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Abstract

We propose an outlier robust and distributions-free test for the explosive AR(1) model with
intercept based on simplicial depth. In this model, simplicial depth reduces to counting the
cases where three residuals have alternating signs. Using this, it is shown that the asymp-
totic distribution of the test statistic is given by an integrated two-dimensional Gaussian
process. Conditions for the consistency of the test are given and the power of the test at
finite samples is compared with five alternative tests, using errors with normal distribution,
contaminated normal distribution, and Fréchet distribution in a simulation study. The
comparisons show that the new test outperforms all other tests in the case of skewed errors
and outliers. Finally we apply the proposed methods to crack growth data and compare the
results with an ordinary least squares approach. Although we deal with the AR(1) model
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with intercept only, the asymptotic results hold for any simplicial depth which reduces to
alternating signs of three residuals.
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1. Introduction

Consider the AR(1) model

Yn = θ0 + θ1Yn−1 + En, n = 1, . . . , N, (1.1)

where E1, . . . , EN are i.i.d. errors with med(En) = 0, P (En = 0) = 0, and Y0 = y0 is
the starting value. Moreover, it is assumed that Yn is almost surely strictly increasing,
so that Yn is an exploding process and θ1 > 1. An example of such an exploding
process is crack growth, where a stochastic version of the Paris-Erdogan equation

provides Yn = θ1Yn−1 + Ẽn, whereby Ẽn is nonnegative, see Kustosz and Müller

(2014). Setting θ0 = med(Ẽn) and En = Ẽn − θ0, we obtain model (1.1) for this
case. The aim is to test a hypothesis H0 : θ = (θ0, θ1)> ∈ Θ0, where Θ0 is a subset
of [0,∞)× (1,∞). In particular, the aim is to test hypotheses on the median of the

distribution of Ẽn as well.

While there is a vast literature on stationary AR(1) models with |θ1| < 1 and for
the unit root case with θ1 = 1, there exist only few results for the explosive case.
Anderson (1959) derived the asymptotic distribution of estimators when the errors
En are assumed to be independent and normally distributed. Basawa et al. (1989)
and Stute and Gründer (1993) used bootstrapping methods to derive the asymptotic
distribution of estimators and predictors without assuming the normal distribution.
Special maximum likelihood estimators for AR(1) processes with nonnormal errors
were treated by Paulaauskas and Rachev (2003). Recently Hwang and Basawa (2005),
Hwang et al. (2007) and Hwang (2013) investigated the asymptotic distribution of
the least squares estimator of explosive AR(1) processes under some modifications of
the process like dependent errors En. Further the limit distribution of the Ordinary
Least Squares estimator in case of explosive processes was examined by Wang and
Yu (2013) and differs from the stationary case depending on the underlying error
distribution.

The least squares estimator is known to be sensitive to innovation outliers and
additive outliers as discussed in Fox (1972). Outlier robust methods for time series
were mainly proposed recently, see e.g. Grossi and Riani (2002), Agostinelli (2003),
Fried and Gather (2005), Maronna (2006), Grillenzoni (2009), Gelper et al. (2009).
However these methods deal only with estimation and forecasting. An asymptotic
distribution was not derived in these papers so that no tests can be used. Only
Huggins (1989) proposed a sign test for stochastic processes based on a M-estimator.
The robustness of the sign test was studied in Boldin (2011). Moreover Bazarova et
al. (2014) derived the asymptotic distribution of trimmed sums for AR(1) processes.
However all these approaches base heavily on the stationarity of the process so that
they cannot be used for explosive processes.

