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Abstract

We use the local maxima of a redescending M-estimator to identify cluster, a

method proposed already by Morgenthaler (1990) for finding regression clusters. We

work out the method not only for classical regression but also for orthogonal regres-

sion and multivariate location and show that all three approaches are special cases

of a general approach which includes also other cluster problems. For the general

case we show consistency for an asymptotic objective function which generalizes the

density in the multivariate case. The approach of orthogonal regression is applied

to the identification of edges in noisy images.
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1 Introduction

Consider a data set with a possibility of different clusters (or subgroups or substructures).

One of the important problems of statistical analysis is to identify all these clusters. For

example, in image analysis, each cluster may correspond to a different geometric primitive

and finding each geometric primitive is therefore an important step towards identifying

and locating an object in the environment. For identifying different regression lines, Späth

(1979) was one of the first who proposed an algorithm. This cluster method is based on

the least squares method. Morgenthaler (1990) and Meer and Tyler (1998) proposed to

use M-estimators with redescending score functions to detect different regression clusters.

Usually the redescending M-estimators have the disadvantage that the objective function

has several local maxima (or minima, respectively). But for identifying substructures in

the data this is an advantage since each local maximum may correspond to a substruc-

ture. This advantage of redescending M-estimators was also used by Hennig (1997, 2000,

2003) but in a different approach. He used instead of the usual equation for defining

M-estimators a fix point version and estimates simultaneously the regression and scale

parameter with an indicator function as score function. The M-estimator with indicator

function and fixed scale provides the well known method of Hough transform in computer

vision (e.g. Stewart 1997). In this paper we follow more the original approach of Morgen-

thaler and use in particular redescending score functions which satisfy some smoothness

conditions. It is known that M-estimators with a smooth score function have many con-

venient statistical properties like Fréchet differentiability (see e.g. Huber 1981, p.37, or

Bednarski et al. 1991).

In the original approach of Morgenthaler, there is the problem that some of the local

maxima have no relation to a useful substructure. For example, a local maximum in clus-

terwise regression can correspond to a line which is orthogonal to the line of a regression

cluster. Therefore, Chen et al. (2001) and Arslan (2002) proposed rather complicated

additional measures for identifying the local maxima which correspond to real regression

cluster. In this paper we show that the problem of identifying the right local maxima is a

problem of too few data and a too large scale parameter. Using a too large scale parame-
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ter means usually that the redescending M-estimators behave more like the least squares

estimators so that the largest (or only) local maximum correspond to a fit over all data

and not to a fit of a subgroup. This also happens if the scale is simultaneously estimated

(see Arslan 2002). This can be avoided by using a scale parameter which converges to

zero with growing sample size. For this situation, we derive here an asymptotic objective

function which is independent of the score function. We demonstrate that the largest

local maxima of this asymptotic objective function correspond to the largest regression

clusters while small local maxima of this objective function correspond to small clusters

or provide features which have no relation to clusters. Moreover, we show consistency to

the local maxima of the asymptotic objective function so that the asymptotic behavior

should hold also approximately for the finite sample case.

While there exists a huge number of different cluster methods, consistency results for

them are rather rare. This is caused by the fact that cluster methods belong more to

data mining methods so that it is of less interest what are the true cluster and cluster

center points. But once true cluster and cluster center points are given, the question

about consistency is important. For cluster methods for multivariate data, consistency

results are proved as that of Pollard (1981) for the K-means methods and of Davies

(1988) for mixtures of elliptical distributions. Also for clusterwise regression, consistency

results exists as those of Kiefer (1978), Desarbo and Cron (1988) and Hennig (1997, 2001,

2003). Here we show the consistency for a rather general class of cluster methods which

are not restricted to the regression case and may be used for identifying other geometric

primitives.

We apply the cluster method based on redescending M-estimators to the problem of

identifying edges in noisy images. Cluster methods and redescending M-estimators are

widely used in computer vision (e.g. Krishnapuram and Freg 1992, Roth and Levine 1993,

Stewart 1997, Müller 2002). All these approaches work with the pixel values themselves.

Here we apply the cluster method to points which are calculated from the pixel values

by a method proposed by Qiu (1997). The method of Qiu provides points which are

distributed around the true edges so that finding the regression clusters with redescending

M-estimators leads to very accurate edge estimates. Moreover, the method of Qiu provides
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a value for the scale parameter and good starting points for finding the local maxima of

the objective function.

We start in Section 2 with the problem of clustering multivariate data coming from

a mixture of densities. A main feature of our consistency result is that redescending

M-estimators can be regarded as kernel density estimators where the scale parameter is

the bandwidth, a connection which recently was used also by Chen and Meer (2002) in

computer vision. For multivariate data, it is well known that, letting the scale parameter

(bandwidth) go to zero, the objective function converges to the density (see e.g. Scott,

1992). Hence Section 2 repeats more or less known results. However, this section is

important for motivating the approaches for classical (vertical) regression in Section 3,

orthogonal regression in Section 4 and the general case in Section 5. In particular our

asymptotic objective function is a generalization of the density in the multivariate case.

It turns out in Section 3, that in the case of two regression clusters the asymptotic

objective function for classical (vertical) regression has largest local maxima at parameters

corresponding to the regression clusters. Other local maxima are significantly smaller if

they exist. For orthogonal regression the same result is shown in Section 4. We also

show in Section 3 that the classical regression, besides its dependence on the choice

of the axis and the special error structure, has the disadvantage that the consistency

result does not hold for discrete distributions of the regressors. All these disadvantages

disappear for orthogonal regression. This is the reason why we use orthogonal regression

for identifying edges in noisy images in Section 6. But before presenting the application in

image analysis, we show in Section 5 that the cluster approaches for multivariate location,

classical regression and orthogonal regression are special cases of a general approach which

includes also other cluster problems as those in multivariate regression. For this general

approach, we present in Section 5 the consistency result in detail. All proofs are given in

the appendix.
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2 Clustering of multivariate data

Let y1N , . . . , yNN ∈ IRk be the realization of independent and identically distributed k-

dimensional random vectors Y1N , . . . , YNN , h the density function of the distribution of

YnN for n = 1, . . . , N , and yN = (y1N , . . . , yNN). The aim is to find the positions of the

local maxima of h. These positions of the local maxima are considered as the true center

points of the true clusters and the set of these center points is denoted by M, i.e.

M := {µ ∈ IRk; h(·) has local maximum at µ}.

Via the center points the true clusters are defined as the sets of those points which are

closest to the center point. I.e. the true cluster with respect to a center point µ0 ∈ M

are those points y ∈ IRk so that µ0 ∈ arg min{‖y − µ‖; µ ∈ M}.

In particular, if the distribution of YnN is a mixture of distributions with unimodal

densities, then the density of the distribution h of YnN has several local maxima. For

example, if YnN = µl + EnN with probability γl and EnN has density fl with maximum

at 0, then h is the mixture of densities fl given by

h(µ) =
L
∑

l=1

γlfl(µ − µl)

with γl > 0 and
∑L

l=1 γl = 1. If the functions fl(· − µl) have supports which are not

overlapping then the local maxima of h are attained at the µl. However, if the supports

are overlapping as it is the case for multivariate normal distributions, then the local

maxima of h do not coincide with the modes of the fl(· − µl) but they are closely related

if the overlap is not too large. Since in practise the densities fl of the mixture distribution

are not known it is better to define center points and clusters not via the modes of

the distributions fl(· − µl). The above definition of center points and clusters is more

appropriate for situations with a general density h. Hence the main aim is to estimate

the positions of the local maxima of h.

