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Abstract Diamond impregnated tools for core drilling consist of segments in which
synthetical diamonds are bounded in a metal matrix. The wear of these tools de-
pends on the time points when active diamonds breakout and new diamonds from
deeper layers of the metal matrix become active. Up to now, these time points were
measured only by visual inspection at given inspection time points, a measurement
which is very error-prone and labour-intensive. Hence the aim is to use the auto-
matic force measurements during the drilling process for detecting the breakouts
of the diamonds. These force measurements consist of three time series observed
over about 75 minutes, each minute with over 300 000 measurements. At first, we
present here an approach of an analysis of these time series in three steps: identi-
fication of the time periods of active drilling, identification of the rotation periods,
and determination of differences between successive rotations. Based on the de-
tected rotation periods, 147 features for classification of minutes with and without
diamonds breakout are created. Some of these features are based on the differences
between successive rotations and some on p-values for testing the independence of
the detected rotation lengths. After a feature selection step, random forest and lo-
gistic regression are applied. This leads at least for one of two considered series of
experiments to a classification error which is smaller than the trivial classification
error.
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1 Introduction

The wear of diamond impregnated tools for core drilling of concrete depends on
the wear of active diamonds visible on the surface of the segments of the tool. The
segments consist of synthetical diamonds bounded in a metal matrix. As soon as an
active diamond breaks out, usually a new diamond embedded in a deeper layer of
the metal matrix becomes active. This so-called “self-sharpening property” means
that new sharp diamonds are exposed at the tool surface at any time of the process.

Several authors already identified the main wear mechanisms of diamond im-
pregnated tools, e.g. [7], [19]. Authors as [3], [11], [15] considered also some sta-
tistical analysis. However, these approaches mainly concern diamond impregnated
tools for sawing applications of rock. Only a few authors are dealing with the di-
amond core drilling process, see e.g. [1], [8], [9], [14]. In particular, [14] showed
how the size of the diamonds and the used concrete influence the lifetime of the
active diamonds. This analysis was complicated by the fact that the breakout times
of the active diamonds and the appearance times of new active diamonds were only
measured by visual inspections at given inspection times. Thereby, the number of
visible and active diamonds on the tool surface was determined by microscopical
inspections of the tool at the given points in time. This leads to so-called “doubly
interval-censored” data. Moreover, the intervals between the inspection times lasted
always one minute which is not the best choice as indicated by [13]. However, more
grave is the fact that the visual inspections are very labour-intensive and so error-
prone that different inspectors provided different results.

Hence an important aim is to detect automatically the time points of the breakout
of active diamonds and the appearance of new diamonds. The automatic measure-
ments of the process forces during the drilling process are especially appropriate for
this task. Since in the given experimental setup, the force measurements are given
by the intervals between the visual inspections, we consider the task to identify the
intervals with and without diamond breakout via the force measurements. Each in-
terval consists of three time series in x, y, and z direction of drilling, each with about
300 000 observations. A first attempt of classifying these intervals with and without
diamond breakout was done in [8] by using simple features like classical and robust
measures of location and scale of the force measurements in the intervals. Addi-
tionally, the number of bivariate change points was used by applying the method of
[6] to two of the three time series. In particular, the number of change points in the
intervals looked promising for the classification problem in a first series of experi-
ments with 25 intervals. However, this result could not be confirmed using further
25 intervals, see [9].

The change point analysis suffers from the fact that there are additional oscilla-
tions within each rotation, see Figure 5. These oscillations vary over time. Hence,
we consider here the approach to identify at first the rotations and then to measure
the differences of the oscillations between successive rotations. However, in a first
step, the time periods of active drilling must be identified automatically. Although
this was done already in [8], even this task is challenging. Further challenges appear
by identifying the rotations and by calculating the differences between the rotations.
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In particular, to test the quality of the identification of the rotations, we test for in-
dependence of the detected rotation lengths with the runs test of [18] (see [4] pp.
78-86) and a new test based on the recently proposed generalized sign test of [12].
The differences between rotations are calculated by applying the method of dynamic
time warping of [5].