Here we propose an outlier robust and distribution free test for hypotheses on
θ = (θ0, θ1)> for the explosive AR(1) model given by (1.1) which is based on simplicial
depth. Simplicial depth was originally introduced by Liu (1988, 1990) to provide
another generalization of the outlier robust median to multivariate data. The direct
generalization of the median to multivariate data is the half-space depth proposed
by Tukey (1975). In this definition, the depth of a p-dimensional parameter µ within
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a p-dimensional data set is the minimum relative number of data points lying in a
half-space containing the parameter µ. If there are p+1 data points then they span a
p-dimensional simplex and all points inside of the simplex have the half-space depth
of 1/(p + 1) and all points outside of the simplex have the depth 0. The simplicial
depth of Liu defines the depth of a parameter µ as the relative number of simplices
spanned by p+ 1 data points which contain the paramter µ, i.e. where the half-space
depth of µ with respect to the p+1 data points is greater than 0. Replacing the half-
space depth by other depth notions leads to a corresponding simplicial depth. For
example, Rousseeuw and Hubert (1999) generalized the half-space depth to regression
by introducing the concept of nonfit. Thereby the depth of a regression function or
respectively the regression parameter θ within a data set is the minimum relative
number of data points which must be removed so that the regression function becomes
a nonfit. The corresponding simplicial regression depth of a p-dimensional parameter
θ is then the relative number of subsets with p+1 data points so that θ is not a nonfit
with respect to these p+ 1 data points, see Müller (2005). Mizera (2002) proposed a
general depth notion by introducing a quality function. Usually the quality function
is given by the residuals. Here the residuals of the AR(1) process are used as well.

Simplicial depth has the advantage that it is a U-statistic so that its asymptotic
distribution is known in principle. This is usually not the case for the original depth
notion. However, the simplicial depth often is a degenerated U-statistic. There are
only few cases where this is not the case, see Denecke and Müller (2011, 2012, 2013,
2014). For regression problems, the simplicial depth is a degenerated U-statistic.
Deriving the spectral decomposition of the conditional expectation, Müller (2005),
Wellmann et al. (2009) and Wellmann and Müller (2010a,b) derived the asymptotic
distribution for several regression problems with independent observations. Only the
most simple case, namely linear regression through the origin, can be transferred to
AR(1) regression with no intercept θ0. In this case, the asymptotic distribution is
given by one χ2-distributed random variable. This was done in Kustosz and Müller
(2014). However, as soon as more than one parameter is unknown, the approaches
for an asymptotic distribution developed for regression with independent observations
cannot be transferred to autoregression. For example for polynomial regression with
independent observations, the asymptotic distribution is given by an infinite sum of
χ2-distributed random variables. Here we show, that the asymptotic distribution
for the AR(1) model is given by an integrated two-dimensional Gaussian process.
Crucial for this result is that simplicial depth in this model reduces to counting the
subsets of three data points where the residuals have alternating signs. Therefore
this asymptotic distribution does not hold only for AR(1) models with intercept but
also for other models where simplicial depth is given by the number of alternating
signs of three residuals. For example it also holds for the nonlinear AR(1) model
Yn = θ1Y

θ2
n−1 + En under similar assumptions as stated above.

In Section 2, we provide the simplicial depth for the AR(1) model with intercept
given by (1.1) and the test statistics based on this simplicial depth for hypotheses
about θ = (θ0, θ1)>. To obtain the critical values of the tests, the asymptotic distri-
bution of the simplicial depth is derived in Section 3. In particular, this asymptotic
distribution does not depend on the starting value y0 of the process as it is the case
for the asymptotic distribution of the least squares estimator, see e.g. Hwang (2013).
In Section 4, we derive the consistency of the tests given in Section 2. Although the
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test statistic is given by a very simple form, the calculation of it could be lengthy
since all subsets of three observations have to be considered. In Section 5 an efficient
algorithm for its calculation is shortly described as well as the efficient calculation of
quantiles of the asymptotic distribution. Using this, a power simulation of the new
test is given and the power is compared with the power of five other tests, where three
of them are based on a simplified version of the depth notion given in Kustosz et al.
(2015). In Section 6 we apply the proposed test to calculate parameter confidence
regions for crack growth data by Maurer and Heeke (2010) and compare the results
with regions based on the Ordinary Least Squares estimator.