Having the result that kernel density estimates are consistent estimates of the density

h (see e.g. Silverman 1986), consistent estimates for the local maxima of h and thus the

center points can be defined as the local maxima of the estimated density given by the
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kernel estimator. This provides automatically also consistent estimates of the clusters.

However, for the consistency of the local maxima, technical problems must be solved.

A kernel density estimator for h(µ) is given by

HN(µ, yN) :=
1

N

N
∑

n=1

1

sk
N

ρ

(

1

sN

(ynN − µ)

)

,

where µ ∈ IRk, ρ : IRk → IR+ is the kernel function and sN ∈ IR+ \ {0} is the bandwidth.

If sN converges to zero when N tends to infinity, then HN(µ, yN) converges to h(µ) in

probability under some regularity conditions. Let

MN(yN) := {µ ∈ IRk; HN(·, yN) has local maximum at µ},

where the local maxima of HN(·, yN ) can be found by Newton Raphson method starting

at any ynN with n = 1, . . . , N .

Then MN(yN) is the estimate of the set M of the positions of the true local maxima.

The set MN(yN) can be also considered as M-estimates with respect to the objective

function HN(·, yN). Then ρ is the score function of the M-estimator and sN is a scale

parameter.

Usually ρ will be an unimodal density like that of the standard normal distribution,

where ρ(y) = 1
(
√

2π)k e−
1
2
y>y. Hence each ynN is a candidate for a local maximum of

HN(µ, yN). If the bandwidth (scale parameter) sN is small enough and the distance

between the ynN are large enough then these candidates can be really local maxima. But

usually there is so much overlap of the ρ
(

1
sN

(ynN − µ)
)

that no one of the ynN is a local

maxima. However, searching the local maxima in increasing direction starting at any ynN

should provide the relevant maxima. This is an approach used also by Chu et al. (1998)

for constructing corner preserving M-smoother for image reconstruction. The consistency

of these M-smoothers even at jumps was shown by Hillebrand and Müller (2001). A

similar proof can be used here to prove the consistency of the set MN(yN).

In Section 5 it is shown that the set MN(yN) is a consistent estimator for the set M.

For that we need not only pointwise convergence of HN(µ, yN) to h(µ) but also uniform

convergence which can be achieved by intersecting MN(yN) with a compact subset of IRk.
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Appropriate compact subsets are given by

Θη :=

{

µ ∈ IRk; h(µ) ≥
1

η

}

with η ∈ IN.

3 Clustering of regression data

In the classical regression model with one cluster, we have independent and identically

distributed observations Z1N := (X>
1N , Y1N )>, . . . , ZNN := (X>

NN , YNN)> with

YnN =
(

1, X>
nN

)

β0 + EnN

for n = 1, . . . , N , where XnN and EnN are independent, β0 ∈ IRp, p ≥ 2, is an unknown

parameter vector and YnN and XnN are observed. Let f denote the density function of the

distribution of EnN and G0 the distribution of XnN . Moreover, let zN = (z1N , . . . , zNN) =

(x>
1N , y1N )>, . . . , (x>

NN , yNN)>) a realization of ZN = (Z1N , . . . , ZNN ).

The M-estimator for β is defined as a maximum point of the objective function

HN(β, zN) :=
1

N

N
∑

n=1

1

sN

ρ

(

1

sN

(

ynN −
(

1, x>
nN

)

β
)

)

,

where ρ : IR → IR+ is the score function and sN ∈ IR+ \ {0} is a scale parameter (see e.g.

Huber 1973, 1981, Hampel et al. 1986). If ρ is not convex, that is the derivative of ρ is

redescending, then HN(·, zN) has several local maxima so that we define

MN(zN) := {β ∈ IRp; HN(·, zN) has local maximum at β}. (1)

The local maxima of HN(·, zN) can be found by Newton Raphson method starting at any

hyperplane through (x>
n1N , yn1N)>, . . . , (x>

npN , ynpN)> with {n1, . . . , np} ⊂ {1, . . . , N}.

It is shown in Section 5 that under some regularity conditions for sN → 0, we have

HN(β, ZN))
N→∞
−→ h(β) :=

∫

f
((

1, x>) (β − β0)
)

G0(dx)

in probability for all β ∈ IRp. The function h plays now the same role as the density h

in multivariate density estimation. In particular it is independent of the score function
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ρ. It would depend on ρ if the scale parameter would not converge to zero, which is in

particular the case if the scale is simultaneously estimated as in Arslan (2002). Moreover,

we have the following Fisher consistency result.

Lemma 1 If f is a unimodal density with maximum at 0, then h has only one maximum

at β0.

Now regard the situation of L regression clusters with different parameter vectors βl,

l = 1, . . . , L. Then the n’th observation is given by

YnN =
(

1, X>
nN

)

βl + EnN

if it is coming from the l’th cluster. Since the distribution of the regressors XnN may also

depend on the cluster, we use Gl for the distribution of XnN coming from the l’th cluster.

In Section 5 it is shown that for sN → 0 we now have

HN(β, ZN)
N→∞
−→ h(β) :=

L
∑

l=1

γl

∫

f
((

1, x>) (β − βl)
)

Gl(dx)

in probability for all β ∈ IRp. Again γl > 0 denotes the probability that the n’th obser-

vation is coming from the l’th cluster and it holds
∑L

l=1 γl = 1.
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Figure 1: Contour plots of the limit function h in the case of two nonparallel lines (left, β1 = (2,−2),

β2 =(20, 0.5), γ1 =γ2 =0.5, G1 ∼ N (1, 3), G2 ∼ N (10, 3), f = fN (0,1)) and the case of two parallel lines

(right, β1 = (2,−2), β2 =(28,−2), γ1 =γ2 =0.5, G1 ∼ N (1, 3), G2 ∼ N (10, 3), f = fN (0,1))
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Under enough separation the local maxima of h are attained at β1, . . . , βL. This is

analogous to the multivariate case. Enough separation means here that the density f has

a compact support and that the parameter vectors βl and the supports of the distributions

Gl are enough separated. If the separation is not enough then at least the local maxima

are attained close to β1, . . . , βL. This can be seen also from the left contour plot of h in

Figure 1 in the case of two regression clusters given by two nonparallel lines, where the

regressors and the errors have normal distributions, namely G1 ∼ N (1, 3), G2 ∼ N (10, 3),

f = fN (0,1). However, in the case of two parallel lines as given in the right plot in Figure 1,

there appears a third local maximum which correspond to a line more or less orthogonal

to the parallel lines depending on the distribution of the regressors. But the height of this

third local maximum is much smaller than the height of the other local maxima so that

it can be easily separated from the other local maxima. See also Section 6.

Hence as in the multivariate case we will regard the positions of the local maxima of h

as the true parameter vectors which shall be estimated. Let M be the set of the positions

of these local maxima, i.e.

M := {β ∈ IRp; h(·) has local maximum at β} .

The regression hyperplanes l(β) :=
{

(x>, y)> ∈ IRp; y =
(

1, x>) β
}

given by maximum

points β ∈ M are the true center points (center planes) of the regression clusters. The

cluster belonging to a center plane given by βl are all (x>, y)> ∈ IRp for which l(βl) is the

closest plane, i.e. all (x>, y) such that βl ∈ arg min
{

|y −
(

1, x>) β|; β ∈ M
}

. Hence, if we

can estimate M consistently, then also the regression clusters are consistently estimated.