We create 147 features from the identified rotations, the differences between ro-
tations, the p-values of the independence tests, and additionally from more simple
quantities per interval. After a feature selection step, we use the random forest and
the logistic regression for classifying minutes with and without diamond breakout.
We apply this for two series of experiments with two types of concrete. The exper-
iments at the more homogeneous concrete provide a low breakout rate of 0.173 so
that the trivial classification method which classifies all minutes as ”no breakout”
could not be beaten. However, the experiments at the inhomogeneous concrete show
a breakout rate of 0.342 while the leave-one-out misclassification rate was 0.260 for
the logistic regression and 0.329 for the random forest.

The paper is organized as follows. The experimental setup is given in Section 2.
Section 3 deals with identification of periods of active drilling and Section 4 with
the identification of the rotations. Section 5 shows how time warping can be used
to calculate differences between rotations. In Section 6, the 147 features are given
and used for the classification problem. Finally, a discussion of the results is given
in Section 7.

2 Experimental setup and the data

Four sequences of experiments, each with 75 sequential drilling phases of (approx-
imately) equal length, were conducted. In each drilling experiment, automatic force
measurements were obtained in time intervals of length of 61 up to 83 seconds
where each time interval should contain active drilling of about one minute length.
During each interval, the process forces Fz, Fx, Fy in z, x, and y direction were mea-
sured with measurement frequency of about 5 000 Hz so that each process time
series consists in average about 300 000 measurements per time interval of active
drilling. The circumferential speed was 3.225 m/s leading to ca. 616 rotations per
minute with ca. 487 observations per rotation. After each experiment, the number
of diamonds which have been broken out and which newly appeared were recorded
by visual inspections of photos obtained by a microscope. For more details of the
experiments, see [8].

The four sequences of experiments differ by the size of diamonds (small dia-
monds from grid size of dk = 40/50 mesh and large diamonds from grid size of
dk = 20/30 mesh) and two types of concrete (conventional concrete with compres-
sive strength of C20/25 and homogeneous concrete with high strength of C100/115).
However, only the sequences of experiments with the small diamonds provided
enough intervals with diamond breakouts. These two sequences of experiments are
called B28 and B29, where B28 concerns the drilling in the C20/25 concrete and
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B29 the drilling in the C100/115 concrete. In the sequence B28, 22 diamonds were
visible at the beginning and a diamond breakout was observed in 25 intervals while
35 diamonds were visible in the beginning of the series B29 and here 13 intervals
showed a diamond breakout.

All calculations were done in R [16] and all cited packages are R packages avail-
able on the website given by [16].

3 Identification of periods of active drilling

Each single drilling experiment in the sequence of experiments should last about
one minute before it is interrupted for the visual inspection. Because of these in-
terruptions, there are phases of no active drilling at the beginning and at the end of
each of the 75 time series so that the time intervals for each experiment are longer
than one minute. Hence, identifying the phase of active drilling is a necessary first
step. For this, the examination of the feed forces Fz in the time intervals is the most
appropriate.

Figure 1 depicts the different phases of Fz in a time slot of 66 seconds, which
are separated by the dashed, red lines. In the beginning of the drilling no forces are
acting. As soon as the drilling tool comes into contact with the concrete workpiece,
the feed forces start to rise until a stationary main phase is reached. At the end of
the drilling, the segment is drawn back and the acting forces decrease rapidly.

The beginning and end phase of each drilling are not relevant for the analysis
of diamond breakouts and should not be considered for statistical analysis. Never-
theless, breakouts might possibly occur in the phase of rising forces. But since the
length and form of this phase varies a lot over the different experiments (especially
in B28), including this phase would lead to a distortion of statistical properties of the
drilling. Hence these phases also were excluded from further analysis, concentrating
merely on the stationary phase.

An automatic detection of the phase of interest for each experiment was achieved
by calculating the standard deviation in running windows of 100 observations
throughout the time series of the feed forces Fz (see Figure 2) using the function
rollapply from the zoo-package [20]. The mean of these windowed standard
deviations was defined as µw and their standard deviation as σw. At first, the end of
the stationary phase was detected by simply identifying the point in time when the
windowed standard deviation of the feed forces takes a value above a threshold TEnd
for the last time. Here, TEnd was set as TEnd = µw +0.15 ·σw, where the factor 0.15
appeared to be most appropriate for the experiments B28 and B29.