2. Simplicial depth for the AR(1) model

According to Mizera (2002), we need a quality function to define a depth notion
for the AR(1) model (1.1). A natural quality function is the function given by the
squared residuals. Set θ = (θ0, θ1)> and define the residuals by

rn(θ) = yn − θ0 − θ1yn−1, n = 1, . . . , N,

where yn is the realization of Yn for n = 0, . . . , N .

Tangential depth of the parameter θ in the sample y∗ = (y0, . . . , yN)> is then (see
Mizera, 2002)

dT (θ, y∗) =
1

N
min
|u|=1

]

{
n ∈ {1, . . . , N}; u> ∂

∂θ
rn(θ)2 ≤ 0

}
so that it becomes

dT (θ, y∗) =
1

N
min
|u|=1

]

{
n ∈ {1, . . . , N}; rn(θ)u>

(
1

yn−1

)
≤ 0

}
here. To define simplicial depth for autoregression, it is useful to write the sample in
pairs, i.e. the sample is given by z∗ = (z1, . . . , zN)> where zn = (yn, yn−1)>. Then,
simplicial depth of a p-dimensional parameter θ ∈ Rp in the sample z∗ is in general
(see Müller, 2005)

dS(θ, z∗) =
1(
N
p+1

) ∑
1≤n1<n2<...<np+1≤N

1{dT (θ, (zn1 , . . . , znp+1)) > 0},

where 1{dT (θ, (z1, . . . , zp+1)) > 0} denotes the indicator function
1A(z1, . . . , zp+1) with A = {(z1, . . . , zp+1)> ∈ Rp+1;
dT (θ, (z1, . . . , zp+1)) > 0}. The simplicial depth is a U-statistic. In the AR(1) model
(1.1), it becomes

dS(θ, z∗) =
1(
N
3

) ∑
1≤n1<n2<n3≤N

1{dT (θ, (zn1 , zn2 , zn3)) > 0}.

If the regressors yn−1 satisfy yn1−1 < yn2−1 < yn3−1 for n1 < n2 < n3, then
dT (θ, (zn1 , zn2 , zn3)) > 0 if and only if the residuals rn1 , rn2 , rn3 have alternating signs
or at least one of them is zero (see Kustosz et al., 2015). Since Yn is almost surely
strictly increasing by assumption, we can always assume yn1−1 < yn2−1 < yn3−1 for
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n1 < n2 < n3 without loss of generality. Moreover, since P (En = 0) = 0, we can
restrict ourselve to residuals with alternating signs so that almost surely

dS(θ, z∗)

= 1

(N3 )

∑
1≤n1<n2<n3≤N (1{rn1(θ) > 0, rn2(θ) < 0, rn3(θ) > 0}

+ 1{rn1(θ) < 0, rn2(θ) > 0, rn3(θ) < 0}) .

If θ is the true parameter, then

dS(θ, z∗)

= 1

(N3 )

∑
1≤n1<n2<n3≤N (1{en1 > 0, en2 < 0, en3 > 0}

+1{en1 < 0, en2 > 0, en3 < 0}) ,

where en is the realization of the error En. However, this is not a U -statistic anymore
since 1{en1 > 0, en2 < 0, en3 > 0} + 1{en1 < 0, en2 > 0, en3 < 0} is not a symmetric
kernel. Hence, we need the asymptotic distribution for this case which is derived in
the next section.

Having the asymptotic distribution of N(dS(θ, Z∗)−1/2) under θ with α-quantile
qα, a simple asymptotic α-level test for the hypothesis H0 : θ ∈ Θ0, where Θ0 is a
subset of [0,∞)× (1,∞), is (see Müller, 2005):

reject H0 if sup
θ∈Θ0

(
N

(
dS(θ, z∗)−

1

4

))
is smaller than qα, (2.1)

i.e. the depths of all parameters of the hypotheses are too small.