If some of the local maxima of M are not related to real clusters as the third local maxima

in the example of two parallel lines they can be excluded afterwards by the height of the

maximum or, another possibility, by the size of the corresponding cluster. But the first

step is to estimate consistently all local maxima of h.

The estimate for M is the set MN(zN) defined by (1). As for the multivariate case,

the consistency of MN(zN) can be shown in Section 5 only if MN(zN) is intersected with

a compact set which is here

Θη :=

{

β ∈ IRp; h(β) ≥
1

η

}

with η ∈ IN.
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However, here is the compactness of Θη not always satisfied. In particular, as the

following lemma shows, it is not satisfied if one of the distributions Gl is discrete so that

regression experiments with repetitions at finite design points are excluded.

Lemma 2 If f is continuous then Θη is compact for all η ∈ IN if and only if none of

distributions Gl has positive mass on a subspace of IRp−1.

4 Clustering of regression data by orthogonal regres-

sion

For orthogonal regression usually an error-in-variable model is assumed. This means that,

in the case of one cluster, we have independent and identically distributed observations

Z1N := (V >
1N ,W1N )>, . . . , ZNN := (V >

NN ,WNN )> with

(V >
nN ,WnN) = (X>

nN , YnN) + (E>
1nN , E2nN )

for n = 1, . . . , N , where (X>
nN , YnN), E1nN , E2nN are independent, XnN , VnN , E1nN are

(p − 1)-dimensional random vectors, YnN , WnN , E2nN are one-dimensional random vari-

ables, and (X>
nN , YnN)a0 = b0 almost surely for some unknown, but fixed (a>

0 , b0)
> ∈

S1 × IR where S1 = {a ∈ IRp; a>a = 1}. Usually it is assumed that (E>
1nN , E2nN )> has a

symmetrical, elliptical distribution with density f0 such that a>(E>
1nN , E2nN )> has a dis-

tribution with density f for all a ∈ S1. Let a = (a>
1 , ap)

> and a0 = (a>
01, a0p)

>. W.l.o.g. we

can assume that a0p 6= 0 so that YnN = b0
a0p

− 1
a0p

a>
01XnN , and G0 denotes the distribution

of the regressor XnN . Let again zN = (z1N , . . . , zNN ) =
(

(v>
1N , w1N)>, . . . , (v>

NN , wNN)>
)

denote the realization of ZN = (Z1N , . . . , ZNN ).

To avoid working with S1, we can use a one-to-one mapping a : Cp−1 → S1, where Cp−1

is a compact subset of IRp−1. In the two-dimensional case, i.e. p = 2, the function a can

be given for example by a(α) = (cos(α), sin(α))> with α ∈ [−π, π] = C1.

An M-estimator for (a0, b0) was proposed by Zamar (1989) and extends the orthogonal

least squares regression estimator. It is defined as a maximum point of the objective
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function

HN(a, b, zN) :=
1

N

N
∑

n=1

1

sN

ρ

(

1

sN

(a>
1 vnN + apwnN − b)

)

,

where ρ : IR → IR+ is the score function and sN ∈ IR+ \ {0} is a scale parameter. As for

classical vertical regression, if the derivative of ρ is redescending, then HN(a, b, zN) has

several local maxima so that we define

MN(zN) := {(a>, b)> ∈ S1 × IR; HN(·, ·, zN) has local maximum at (a, b)}. (2)

The local maxima of HN(·, ·, zN ) can be found as for vertical regression, i.e. by Newton

Raphson method starting at any hyperplane through (v>
n1N , wn1N)>, . . . , (v>

npN , wnpN)>

with {n1, . . . , np} ⊂ {1, . . . , N}.

It is shown in Section 5 that under some regularity conditions for sN → 0, we have

HN(a, b, ZN )
N→∞
−→ h(a, b) :=

∫

f

(

b −
ap

a0p

b0 −

(

a>
1 −

ap

a0p

a>
01

)

x

)

G0(dx)

in probability for all (a>, b)> ∈ S1 × IR. Again, as in Section 3, h is independent of

ρ. Moreover, in opposite to classical vertical regression, the function h(a, b) can be inter-

preted as a density and shows therefore more relations to the function h in the multivariate

case of Section 2. We have namely the following lemma.

Lemma 3 For every a ∈ S1, the distribution of a>
1 VnN + apWnN has the density

fa>

1 VnN+apWnN
(b) =

∫

f

(

b −
ap

a0p

b0 −

(

a>
1 −

ap

a0p

a>
01

)

x

)

G0(dx).

If f is unimodal with maximum at 0, then fa>

1 XnN+apYnN
(b) attains its maximum value

at a = a0 and b = b0 so that we have again Fisher consistency in the case of one cluster.

This can be seen as in Lemma 1.

Now, we consider a mixture of error-in-variable models. That is (V >
nN ,WnN)> follows

with probability γl an error-in-variable model with parameter (a>
l , bl)

> = (a>
l1, alp, bl)

> ∈

S1 × IR and regressor distribution Gl for l = 1, . . . , L, where
∑L

l=1 γl = 1. Then the
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distribution of a>
1 VnN + apWnN has the density

h(a, b) := fa>

1 VnN+apWnN
(b)

=
L
∑

l=1

γl

∫

f

(

b −
ap

alp

bl −

(

a>
1 −

ap

alp

a>
l1

)

x

)

Gl(dx)

and HN(a, b, ZN) converges to h(a, b) in probability for every (a>, b)> ∈ S1 × IR. If the

regression hyperplanes given by (al, bl) are enough separated then h(a, b) will have local

maxima at (a, b) = (al, bl).
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Figure 2: Contour plots of the limit function h in the case of two nonparallel lines (left, (α1, b1) =

(0.46, 0.9), (α2, b2) = (−1.11,−18), γ1 = γ2 = 0.5, G1 ∼ N (1, 3), G2 ∼ N (10, 3), f = fN (0,1)) and two

parallel lines (right, (α1, b1) = (0.46, 0.9), (α2, b2) = (0.46, 12.4), γ1 = γ2 = 0.5, G1 ∼ N (1, 3), G2 ∼

N (10, 3), f = fN (0,1))

See for example Figure 2 for the two-dimensional case with al =

(cos(αl), sin(αl))
>. The parameters of the two lines giving the regression clusters are

chosen so that the lines are similar to the lines given by the parameters in Figure 1.

Therefore also the same distributions for the regressors and the error are chosen although

this provides a larger variability of the data since the regressors are also influenced by

the error. Nevertheless Figure 2 is rather similar to the Figure 1 taking into account the

different parametrization of the lines. Note that the symmetry in Figure 2 is caused by the

region [−π, π] for the parameter α where for example the region [−π, 0] would be enough.

But from the region [−π, π] we see better the circular behavior. Hence it turns out for

orthogonal regression that, for clusters around nonparallel lines, only two local maxima
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appear where, for clusters around two parallel lines, a third local maximum with a rather

small height appears. This behavior coincides with the behavior of classical regression

treated in Section 3.

The aim is now to estimate the local maxima of h(a, b), or more precisely, the set

M := {(a>, b)> ∈ S1 × IR; h(·, ·) has local maximum at (a, b)}.

