤ 2N−2−

√
2N2 − 6N + 5,equality holds in (5) and negz̃(α̃) = a

2
= posz̃(α̃) if a is even and negz̃(α̃) = a+1

2
,

posz̃(α̃) = a−1
2
, respetively, if a is odd. If a is even, then equality holds in (8) aswell. Then a ≤ 2N−2−

√
2N2 − 6N + 4 implies aording to (9) dS(α̃, z̃) ≥ dS(α, z̃)so that an estimator α̂S(z̃) exists with α̂S(z̃) /∈ {α, α + π/2}. If a is odd, then wehave analogously to (9)

dS(α̃, z̃) ≥ dS(α, z̃) (10)
⇐⇒ 2

(
a+ 1

2

)(
a− 1

2

)
+ 2a(N − a) + (N − a)(N − a− 1) ≥ 2Na− a2 − a

⇐⇒ 1

2

(
a2 − 1

)
+ 2aN − 2a2 +N2 −Na−N −Na+ a2 + a ≥ 2Na− a2 − a

⇐⇒ −1

2
a2 − 1

2
+ a+N2 −N ≥ 2Na− a2 − a

⇐⇒ 1

2
a2 + 2a+N2 −N − 2Na− 1

2
≥ 0

⇐⇒ a2 − a4(N − 1) + 2N2 − 2N − 1 ≥ 0

⇐⇒ a ≤ 2N − 2 −
√

2N2 − 6N + 4 + 1 or
a ≥ 2N − 2 +

√
2N2 − 6N + 4 + 1.Sine a ≤ 2N − 2 −

√
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