3. Asymptotic distribution of the simplicial depth

Even though the statistic dS(θ, z∗) is not an ordinary U -statistic due to the lack of
symmetry of the kernel, its asymptotics can be obtained similarly to the derivation of
of the limit distribution of first-order degenerate U -statistics. First, we define several
functions related to the summands of the statistic dS(θ, z∗) by

h(x, y, z) = 1{x > 0, y < 0, z > 0}+ 1{x < 0, y > 0, z < 0}, (3.1)

h1(x) = Eh(x,E2, E3), h2(y) = Eh(E1, y, E3), h3(z) = Eh(E1, E2, z),

h1,2(x, y) = Eh(x, y, E3), h1,3(x, z) = Eh(x,E2, z),

h2,3(y, z) = Eh(E1, y, z).

Note that

h1(x) =
1

4
(1{x < 0}+ 1{x > 0}) =

1

4
= h2(y) = h3(z) a.s.

which can be compared to first-order degeneracy of U -statistics since straight-forward
calculations yield var(hi,j(E1, E2)) = 1/16 > 0. The latter relations will be important
auxiliary results for the derivation of the limit distribution of simplicial depth in the
AR(1) setting. Moreover, we will make use of the following approximation.
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Lemma 3.1. Under the afore-mentioned assumptions,

N

(
dS(θ, Z∗)−

1

4

)
= N

(N3 )

∑
1≤n1<n2<n3≤N

(
h1,2(En1 , En2) + h1,3(En1 , En3)

+h2,3(En2 , En3)−
3

4

)
+ oP (1).

Proof. We have to show asymptotic negligibility of

N(
N
3

) ∑
1≤n1<n2<n3≤N

(
h(En1 , En2 , En3)−

1

4

−
[
h1,2(En1 , En2) + h1,3(En1 , En3) + h2,3(En2 , En3)−

3

4

])
.

As the expectation of this quantity is equal to zero, it remains to show that its
variance tends to zero as N →∞. The latter is given by

N2(
N
3

)2

∑
1≤n1<n2<n3≤N

∑
1≤n̄1<n̄2<n̄3≤N

E

{(
h(En1 , En2 , En3) +

1

2
− [h1,2(En1 , En2)

+h1,3(En1 , En3) + h2,3(En2 , En3)]

)

×

(
h(En̄1 , En̄2 , En̄3) +

1

2
− [h1,2(En̄1 , En̄2)

+h1,3(En̄1 , En̄3) + h2,3(En̄2 , En̄3)]

)}
.

The number of summands with n1 = n̄1, n2 = n̄2, n3 = n̄3 is of order O(N3) and
therefore the corresponding term asymptotically negligible as the factor in front of
the sum is of order O(N−4). Moreover, note that due to the increasing ordering of
the indices it cannot happen that four or more indices coincide. Therefore only three
cases remain:

(1) All indices are different from each other.
All these summands are equal to zero by the i.i.d. assumptions on the involved
random variables.

(2) Exactly two indices coincide.
Examplarily, we consider the case n1 = n̄2. All remaining pairs can be treated
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in a similar manner and are therefore skipped here. We obtain

E

{(
h(En1 , En2 , En3) +

1

2
− [h1,2(En1 , En2)

+h1,3(En1 , En3) + h2,3(En2 , En3)]

)

×

(
h(En̄1 , En1 , En̄3) +

1

2
− [h1,2(En̄1 , En1)

+h1,3(En̄1 , En̄3) + h2,3(En1 , En̄3)]

)}

= E

{
(h(En1 , En2 , En3)− [h1,2(En1 , En2) + h1,3(En1 , En3)])

×

(
h(En̄1 , En1 , En̄3) +

1

2
− [h1,2(En̄1 , En1)