Next, a threshold for the beginning of the stationary phase was defined. For this
purpose, the standard deviation of 10 000 preceding observations before reaching
the detected endpoint of the stationary phase was calculated and defined as σmain.
This represents the standard deviation during the main phase of the drilling. The
threshold TStart was set as TStart = σmain + 0.5 ·σw. Defining the beginning of this
phase as the first point in time when the windowed standard deviations exceed this



Detecting diamond breakouts 5

Time [s]

F
o

rc
e

 F
z
 [

N
]

40 50 60 70 80 90 100

0

200

400

600

Fig. 1 Fz time series of the 25th minute of the B28 data with different phases separated by red
lines.
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Fig. 2 Windowed standard deviations of Fz time series of Figure 1 with thresholds for the begin-
ning and the end of the stationary phase.

threshold leads to satisfactory results for each experiment in the B29 as well as in
the B28 data. However, some minutes of the B28 data provide very bad results. An
ensuing inspection of those minutes shows that those minuted were badly affected
by measuring disturbances so that they were removed ending up with 73 minutes.

In other drilling experiments the thresholds might require some adjusting which
can be achieved by modifying the factors of the standard deviations σw and σmain.
In choosing the thresholds, it is particularly difficult to classify the beginning of
the stationary phase since it varies a lot over the different experiments and minutes.
Thus, it was important that the corresponding threshold is a function of the actual
variance of this phase (here σmain). Furthermore, if the threshold was defined too
small some drilling periods contained big parts of the phase of the rising forces
leading to distortion of statistical properties. Too large thresholds on the other hand
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resulted in later onset points and a loss of information due to unnecessary short
active drilling periods that were to be considered for further analysis. In extreme
cases, no onset points can be detected.

4 Identification of the rotations

Since statistical methods will be applied for the single rotations of the drilling tool
(eg. dynamic time warping), the second step is to identify the starting and endpoints
of each rotation. To accomplish this, a local polynomial regression (loess) (see [2])
was run on the time series of the tangential forces Fx of the experiments since the
periodic structure, which can be attributed to the rotations, is clearly visible in these
time series (see Figure 3). For reasons of symmetry, using Fy would lead to similar
results.

The loess method is used to smooth a time series by fitting a polynomial function
to a neighbourhood N(x0,h) = [x0−h(x0),x0 +h(x0)] of an observation x0 from
a time series (xt)t∈T , where h is a span function. The function loess in R uses
a so called span parameter α , which defines the relative amount p = bαnc of n
observations in the neighbourhood N(x0,h) of x0. The degree of the polynomial
can be specified using the parameter degree and fitting is accomplished by using
weighted least squares with a tricube weight function, see [2].

Here, loess was used to smooth Fx by using quadratic polynomials and a fi-
nal span parameter of 0.0015 for the B28 experiments and 0.00125 for B29. The
starting and endpoints of each rotation were then calculated by applying the differ-
ences operator ∆ on the smoothed time series. Then the sign changes from negative
to positive of these differences represent the minima of the smoothed curve. These
minima are used as the onset points of a new rotation.
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Fig. 3 Close up of the time series of tangential force Fx together with the smoothed time series by
loess (red dashed line).



Detecting diamond breakouts 7

Rotation index

R
o
ta

ti
o
n
 l
e
n
g
th

 [
s
]

0 100 200 300 400 500

0.08

0.09

0.1

0.11

0.12

Fig. 4 Detected rotation lengths in the first minute of Experiment B29 using the span parameter
α = 0.002.

Note that too small span parameters lead to unrealistic short rotations which re-
sult in strong distortions of the computed features for classification. Too large pa-
rameters on the other hand result in alternating lengths of rotations. In particular,
if a rotation length is determined as slightly too long by a too large parameter then
the following identified rotation length is too short and vice versa. This leads to the
chain structure of rotation lengths shown in Figure 4 and means that the rotation
lengths are negatively correlated. Hence in choosing appropriate span parameters, it
is necessary to compromise between correlated rotation lengths and the amount of
unrealistic short rotations.