Again, the regression hyperplanes l(a, b) := {(v>, w)> ∈ IRp+1; a>
1 v + apw = b} given

by maximum points (a>, b)> ∈ M are the center points (center planes) of the regression

clusters. The cluster belonging to a center plane given by (al, bl) are all (v>, w)> ∈ IRp+1

for which l(al, bl) is the closest plane, i.e. all (v>, w)> such that (a>
l , bl)

> ∈ arg min{|a>
1 v+

apw − b|; (a>, b)> ∈ M}. If we can estimate M consistently, then also the regression

clusters are consistently estimated.

The estimate for M is the set MN(zN) defined by (2). As before, the consistency of

MN(zN) can be shown in Section 5 only if MN(zN) is intersected with the set

Θη :=

{

(a>, b)> ∈ S1 × IR; h(a, b) ≥
1

η

}

.

Since a is lying in the compact set S1 and h(a, ·) is a density function the compactness

of Θη holds here for all distributions Gl. Hence, orthogonal regression is also in this sense

superior to classical vertical regression where a restriction on the Gl is necessary to ensure

the compactness of Θη (see Section 3).

5 Consistency of the center points of multivariate

and regression clusters

The approaches for multivariate data and regression data of the Sections 2, 3, and 4 can

be combined by regarding

HN(θ, EN , XN ) :=
1

N

N
∑

n=1

1

sk
N

ρ

(

1

sN

(EnN − cn(θ,XnN))

)

,

13



where θ = (θ1, . . . , θq)
> ∈ IRq, EN = (E1N , . . . , ENN)> is the error matrix (vector),

XN = (X1N , . . . , XNN )> is the matrix of regressors, ρ : IRk → IR+, and cn(·, x) =

(cn
1 (·, x), . . . , cn

k(·, x))> : IRq → IRk for all x ∈ X . E1N , . . . , ENN , X1N , . . . , XNN are

independent with density f : IRk → IR+ for EnN and distribution Gn for XnN on X for

n = 1, . . . , N . We have Gn = Gl and cn = cl if the n’th observation is coming from the

l’th cluster.

For i, j ∈ {1, . . . , q}, let be

H ′
Ni(θ, EN , XN) :=

1

N

N
∑

n=1

1

sk
N

∂

∂θi

ρ

(

1

sN

(EnN − cn(θ,XnN))

)

,

H ′′
Nij(θ, EN , XN) :=

1

N

N
∑

n=1

1

sk
N

∂2

∂θi∂θj

ρ

(

1

sN

(EnN − cn(θ,XnN))

)

,

h(θ) :=
L
∑

l=1

γl

∫

f
(

cl(θ, x)
)

Gl(dx),

h′
i(θ) :=

L
∑

l=1

γl

∫

∂

∂θi

f
(

cl(θ, x)
)

Gl(dx),

h′′
ij(θ) :=

L
∑

l=1

γl

∫

∂2

∂θi∂θj

f
(

cl(θ, x)
)

Gl(dx),

where γl > 0 and
∑L

l=1 γl = 1.

The multivariate case treated in Section 2 is given with q = k, θ = µ, X = {1},

and cn(θ, x) = cn(µ, x) = µ − µn, so that HN(µ, YN) of Section 2 is now HN(θ, EN , XN )

where XnN = 1 for n = 1, . . . , N . The vertical regression is given with q = p, k = 1,

θ = β, X ⊂ IRp−1, and cn(θ, x) = cn(β, x) =
(

1, x>) (β − βn), and HN(β, ZN) of Section

3 is here HN(θ, EN , XN). For the orthogonal regression, we have q = p, k = 1, θ =

(α>, b)>, X ⊂ IRp−1, and cn(θ, x) = cn(α, b, x) = b − ap(α)

anp
bn −

(

a1(α)> − ap(α)

anp
a>

n1

)

x,

where (a>
1 , ap)

> : Cp−1 → S1 is a one-to-one mapping from the compact set Cp−1 ⊂ IRp−1

onto S1. The objective function HN(a, b, ZN ) of Section 4 coincides with HN(θ, EN , XN )

of this section because of the relations (V >
nN ,WnN) = (X>

nN , YnN) + (E>
1nN , E2nN ) and

YnN = bn

anp
− 1

anp
a>

n1XnN and the fact that a>(E>
1nN , E2nN )> behaves like a EnN with density

f . Note that only by using the error matrix EN we can treat all three cases together.

Hence the sets MN(Yn) and MN(ZN) of local maximum points of HN(θ, EN , XN) of

Sections 2, 3, and 4 are here denoted by MN(EN , XN ).
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We are going to show that the set MN(EN , XN ) is a consistent estimate of the set

M of local maximum points of h. To show this we have to restrict MN(EN , XN) to the

intersection

Mη
N(EN , XN ) := MN(EN , XN) ∩ Θη

where for η ∈ IN

Θη :=

{

θ ∈ IRq; h(θ) ≥
1

η

}

. (3)

We will show that Mη
N(EN , XN) is a consistent estimate of M for all η greater a value

η0 so that the intersection provides indeed no restriction.

Under consistency we understand here that Mη
N(EN , XN ) is lying in a δ neighborhood

of M and vice versa with probability converging to one if N tends to infinity. Hence let

Uδ(M
η
N(EN , XN )) := {θ ∈ IRq; there exists θ0 ∈ Mη

N(EN , XN) with ‖θ − θ0‖ < δ}

the δ neighborhood of Mη
N(EN , XN ) and define Uδ(M) analoguously. For the consistency

we need some assumptions.

For e = (e1, . . . , ek)
> and ρ : IRk → IR+ let be ρ′(e) := (ρ′

1(e), . . . , ρ
′
k(e))

> and

ρ′′(e) := (ρ′′
rs(e))r,s=1,...,k, where ρ′

r(e) := ∂
∂er

ρ(e) and ρ′′
rs(e) := ∂

∂er
ρ′

s(e) for r, s = 1, . . . , k.

Define f ′(e) and f ′′(e) analogously. Also set h′(θ) = (h′
1(θ), . . . , h

′
q(θ))

> and h′′(θ) =

(h′′
ij(θ))i,j=1,...,q and use H ′

N and H ′′
N analogously. Moreover, let λmaxh

′′(θ) be the maxi-

mum eigenvalue of h′′(θ) and ‖A‖ a norm of the matrix A = (Aij)i,j=1,...,q, for example

‖A‖ =
√

∑q

i=1

∑q

j=1 A2
ij. Then we make the following assumptions

[1] sN → 0, N s
q(k+3)+k+4
N → ∞ for N → ∞,

[2] The support of Gl is included in X for all l = 1, . . . , L,

[3] ∂2

∂er∂es
f(e) and ∂2

∂er∂es
ρ(e) are Lipschitz continuous for r, s = 1, . . . , k,

[4] ∂2

∂θi∂θj
cl(θ, x) is Lipschitz continuous with respect to θ uniformly in x ∈ X for i, j =

1, . . . , q and l = 1, . . . , L,

[5]
∫

ρ(v)dv = 1 and
∫

ρ(v) ||v||dv < ∞,

15



[6]
∫

ρ′′
rs(v)2 dv < ∞ and

∫

ρ′
r(v)2 dv < ∞ for r, s = 1, . . . , k,

[7] supθ∈Θ,x∈X

∣

∣

∣

∂
∂θi

cl
r(θ, x)

∣

∣

∣
< ∞ and supθ∈Θ,x∈X

∣

∣

∣

∂2

∂θi ∂θj
cl
r(θ, x)

∣

∣

∣
< ∞ for r, s = 1, . . . , k,

i, j = 1, . . . , q, l = 1, . . . , L and all compact sets Θ ⊂ IRq.