+h1,3(En̄1 , En̄3) + h2,3(En1 , En̄3)]

)}

= E

{
h1(En1)h2(En1) +

1

8
− h1(En1)h2(En1)−

1

16
− h1(En1)h2(En1)

− h1(En1)h2(En1)−
1

8
+ h1(En1)h2(En1) +

1

16
+ h1(En1)h2(En1)

− h1(En1)h2(En1)−
1

8
+ h1(En1)h2(En1) +

1

16
+ h1(En1)h2(En1)

}
= 0,

where the second equality is obtained by conditioning on En1 and using the
tower property of conditional expectation. The last equality follows from
h1(En1) ≡ h2(En1) ≡ 1/4 a.s..

(3) Two pairs of indices coincide.
Examplarily, we consider the case n1 = n̄2, n2 = n̄3. All remaining combi-
nations can again be treated in a similar manner and are therefore skipped
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here. We proceed as in the previous case and get

E

{(
h(En1 , En2 , En3) +

1

2
− [h1,2(En1 , En2)

+h1,3(En1 , En3) + h2,3(En2 , En3)]

)

×

(
h(En̄1 , En1 , En2) +

1

2
− [h1,2(En̄1 , En1)

+h1,3(En̄1 , En2) + h2,3(En1 , En2)]

)}

= E

{
h1,2(En1 , En2)h2,3(En1 , En2) +

1

8

− h1(En1)h2(En1)− h2(En2)h3(En2)− h1,2(En1 , En2)h2,3(En1 , En2)

− h1,2(En1 , En2)h2,3(En1 , En2)−
1

8
+ h1(En1)h2(En1) + h2(En2)h3(En2) + h1,2(En1 , En2)h2,3(En1 , En2)

− h1(En1)h2(En1)−
1

8
+ h1(En1)h2(En1) +

1

16
+ h1(En1)h2(En1)

− h2(En2)h3(En2)−
1

8
+

1

16
+ h2(En2)h3(En2) + h2(En2)h3(En2)

}
= 0.

Thus, the variance of the remainder term tends to zero which completes the
proof.

�

In order to derive the asymptotics of N (dS(θ, Z∗)− 1/4) it remains to investigate

N(
N
3

) ∑
1≤n1<n2<n3≤N

(
h1,2(En1 , En2) + h1,3(En1 , En3) + h2,3(En2 , En3)−

3

4

)

=
N

2
(
N
3

){ ∑
1≤n1 6=n2≤N

(N −max{n1, n2})
[
h1,2(En1 , En2)−

1

4

]
+

∑
1≤n1 6=n3≤N

(max{n1, n3} −min{n1, n3} − 1)

[
h1,3(En1 , En3)−

1

4

]

+
∑

1≤n2 6=n3≤N

(min{n2, n3} − 1)

[
h2,3(En2 , En3)−

1

4

]}
,
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where we used that h1,2, h1,3, and h2,3, separately, are symmetric.
Now, invoking the fact that

∑
1≤n1 6=n2≤N

min{n1, n2}h1,2(En1 , En2) =
∑

1≤n2 6=n3≤N

min{n2, n3}h2,3(En2 , En3)

and N−2
∑

1≤n1 6=n2≤N(h1,2(En1 , En2) +h1,3(En1 , En2)− 1/2) −→ 0 almost surely with
the SLLN, we obtain that the limit distribution of
N (dS(θ, Z∗)− 1/4) is asymptotically equivalent with

Un =
3

N

∑
1≤n1 6=n2≤N

[
h1,2(En1 , En2)−

1

4

]
+

3

N2

∑
1≤n1 6=n2≤N

(max{n1, n2} −min{n1, n2})

· [h1,3(En1 , En2)− h1,2(En1 , En2)] .