To test for correlation, we applied the runs test of [18] (see [4] pp. 78-86) and the
generalized sign test of [12]. This generalized sign test is based on the 3-sign depth
(3-depth) of residuals r1, . . . ,rN defined by

d3(r1, . . . ,rN) :=
1(N
3

) ∑
1≤n1<n2<n3≤N

(
1{rn1 > 0,rn2 < 0,rn3 > 0}

+1{rn1 < 0,rn2 > 0,rn3 < 0}
)

where 1{·} denotes the indicator function. Hence, the 3-depth is the relative number
of 3-tuples with alternating residuals. Here, the residuals are the deviations of the
rotation lengths from their median in the considered minute. The null hypothesis

H0 : The residuals are independent

is rejected if the 3-depth is too small or too large. A too small 3-depth indicates
positive correlation while a too large 3-depth indicates negative correlation.

Table 1 provides the rejection rates of H0 by the 3-sign depth tests (3-depth tests)
and the runs tests, as well as the 1%-quantiles of the rotation length, the number
of unrealistic short rotations and the minimal rotation length over all minutes using
different values for the span parameter α . A rotation is regarded as too short, when



8 Müller et al.

B28
Span parameter Rejection rate Rejection rate 1%-quantile of Minimal Number of

α 3-depth test runs test rotation lengths rotation length short rotations
.00075 0.0000 0.8082 0.0048 0.0004 0
.001 0.0274 0.7945 0.0042 0.0008 7912

.00125 0.0685 0.6712 0.0918 0.0024 92
.0015 0.1096 0.6986 0.0918 0.0836 1
.002 0.4110 0.7397 0.0904 0.0854 0

B29
Span parameter Rejection rate Rejection rate 1%-quantile of Minimal Number of

α 3-depth test runs test rotation lengths rotation length short rotations
.00075 0.0267 0.6267 0.0046 0.0008 5817
.001 0.1200 0.5067 0.0052 0.0006 930

.00125 0.2933 0.7600 0.0934 0.0890 0
.0015 0.3067 0.7867 0.0928 0.0890 0
.002 0.4933 0.8000 0.0908 0.0888 0

Table 1 Rejection rates of the 3-depth test and the runs test of H0, 1%-quantiles of rotation lengths,
number of short rotations and minimal rotation length for the experiments B28 and B29 over all
minutes using α as span parameter for detecting the rotations.

its shorter than the median of rotation-lengths minus 3 times their IQR (interquartile
range). Table 1 shows that the runs test always rejects the independence assumption
in more than 50% of the minutes. The rejection rates of the 3-depth test are smaller
but also increases with growing span parameter. These high rejection rates also oc-
cur when two successive rotations were put together. Hence, these rejection rates
indicate to choose the span parameter as small as possible as soon as the number of
short rotations is small enough. Based on Table 1, the choice of the span parameters
(0.0015 for B28 and 0.00125 for B29) is comprehensible. Note, that the number of
short rotations for the B28 experiment and span parameter 0.00075 is zero, because
almost all rotations are predicted as too short. Furthermore for α = 0.0015, only one
rotation is considered as too short (with a rotation length of 0.0836). Nevertheless,
this circumstance is negligible since its length is not unrealistic like it is the case for
smaller span parameters.

An explanation for the different optimal values of the span parameters may be
the different kind of concrete used. Here, the time series of the more inhomogenous
concrete (B28) might require more smoothing. This results in a higher optimal span
parameters because a wider window of local polynomial regression reduces the vari-
ance of the smoothed time series. The experiments with larger diamonds leads to the
same relationship of the appropriate span parameters.
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Fig. 5 Example of time warping applied to two successive rotations.

5 Calculation of differences between rotations

Differences between rotations can be calculated with the method of dynamic time
warping as given by the R package dtw of [5], see also [17]. This method can be
applied for time series x = (x1, . . . ,xN) and y = (y1, . . . ,yL) of eventually different
lengths N and L as this can be the case for successive rotations. The idea of time
warping is to find a warping of the time axis so that the distance between x and y
becomes as small as possible. The minimized distance between x and y is then the
so-called time warping distance. To define the distance between x and y, consider
the matrix M = (d(xn,yl)n=1,...,N,l=1,...,L) of pointwise distances between x and y
where d is a given metric. Usually d is the Euclidean distance. Additionally, define
a path through the indices of the matrix M by

Φ : {1, . . . ,T} 3 k→Φ(k) = (Φx(k),Φy(k)) ∈ {1, . . . ,N}×{1, . . . ,L}

with (Φx(1),Φy(1)) = (1,1), (Φx(T ),Φy(T )) = (N,L) and Φx(k + 1) ≥ Φx(k),
Φy(k + 1) ≥ Φy(k) for k = 1, . . . ,T , where T ∈ {max{N,L}, . . . ,N + L− 1}. The
distance between x and y with respect to Φ is then given by

dΦ(x,y) :=
1
T

T

∑
k=1

d(xΦx(k),yΦy(k)).