[8] Θη is compact for all η ∈ IN ,

[9] M is finite and h′′(θ) is negative definite for all θ ∈ M,

[10] min{|λmax(h
′′(θ))|; θ ∈ M0 ∩ Θη} > 0 for all η ∈ IN , where

M0 := {θ ∈ IRq; h′(θ) = 0 and h(θ) > 0}.

Condition [10] is essential but often overlooked in similar approaches (see Hillebrand

and Müller 2001). Contrary to the other conditions, it is in general not easy to verify.

However, if Gl has a unimodal density and also the density f is unimodal, it is satisfied

under enough separation of the clusters. Then we have in particular M = M0. The

order of the convergence of sN in Condition [1] can be weakened by using a proof based

on Fourier transforms. Since such a proof is more complicated and longer we give here

an elementary proof using the stronger assumption.

Under the assumptions we have now the main theorem.

Theorem 1 Under the conditions [1] - [10], there exists a η0 ∈ IN so that for all ε > 0,

δ > 0, η ≥ η0 we have: there exists Nη,ε,δ ∈ IN with

P (Mη
N(EN , XN) ⊂ Uδ(M) and M ⊂ Uδ(M

η
N(EN , XN ))) ≥ 1 − ε

for all N ≥ Nη,ε,δ.

The proof of the theorem bases on the following three lemmata.

Lemma 4 Under the conditions [2] - [7], there exists a constant C such that for all

N ∈ IN , θ ∈ IRq and i, j ∈ {1, . . . , q}, we have

|E(HN(θ, EN , XN )) − h(θ)| ≤ CsN ,

|E(H ′
Ni(θ, EN , XN)) − h′

i(θ)| ≤ CsN ,

|E(H ′′
Nij(θ, EN , XN )) − h′′

ij(θ)| ≤ CsN .
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Lemma 5 Under the conditions [2] - [7] for all compact sets Θ ⊂ IRq, there exists a

constant C such that for all N ∈ IN , θ ∈ Θ and i, j ∈ {1, . . . , q}, we have

var(HN(θ, EN , XN)) ≤
C

N sk
N

,

var(H ′
Ni(θ, EN , XN )) ≤

C

N sk+2
N

,

var(H ′′
Nij(θ, EN , XN)) ≤

C

N sk+4
N

.

These lemmata provide at once pointwise convergence of HN(θ, EN) to h(θ) in proba-

bility for all θ. But pointwise convergence is not enough. We need uniform convergence

at least on compact subsets of IRq.

Lemma 6 Under the conditions [1] - [7] for all compact sets Θ ⊂ IRq and all ε > 0,

δ > 0, there exists an integer NΘ,ε,δ ∈ IN with

a) P

(

sup
θ∈Θ

|HN(θ, EN , XN) − h(θ)| > δ

)

< ε,

b) P

(

sup
θ∈Θ

|H ′
Ni(θ, EN , XN ) − h′

i(θ)| > δ

)

< ε,

c) P

(

sup
θ∈Θ

|H ′′
Nij(θ, EN , XN) − h′′

ij(θ)| > δ

)

< ε,

d) P

(

sup
θ∈Θ

|λmax(H
′′
N(θ, EN , XN )) − λmax(h

′′(θ))| > δ

)

< ε

for all N ≥ NΘ,ε,δ and i, j = 1, . . . , q.

Since we have uniform convergence according to Lemma 6 the heights of the local

maxima of HN(·, EN , XN) converges to the heights of the local maxima of h so that the

largest local maxima of HN(·, EN , XN) converges to the largest local maxima of h and

thus to the local maxima related to real clusters.

6 Application on edge identification in noisy images

As an application of the cluster method, we use it to detect edges in noisy images. We first

use a generalized version of the Rotational Density Kernel Estimator (RDKE) introduced

17



by Qiu (1997) to estimate those pixels, which may belong to one of the edges, which

correspond to the regression lines (hyperplanes) in our model. Then, these points are

used as observations znN .

We choose the RDKE-method because it does not only estimate the points lying on

the edges like other methods do, but also the direction of the jump curve in these points.

This provides canonical start values for the Newton Raphson method, namely the lines

given by the estimated points and directions, which we used instead of those given by any

two observations (see the remark after (2) in Section 4).

1 20 40 60 80 100

1
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40
60

80
10

0

Figure 3: Original image with 100×100

{0, 1} - pixels

1 20 40 60 80 100

1
20

40
60

80
10

0

Figure 4: Image with normal dis-

tributed noise (σ = 0.3)

Figure 3 and 4 show the original image with 100 × 100 pixels with values 0 or 1 and

the noisy image with N(0, 0.32) - distributed errors.

For using the RDKE - method, we have to choose the window size hN . In cases like

this, where the size of the object which should be detected is known, the window size

can be choosen relatively to this size, e.g. 10% of it. The triangle in our example has a

diameter of 68 pixels, so we set hN = 6.8.

For every pixel of the image, we used a multiple test (α = 0.05) by using the RDKE-

method with a uniform kernel for four different angles. Figure 5 shows the 2199 points,

for which the hypothesis that the point does not lie on a jump curve could be rejected. We

see that there is a large dispersion around the true edges. To avoid boundary problems
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Figure 5: Estimated jump points, respectively observations zn,2199

we only used the points with a sufficiently large distance to the border.

On these points, we applicate our estimator with the density of the standard normal

distribution as score function ρ. Again, we have to choose a bandwidth – the scale para-

meter sN – what could be done with respect to the window size hN of the RDKE-method.

The smaller sN the more different lines are found. But since it is relatively easy to

reduce the number of lines afterwards, better results are achieved if sN is not too big.

Otherwise we would get less lines but each with a bigger deviation. Therefore we choose

the scale parameter that way that those points, which lie in the corresponding window of

the RDKE-method, have 95% = 1− α of the weight, that is sN = hN

u1−α/2
= 6.8

u1−α/2
≈ 3.47.

Since in general the window size hN is not known we also used scale parameters sN = 1.5

and sN = 5 to show the dependence of the choice of the scale parameter. Figure 6 shows

the estimated center lines for these three scale parameters.

The number of true clusters is unknown in many applications. Our method provides

an easy way to obtain this number, since in general the maxima of the true clusters are

considerably larger than the others (see Figure 8). This is contrary to the results of Arslan

(2002) where simultaneously the scale parameter is estimated. In this approach the global

maximum is attained at a regression line approximating all data as good as possible and
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Figure 6: Observations z2199 with the estimated cluster lines M2199(z2199) for sN = 1.5 (left), sN = 3.47

(middle) and sN = 5 (right)
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Figure 7: Observations with the three center lines with the largest maxima for sN = 1.5 (left) and

sN = 3.47 (right)

not at lines of clusters. This shows that the simultaneous estimation of regression and

scale parameter provides problems in choosing the right lines, a reason why Arslan deals

with special tests for identifying the true clusters. The problems are caused by the fact

that the simultaneous scale estimation provides too large scale estimates which are not

converging to zero with growing sample size.

If the number of clusters is known there are several methods to choose the true clusters

out of the set MN(zN). Beside the usual methods like choosing those clusters to which

most of the points belong to, our method suggests also in this case to choose the clusters

with the largest local maxima of HN(a, b, zN ). In this simulation the three clusters with

the most points and those with the largest maximum are the same for all three scale

parameteres we used (see Figures 7,8,9). Therefore, the choice of the scale parameter
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Figure 8: The maxima of the estimated clusters for sN = 1.5 (left) and sN = 3.47 (right)
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Figure 9: Number of points in the estimated clusters for sN = 1.5 (left) and sN = 3.47 (right)

seems not to be very critical especially if the number of clusters is known.

The estimator provided in this paper has advantages over other methods especially

if the clusters are not at all seperated like in this example. For example the regression

fixed point cluster (FPC) method introduced by Hennig (2002, 2003) cannot find all

three clusters if the ”tuning constant”, which describes the separation of the clusters, is

choosen automatically (see Figure 10). If the method is manually tuned then it finds

a fourth cluster containing all points (see Figure 11) but without providing a canonical

method to choose the right clusters. Beside that, this method is not independent with

respect to rotation (see Figure 12).
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Figure 10: Two cluster cen-

ter lines found by the FPC

method with automatically

choosen tuning constant c =

5.54
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Figure 11: Four cluster

center lines found by the

FPC method with manually

choosen tuning constant c =

4.0
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Figure 12: Three clus-

ter center lines found by the

FPC method with manually

choosen tuning constant c =

4.0 and rotated observations

7 Appendix: Proofs

For simplicity we dropped in the lemmata some assumptions. From the proofs it is clear

which of the assumptions in Section 5 are needed for the particular lemmata.

Proof of Lemma 1. Let β 6= β0. Then we obtain for the derivative of h

∂

∂β
h(β) (β − β0) =

∫

f ′((1, x>)(β − β0)) (1, x>) Go(dx) (β − β0)

=

∫

(1,x>)(β−β0)>0

f ′((1, x>)(β − β0)) (1, x>)(β − β0) Go(dx)

+

∫

(1,x>)(β−β0)<0

f ′((1, x>)(β − β0)) (1, x>)(β − β0) Go(dx)

< 0.

Hence h has only a maximum at β = β0. 2

Proof of Lemma 2. Assume that Gj has positive mass on a subspace S of IRp−1. Then

there exists β̃ with
(

1, x>) β̃ = 0 for all x ∈ S. This means

h(vβ̃) =
L
∑

l=1

γl

∫

f((1, x>)(vβ̃ − βl)) Gl(dx)
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≥ γj

∫

S

f(−(1, x>)βj) Gj(dx) =: w

for all v ∈ IR. If η ∈ IN is such that w ≥ 1
η

then {vβ̃; v ∈ IR} is a subset of Θη so that Θη is

not compact. Conversely, assume that none of distributions Gl has positive mass on a sub-

space of IRp−1. Let η ∈ IN arbitrary and regard any sequence β(n) ∈ Θη. First assume that

β(n) is unbounded. The only possibility to obtain lim supn→∞ f
((

1, x>) (β(n) − βl)
)

> 0

is that
(

1, x>) β(n) is bounded and this can be only satisfied by x from a subspace of IRp−1.

Since Gl has no positive mass on a subspace we have limn→∞ f
((

1, x>) (β(n) − βl)
)

= 0

Gl-almost surely for all l = 1, . . . , L. This implies

lim
n→∞

h(β(n)) = lim
n→∞

L
∑

l=1

γl

∫

f
((

1, x>) (β(n) − βl)
)

Gl(dx) = 0

and therefore a contradiction to β(n) ∈ Θη. Hence β(n) is bounded. A subsequence of β(n)

converges also to a member β(0) of Θη since, with f , also h is continuous. Hence Θη is

compact. 2

Proof of Lemma 3. Let F be the distribution function belonging to the density f .

Since a>(E>
1nN , E2nN )> has the density f and YnN = b0

a0p
− 1

a0p
a>

01XnN we have

P (a>
1 VnN + apWnN ≤ b)

= P
(

a>
1 XnN + apYnN + a>(E>

1nN , E2nN )> ≤ b
)

= P

(

a>
1 XnN + ap

b0

a0p

−
ap

a0p

a>
01XnN + a>(E>

1nN , E2nN )> ≤ b

)

=

∫

P

(

ap

b0

a0p

+

(

a>
1 −

ap

a0p

a>
01

)

x + a>(E>
1nN , E2nN )> ≤ b

∣

∣

∣

∣

XnN = x

)

G0(dx)

=

∫

P

(

a>(E>
1nN , E2nN )> ≤ b −

ap

a0p

b0 −

(

a>
1 −

ap

a0p

a>
01

)

x

∣

∣

∣

∣

XnN = x

)

G0(dx)

=

∫

F

(

b −
ap

a0p

b0 −

(

a>
1 −

ap

a0p

a>
01

)

x

)

G0(dx).

Differentiation with respect to b provides the assertion. 2

Proof of Lemma 4. We prove the assertion for the most difficult case, that is for

E(H ′′
Nij(θ, EN , XN )). The other cases follow similarly.

Since ρ(e) → 0 for er → ±∞ we have in particular ρ
(

e−cl(θ,x)
sN

)

f ′(e) → 0 and
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ρ′
s

(

e−cl(θ,x)
sN

)

f(e) → 0 for er → ±∞, r, s = 1, . . . , k. Hence partial integration provides

E(H ′′
Nij(θ, EN , XN )) =

L
∑

l=1

γl

∫

1

sk
N

∂2

∂θi∂θj

ρ

(

e − cl(θ, x)

sN

)

f(e) deGl(dx)

=
L
∑

l=1

γl

∫

1

sk
N

∂

∂θi

(

ρ′
(

e − cl(θ, x)

sN

)>
∂

∂θj

−cl(θ, x)

sN

)

f(e) deGl(dx)

=
L
∑

l=1

γl

∫

1

sk
N

[

∂

∂θi

cl(θ, x)>

sN

ρ′′
(

e − cl(θ, x)

sN

)

∂

∂θj

cl(θ, x)

sN

− ρ′
(

e − cl(θ, x)

sN

)>
∂2

∂θi ∂θj

cl(θ, x)

sN

]

f(e) deGl(dx)

=
L
∑

l=1

γl

∫

1

sk
N

[

∂

∂θi

cl(θ, x)>
∂2

∂2e
ρ

(

e − cl(θ, x)

sN

)

∂

∂θj

cl(θ, x)

−
∂

∂e
ρ

(

e − cl(θ, x)

sN

)>
∂2

∂θi ∂θj

cl(θ, x)

]

f(e) deGl(dx)

=
L
∑

l=1

γl

∫

1

sk
N

[
∫

ρ

(

e − cl(θ, x)

sN

)

∂

∂θi

cl(θ, x)>
∂2

∂2e
f(e)

∂

∂θj

cl(θ, x) de

+

∫

ρ

(

e − cl(θ, x)

sN

) (

∂

∂e
f(e)

)>
∂2

∂θi ∂θj

cl(θ, x) de

]

Gl(dx).

Substituting v = e−cl(θ,x)
sN

we get

E(H ′′
Nij(θ, EN , XN))

=
L
∑

l=1

γl

∫
[
∫

ρ(v)
∂

∂θi

cl(θ, x)> f ′′ (sN v + cl(θ, x)
) ∂

∂θj

cl(θ, x) dv

+

∫

ρ(v)f ′ (sN v + cl(θ, x)
)> ∂2

∂θi ∂θj

cl(θ, x) dv

]

Gl(dx)

=
L
∑

l=1

γl

∫ ∫

ρ(v)
∂2

∂θi ∂θj

f
(

sN v + cl(θ, x)
)

dv Gl(dx).