The path Φ∗ with

dΦ∗(x,y) := min
Φ

dΦ(x,y)

provides then the smallest distance between x and y and dΦ∗(x,y) is called the dy-
namic time warping (DTW) distance between x and y. Figure 5 demonstrate the
principle of time warping using two successive rotations. It also shows the similar-
ity of successive rotations.
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Fig. 6 Means of the dynamic time warping distances in the B29 data over all minutes with sus-
pected changes of the workpiece marked by red lines.

Here, dynamic time warping was applied on the Fz time series of successive
rotations in the periods of active drilling. In the case of a diamond breakout, it might
be reasonably assumed that the drilling performance changes rapidly. Such events
should be reflected in high time warping distances. Unfortunately, high peaks in the
dynamic time warping distances appear several times in multiple minutes of the B28
and the B29 experiments and do not seem to relate directly with breakouts.

However, an interesting observation can be made when investigating the means
and standard deviations of the DTW distances for each minute. In both experiments
these features show obvious time dependent clusters. The minutes that mark the be-
ginning of a new cluster can be associated with exchanges of the concrete workpiece
which occurred at minute 25 and 51 (see Figure 6). These effects within the DTW
distances are more pronounced in the B29 experiments. This might result from the
more homogeneous concrete used which leads to more noticeable differences be-
tween workpieces.

Since some successive rotations show a different number of peaks (compare Fig-
ure 5), one might assume that the identification of rotations as described in Section
4 might not be optimal. Thus, it seems convenient to relax the constraint that be-
ginnings and ends of two rotations have to match allowing a subsequence finding
procedure. Applying this modification, which can be computed by setting the pa-
rameters open.end=TRUE and open.beginning=TRUE in the dtw function,
should eliminate distortions of the DTW distances by suboptimally detected rota-
tion onset- and offset-points. However, the results using this modification are hardly
distinguishable from the ones obtained from the regular DTW method so that the
classical DTW method is used hereinafter.
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Table 2 Designations and descriptions of the generated features based on the single rotations of
each minute which are only associated with one acting force.

Featurename Description
DTWMeans Mean value of the DTW-distances based on Fz
DTWSd Standard deviation of the DTW-distances based on Fz
OutDTW Number of outliers of the DTW-Distances based on Fz
CptsDTW Number of change points in the DTW-distances between rotations based on Fz
pValueVZT The p-value of the 3-depth test based on Fx
pValueRuns The p-value of the runs test based on Fx
DifpValues The differences of p-values of the correlation tests based on Fx

6 Feature generation and classification

In the following, various features for each minute of the B28 and B29 data were
collected which should serve for the task of classifying a diamond breakout. The
single rotations of the drilling tool, whose detection has been discussed in Section
4, form the basis of all these features. An overview of the 147 generated features
can be found in Tables 2 and 3. Note, that location and scale parameters are given
only by the mean and standard deviation in these tables although their robust coun-
terparts (median and MAD, the median of the absolute deviation from the median)
were calculated as well. Several features concern location and scale parameters as
well as the number of outliers of parameters calculated from the measurements of
single rotations. The parameters calculated for single rotations are again location
and scale parameters and additionally the surface under the curve of a single ro-
tation. The surface under the curve was approximated by trapezoids like it is usu-
ally done in numerical integration. A rotation has been classified as an outlier in
a minute if its feature value is either bigger than the median of the feature plus 3
times its IQR or smaller than the median minus 3 times its IQR. This was done for
the acting forces Fy, Fx, and Fz separately, but also two or three of the acting forces
were treated simultaneously by calculating the euclidean distances from the spatial
median. Since we in particular expected changes in the dynamic time warping dis-
tances (DTW distances) of rotations, especially outliers and change points of the
DTW distances are considered. All features of change points were computed with
the function cpt.mean of the changepoint package using the PELT method
of [10] for the detection of change points. Since the independence assumption of
the rotation lengths was often rejected by the runs test and the 3-depth test, their
p-values and the differences of their p-values are considered as features as well.
Features concerning all three forces Fy, Fx, Fz are given in Table 3. Table 2 contains
features which make sense only for one force. These are features based on the time
warping distances of rotations and the p-values of the independence tests.