This implies because of
∫

ρ(v)dv = 1,
∫

ρ(v) ‖v‖dv < ∞ and the Lipschitz continuity of

f ′′ and ∂2

∂θiθj
cl(θ, x)

|E(H ′′
Nij(θ, EN , XN )) − h′′

ij(θ)|

≤
L
∑

l=1

γl

∫ ∫

ρ(v)

∣

∣

∣

∣

∂2

∂θi ∂θj

f
(

sN v + cl(θ, x)
)

−
∂2

∂θi ∂θj

f
(

cl(θ, x)
)

∣

∣

∣

∣

dv Gl(dx)

≤
L
∑

l=1

γl

∫ ∫

ρ(v) C0 sN |v| dv Gl(dx) = CsN ,

where the constants C0 and C are independent of θ and N . 2
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Proof of Lemma 5. Again, we prove the assertion for the most difficult case, that is for

var(H ′′
Nij(θ, EN , XN )). The other cases follow similarly. With Lemma 4, substitution of

v = e−cl(θ,x)
sN

, and supy f(y) < ∞ because of Condition [3], we obtain

var(H ′′
Nij(θ, EN , XN ))

=
1

N

[

L
∑

l=1

γl

∫

1

s2k
N

(

∂2

∂θi∂θj

ρ

(

e − cl(θ, x)

sN

))2

f(e) deGl(dx)

−
(

E(H ′′
Nij(θ, EN , XN))

)2
]

=
1

N

L
∑

l=1

γl

∫

1

s2k
N

(

∂

∂θi

(

ρ′
(

e − cl(θ, x)

sN

)>
∂

∂θj

−cl(θ, x)

sN

))2

f(e) deGl(dx)

−
1

N

(

h′′
ij(θ) + O(sN)

)2

=
1

N

L
∑

l=1

γl

∫

1

s2k
N

[

∂

∂θi

cl(θ, x)>

sN

ρ′′
(

e − cl(θ, x)

sN

)

∂

∂θj

cl(θ, x)

sN

−ρ′
(

e − cl(θ, x)

sN

)>
∂2

∂θi∂θj

cl(θ, x)

sN

]2

f(e) deGl(dx) + O

(

1

N

)

=
1

N

L
∑

l=1

γl

∫

1

sk
N

[

∂

∂θi

cl(θ, x)>

sN

ρ′′ (v)
∂

∂θj

cl(θ, x)

sN

−ρ′ (v)>
∂2

∂θi∂θj

cl(θ, x)

sN

]2

f
(

sN v + cl(θ, x)
)

dv Gl(dx) + O

(

1

N

)

≤
1

N sk+4
N

L
∑

l=1

γl

∫
[

∂

∂θi

cl(θ, x)> ρ′′ (v)
∂

∂θj

cl(θ, x)

−sN ρ′ (v)>
∂2

∂θi∂θj

cl(θ, x)

]2

C1 dv Gl(dx) + O

(

1

N

)

with constant C1 independent of θ. The conditions
∫

ρ′′
rs(v)2 dv < ∞,

∫

ρ′
r(v)2 dv < ∞,

supθ∈Θ,x∈X

∣

∣

∣

∂
∂θi

cl
r(θ, x)

∣

∣

∣
< ∞, supθ∈Θ,x∈X

∣

∣

∣

∂2

∂θi ∂θj
cl
r(θ, x)

∣

∣

∣
< ∞ for r, s = 1, . . . , k, for r, s =

1, . . . , k and l = 1, . . . , L, provide

var(H ′′
Nij(θ, EN , XN)) ≤

C

N sk+4
N

where the constant C is independent of θ and N . 2
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Proof of Lemma 6. The representation of the largest eigenvalue of a matrix A ∈ IRq×q

as λmax(A) = sup‖a‖=1 a>Aa provides that the largest eigenvalue is a uniform continuous

mapping from IRq×q to IR. Hence the assertion d) follows from c). Since the proofs for

a) and b) are similar to c), we prove again the assertion only for H ′′
Nij. Fix an arbitrary

δ > 0, ε > 0, and a compact set Θ ⊂ IRq. Since f is a density and ρ can be interpreted as a

density, the Lipschitz continuity of the derivatives of f and ρ implies that the derivatives

are bounded. Choose c > 1 such that c is Lipschitz constant for f ′′, ρ′′, ∂
∂θi

cl
r(·, x),

∂2

∂θi ∂θj
cl
r(·, x) and such that supy∈IRk ||f ′(y)|| < c, supy∈IRk ||f ′′(y)|| < c, supy∈IRk ||ρ′(y)|| <

c, supy∈IRk ||ρ′′(y)|| < c, supθ∈Θ,x∈X

∣

∣

∣

∂
∂θi

cl
r(θ, x)

∣

∣

∣
< c, and supθ∈Θ,x∈X

∣

∣

∣

∂2

∂θi ∂θj
cl
r(θ, x)

∣

∣

∣
< c

for r, s = 1, . . . , k, i, j = 1, . . . , q, l = 1, . . . , L. Since Θ ⊂ IRq is compact, there exists

D ∈ IR and MN :=

⌈

D

s
q(k+3)
N

⌉

disjoint subsets J1N , . . . , JMNN of Θ such that

Θ =

MN
⋃

m=1

JmN ,

sup
θ,θ′∈JmN

‖θ − θ′‖ ≤
δ

18 c4
sk+3

N

for all m = 1, . . . ,MN , N ∈ IN . Let θmN ∈ JmN for m = 1, . . . ,MN . According to Lemma

4 and Lemma 5, there exists c1 and N0 ∈ IN such that

P

(

|H ′′
Nij(θmN , EN , XN ) − h′′

ij(θmN)| >
δ

3

)

≤ P

(

|H ′′
Nij(θmN , EN , XN ) − E(H ′′

Nij(θmN , EN , XN ))| >
δ

6

or |E(H ′′
Nij(θmN , EN , XN )) − h′′

ij(θmN)| >
δ

6

)

≤
36

δ2
var
(

H ′′
Nij(θmN , EN , XN )

)

≤
36

δ2
c1

1

N sk+4
N

≤
36 c1 2 D

δ2 εN s
q(k+3)+k+4
N

ε

2 D
s

q(k+3)
N

≤
ε

2 D
s

q(k+3)
N

for all N ≥ N0 and m = 1, . . . ,MN , since sN → 0 and N s
q(k+3)+k+4
N → ∞. Then for

N ≥ N0, we have

sup
m=1,...,MN

(

P (|H ′′
Nij(θmN , EN , XN ) − h′′

ij(θmN)| >
δ

3

)

26



≤
MN
∑

m=1

(

P (|H ′′
Nij(θmN , EN , XN ) − h′′

ij(θmN)| >
δ

3

)

≤ MN

ε

2 D
s

q(k+3)
N

≤

⌈

D

s
q(k+3)
N

⌉

ε

2 D
s

q(k+3)
N < ε.