Before the actual classification task, all of the 147 mentioned features in Tables
2 and 3 were put through a feature selection. In a first step, the LASSO method
for logistic regression, which can be carried out with the function cv.glmnet of
the glmnet-package, was applied for all observations. Here, the number of folds
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Table 3 Designations and descriptions of the generated features based on the single rotations of
each minute which are used for all acting forces Fx, Fy, Fz where the terms in brackets (X,Y,Z) are
associated with the forces Fx, Fy, Fz.

Featurename Description
MeanAbsMax(X,Y,Z) Mean of the absolute maximal force values of each rotation
MeanMean(X,Y,Z) Mean of the means of force value of each rotation
MeanFl(X,Y,Z) Mean of the surface under the graph of each rotation
MeanSd(X,Y,Z) Mean of the standard deviation of each rotation
SdAbsMax(X,Y,Z) Standard deviation of the absolute maximal force values of each

rotation
SdMean(X,Y,Z) Standard deviation the means of force values of each rotation
SdFl(X,Y,Z) Standard deviation of the surface under the graph of each rotation
SdSd(X,Y,Z) Standard deviation of standard deviations of force values of each

rotation
OutSd(X,Y,Z) Number of outliers of the standard deviations of rotations
OutMean(X,Y,Z) Number of outliers of the mean values of rotations
CptsMean(X,Y,Z) Number of change points in the mean values of rotations
CptsSd(X,Y,Z) Number of change points in the standard deviation of rotations
Max(XY,XZ,YZ)Mean Maximal euclidean distance of the two-dimensional

means of rotations from the spatial median
Mean(XY,XZ,YZ)Mean Mean euclidean distance of the two-dimensional

means of rotations from the spatial median
Out(XY,XZ,YZ)Mean Number of outliers of the euclidean distances of the

two-dimensional means of rotations from the spatial median
Max(XY,XZ,YZ)Sd Maximal euclidean distance of the two-dimensional

standard deviations of rotations from the spatial median
Mean(XY,XZ,YZ)Sd Mean euclidean distance of the two-dimensional

standard deviations of rotations from the spatial median
Out(XY,XZ,YZ)Sd Number of outliers of the euclidean distances of the two-

dimensional standard deviations of rotations from the spatial median
Max(X,Y,Z)SdMean Maximal euclidean distance of the two-dimensional feature of the

standard deviation and mean of rotations from the spatial median
Mean(X,Y,Z)SdMean Mean of the euclidean distances of the two-dimensional feature of the

standard deviation and mean of rotations from the spatial median
Out(X,Y,Z)SdMean Number of outliers of the euclidean distances of

the euclidean distances of the two-dimensional feature of the
standard deviation and mean of rotations from the spatial median

MaxMeanXYZ Maximal euclidean distance of the three-dimensional means
of rotations from the spatial median

MeanMeanXYZ Mean of the euclidean distances of the three-dimensional
means of rotations from the spatial median

OutMeanXYZ Number of outliers of the euclidean distances of the three-dimensional
means of rotations from the spatial median

MaxSdXYZ Maximal euclidean distance of the three-dimensional standard
deviations of rotations from the spatial median

MeanSdXYZ Mean of the euclidean distances of the three-dimensional standard
deviations of rotations from the spatial median

OutSdXYZ Number of outliers of the euclidean distances of the three-dimensional
standard deviations of rotations from the spatial median
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used in the crossvalidation was set to the number of observations which leads to a
leave-one-out procedure.

For the B29-data only 4 important features were detected, namely MaxXZMean,
CptsMADZ, MADFlZ and MADMedianY. It should be noted that, in the case of
highly correlated features (which may be expected here due to the fact that all fea-
tures were also computed with their robust counterparts), the LASSO algorithm only
chooses one of those features which may lead to the small number selected. A use-
ful tool to judge whether the choice of only four features is justified is the so called
cross-validation curve which can be plotted for a cv.glmnet object. This curve
shows that the choice of more than 4 features significantly increases the binomial
deviance of the model and thus reduces its predictive power which can be seen by
an obvious minimum in the curve. Using only those four identified features leads
to a misclassification error of 0.186 which is above the ”trivial” error of 0.173, that
arises, when all observations are classified as ”no breakout” and thus is no satisfac-
tory result.

Using the same approach for the B28 data leads to the choice of the features Out-
MADX, OutSdX and MADAbsMaxY and a misclassification error of 0.369 when
the trivial error is 0.342. Studying the shape of the cross-validation curve reveals
that for the B28 data the selected number of features is not so clear. Here the bino-
mial deviance does not significantly increase up to a number of 14 features. For that
reason, it seems to make sense to identify more features which can contribute to the
predictive performance of the classification.

For this purpose, a first approach was to use the integrated methods of the ran-
dom forest. The randomforest package provides the possibility to compute the
mean decreased Gini index and the mean decreased accuracy for each feature in
the random forest based on its bootstrapping approach. This can be carried out by
using the VarImpPlot function which plots the 30 most important features with
corresponding importance values.

These plots show clearly visible gradations in the importances for both datasets.
However, when trying to reproduce these results, which means constructing a new
random forest, the important variables look quite different. For that reason it is not
possible to identify a set of features which has systematically high importance so
that the feature selection methods of the random forest do not seem to be very suit-
able for this classification task. A possible reason for this behavior might be the
small sample size which could lead to problems concerning the bootstrapping ap-
proach of the random forest, paired with the high amount of features.

Therefore, to identify further important features, the crossvalidation-curves of the
LASSO were considered once again. This time the maximal amount of variables that
does not lead to a significant increase in the binomial deviance was used for the clas-
sification task. For B29, there is an obvious minimum in the binomial deviance curve
for the mentioned 4 features so that this procedure does not lead to additional im-
portant features for the classification task. However, for B28, as already mentioned
before, 14 features can be selected this way. These features are MeanFlY, Mean-
AbsMaxZ, MADAbsMaxX, SdMeanY, SdMeanZ, MADAbsMaxY, MaxZSdMean,
OutMedianXYZ, OutSdX, OutMADX, OutMADY, OutMeanX, OutMedianX, Out-
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MedianZ. Note, that these features include the three features identified in the first
approach.

Based on the 4 and 14 detected features of the B29 and B28 data, respectively, a
random forest and a logistic regression were constructed and the corresponding mis-
classification errors were computed by performing a leave-one-out cross-validation.
Using the 4 features for B29 which are the same as before, the misclassification error
for the logistic regression cannot be improved while it is even worse for the random
forest with 0.213. Using the 14 features of the B28 data on the other hand, the mis-
classification error in the logistic regression managed to outperform the trivial rule
by 6 correctly classified observations with a misclassification error of 0.260 while
the random forest with a relative error of 0.329 also provides a slight improvement
compared to the trivial error of 0.342.

7 Discussion

It was tried to classify minutes with and without diamond breakout by generating
147 features based on the ca. 616 rotations per minute. After a feature selection
step, random forest and logistic regression were used for the classification. It turned
out that the logistic regression is superior to the random forest for this problem.
However, only for one of the two considered series of experiments, the misclassifi-
cation error was smaller than the trivial classification. One problem could be that the
diamond breakout happens before the used stationary part of active drilling which
was identified in a first step of the analysis. Another problem was the questionable
identification of the start and end points of the rotations which could cause features
based on differences between rotations which achieve no good classification power.
Surprisingly, these features were able to detect differences in the three concrete
samples used in the series of experiments which were expected to behave similarly.
This showed that in fact, the three concrete samples behaved differently. As a conse-
quence, the three different concrete samples complicated the classification problem.
Since only 25 drilling experiment were performed at each of the three concrete
samples, the resulting 75 minutes are not enough to find a good classification rule
so that more experiments are necessary. Moreover, a better identification of the start
and end points of the rotations could improve the classification results. However, it
may be too difficult to detect diamond breakouts via force measurements because
of the inhomogeneity of the concrete.
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