The Lipschitz continuity and bounds of f ′, f ′′, ρ′, ρ′′, ∂
∂θi

cl
r,

∂2

∂θi ∂θj
cl
r provide for all θ ∈ JmN ,

m = 1, . . . ,MN , eN = (e1N , . . . , eNN)> ∈ IRN×k, xN = (x1N , . . . , xNN )> ∈ XN

|H ′′
Nij(θmN , eN , xN) − H ′′

Nij(θ, eN , xN)|

≤
1

N

N
∑

n=1

1

sk+2
N

∣

∣

∣

∣

∂

∂θi

cn(θmN , xnN )> ρ′′
(

enN − cn(θmN , xnN)

sN

)

∂

∂θj

cn(θmN , xnN)

−
∂

∂θi

cn(θ, xnN )> ρ′′
(

enN − cn(θ, xnN)

sN

)

∂

∂θj

cn(θ, xnN)

∣

∣

∣

∣

+
1

N

N
∑

n=1

1

sk+1
N

∣

∣

∣

∣

∣

ρ′
(

enN − cn(θmN , xnN)

sN

)>
∂2

∂θi∂θj

cn(θmN , xnN)

− ρ′
(

enN − cn(θ, xnN )

sN

)>
∂2

∂θi∂θj

cn(θ, xnN)

∣

∣

∣

∣

∣

≤
1

N

N
∑

n=1

(

1

sk+2
N

(

2c3 +
1

sN

c4

)

+
1

sk+1
N

(

c2 +
1

sN

c3

))

‖θmN − θ‖

≤
1

N

N
∑

n=1

1

sk+3
N

6 c4 ‖θmN − θ‖ <
δ

3
,

and similarly

|h′′
ij(θmN) − h′′

ij(θ)| <
δ

3
.

Therefore, for all (eN , xN) with

sup
m=1,...,MN

|H ′′
Nij(θmN , eN , xN) − h′′

ij(θmN)| ≤
δ

3
,

we have

sup
θ∈Θ

|H ′′
Nij(θ, eN , xN) − h′′

ij(θ)|

= sup
m=1,...,MN

sup
θ∈JmN

|H ′′
Nij(θ, eN , xN ) − h′′

ij(θ)|

= sup
m=1,...,MN

sup
θ∈JmN

∣

∣H ′′
Nij(θ, eN , xN) − H ′′

Nij(θmN , eN , xN)

+ H ′′
Nij(θmN , eN , xN) − h′′

ij(θmN) + h′′
ij(θmN) − h′′

ij(θ)
∣

∣

≤ δ.
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This implies

P

(

sup
θ∈Θ

|H ′′
Nij(θ, EN , XN ) − h′′

ij(θ)| ≤ δ

)

≥ P

(

sup
m=1,...,MN

|H ′′
Nij(θmN , EN , XN ) − h′′

ij(θmN)| ≤
δ

3

)

≥ 1 − ε,

and thus the assertion. 2

Proof of the Theorem 1. Let δ, ε > 0 arbitrary. At first we show P (Mη
N(EN , XN ) ⊂

Uδ(M)) ≥ 1 − ε
2

for all η ∈ IN , and then P (M ⊂ Uδ(M
η
N(EN , XN ))) ≥ 1 − ε

2
for η ≥ η0.

1. Condition [10] ensures that there exists ε1 > 0 such that |λmax(h
′′(θ))| > ε1 for all

θ ∈ M0∩Θη, where Θη is defined by (3) and M0 by [10]. Since, with f ′′ and ∂2

∂θi∂θj
cl(θ, x),

h′′ is continuous and thus uniformly continuous on the compact set Θη, there exists ε2 > 0,

δ1 > 0 such that δ1 ≤ δ and |λmax(h
′′(θ))| > ε2 for all θ ∈ Uδ1(M0) ∩ Θη.

Since h′(θ) 6= 0 for all θ ∈ Θη \ M0 and Θη \ Uδ1(M0) is compact, the continuity of

h′ implies the existence of ε3 > 0 with ‖h′(θ)‖ > ε3 for all θ ∈ Θη \ Uδ1(M0). This can

be shown by contradiction: Assume for all κ ∈ IN there exists θκ ∈ Θη \ Uδ1(M0) with

‖h′(θκ)‖ ≤ 1
κ
. The compactness of Θη \ Uδ1(M0) implies limκ→∞ θκ = θ0 ∈ Θη \ Uδ1(M0).

However, since h and h′ are continuous, we have 1
η
≤ limκ→∞ h(θκ) = h(θ0) and 0 =

limκ→∞ h′(θκ) = h′(θ0). This means that θ0 ∈ Uδ1(M0) which is a contradiction.

Now let AN denote the set of all eN ∈ IRN×k and xN ∈ XN with supθ∈Θη
‖H ′

N(θ, eN , xN)−

h′(θ)‖ < ε3/2 and supθ∈Θη
|λmax(H

′′
N(θ, eN , xN )) − λmax(h

′′(θ))| < ε2/2. Then for all

(eN , xN) ∈ AN , we have:

‖H ′
N(θ, eN , xN)‖ > ε3/2 for all θ ∈ Θη \ Uδ1(M0),

λmax(H
′′
N(θ, eN , xN)) < −ε2/2 for all θ ∈ Uδ1(M0) ∩ Θη with λmax(h

′′(θ)) < 0,

λmax(H
′′
N(θ, eN , xN)) > ε2/2 for all θ ∈ Uδ1(M0) ∩ Θη with λmax(h

′′(θ)) > 0.

Hence, the local extrema of HN(·, eN , xN ) within Θη are all lying in Uδ1(M0). Moreover,

the local maxima are lying in sets Uδ1({θ}) where θ is a maximum point of h. This implies

MN(eN , xN) ∩ Θη ⊂ Uδ1(M) ⊂ Uδ(M) and thus

AN ⊂ {(eN , xN ); MN(eN , xN) ∩ Θη ⊂ Uδ(M)} .
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Since Lemma 6 implies the existence of N0 such that P (AN) ≥ 1 − ε
2

for all N ≥ N0 the

first assertion is proved.

2. Since M is finite because of [9], there exists η0 such that M is included in an open

subset of Θη0 . Moreover, Condition [9] provides the existence of 0 < δ1 < δ2 < δ and

ε1 > 0 with h(θ) < h(θ0) − ε1 for all θ ∈ Uδ2(M) \ Uδ1(M) and all θ0 ∈ M. Additionally,

δ2 can be chosen such that Uδ2(M) ⊂ Θη0 .

For any η > η0, let AN denote the set of all eN ∈ IRN×k and xN ∈ XN with

supθ∈Θη
‖HN(θ, eN , xN ) − h(θ)‖ < ε1/3. Then we have for all (eN , xN) ∈ AN

HN(θ, eN , xN) < h(θ) +
ε1

3
< h(θ0) −

2ε1

3
< HN(θ0, eN , xN) −

ε1

3

for all θ ∈ Uδ2(M) \ Uδ1(M) and all θ0 ∈ M. This means that HN(θ, eN , xN) has a

local maximum within Uδ1({θ0}) for each θ0 ∈ M. Hence M ⊂ Uδ(M
η
N(eN , xN )). Again

Lemma 6 provides the existence of N0 such that P (AN) ≥ 1 − ε
2

for all N ≥ N0 so that

the second assertion is proved. 2
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[24] Späth, H. (1979). Clusterwise linear regression. Computing 22, 367-373.

[25] Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. Chap-

man and Hall, London.

[26] Stewart, C. V. (1997). Bias in robust estimation caused by discontinuities and mul-

tiple structures. IEEE Trans. on Pattern Analysis and Machine Intelligence 19, 818-

833.

31



[27] Zamar, R. H. (1989). Robust estimation in the errors-in-variables model. Biometrika

76, 149-160.

mueller@math.uni-oldenburg.de

Fachbereich 6 - Mathematik

Universität Oldenburg

Postfach 2503

D-26111 Oldenburg

Germany

32