Now, we invoke a spectral decomposition of the remaining functions in order to
separate the the variables En1 and En2 in a multiplicative manner. The spectral
decomposition of h1,2 − 1/4 is provided in Kustosz and Müller (2014, Proof of The-
orem 2). The corresponding eigenfunction is given by Φ(x) = 1{x < 0} − 1{x > 0}
and the eigenvalue is −1/4. That is h1,2(x, y) − 1/4 = −Φ(x)Φ(y)/4. Similarly, we
obtain h1,3(x, y)− h1,2(x, y) = Φ(x)Φ(y)/2. Since E[Φ2(E1)] = 1, the SLLN implies

Un =
3

2N

∑
1≤n1 6=n2≤N

(
|n1 − n2|

N
− 1

2

)
Φ(En1)Φ(En2)

=
3

2N

N∑
n1,n2=1

(
|n1 − n2|

N
− 1

2

)
Φ(En1)Φ(En2) +

3

4
+ oP (1).

Even though we separated the involved random variables in a multiplicative manner,
the application of a CLT to determine the limit of the first summand is not feasible
yet because of the weighting factor |n1 − n2|/N − 1/2. We solve this problem by a
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convolution-based representation of the absolute value function on the interval [-1,1],

Vn :=
3

2N

N∑
n1,n2=1

(
|n1 − n2|

N
− 1

2

)
Φ(En1)Φ(En2)

=
3

2N

N∑
n1,n2=1

(
1

2
−
∫ ∞
−∞

1(−0.5,0.5](t)1(−0.5,0.5]

(
n1 − n2

N
− t
)
dt

)
· Φ(En1)Φ(En2)

=
3

2N

N∑
n1,n2=1

(
1

2
−
∫ ∞
−∞

1(−0.5,0.5]

(n1

N
− t
)
1(−0.5,0.5]

(n2

N
− t
)
dt

)
· Φ(En1)Φ(En2)

=
3

4

(
1√
N

N∑
n1=1

Φ(En1)

)2

− 3

2

∫ 2

−2

(
1√
N

N∑
n1=1

1(−0.5,0.5]

(n1

N
− t
)

Φ(En1)

)2

dt

To sum up

N

(
dS(θ, Z∗)−

1

4

)
= Vn +

3

4
+ oP (1) (3.2)

and the limit distribution of Vn can be deduced by the continuous mapping theorem
if the bivariate process

XN = (XN,1, XN,2)>

=

( 1√
N

N∑
n1=1

1(−0.5,0.5]

(n1

N
− t
)

Φ(En1),
1√
N

N∑
n1=1

Φ(En1)

)>
t∈[−2,2]

converges in distribution to some continuous limiting process with respect to the
uniform norm.

Lemma 3.2. Under the assumptions above

XN
d−→ X,

where X = (X1, X2)> is a centered Gaussian process on [−2, 2] with continuous paths
and the covariance structure

Cov(X(s), X(t)) (3.3)

=

(∫ 1

0
1(−0.5,0.5] (x− s)1(−0.5,0.5] (x− t) dx

∫ 1

0
1(−0.5,0.5] (x− s) dx∫ 1

0
1(−0.5,0.5] (x− t) dx 1

)
.

In Figure 1, a simulation of a path of this bivariate process is depicted. The solid
line represents the variable X1(t) which starts in 0 at t = −0.5 and returns to 0 at
t = 1.5. The dashed line is a simulation of X2(t). This process is a draw from a
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N(0, 1) distribution and is constant over time. Note, that the two processes meet at
t = 0.5, due to the underlying covariance structure.

−2 −1 0 1 2

−
1.

5
−

0.
5

0.
5

1.
5

t

X
i(t

)

X1(t)
X2(t)
t = 0.5

Figure 1. Simulation of a path of the limit process

Proof. To prove Lemma 3.2 we apply Theorem 1.5.4 and Problem 1.5.3 in van der
Vaart and Wellner (2000) and proceed in several steps.

(1) Convergence of the finite dimensional distributions.
We apply the multivariate Lindeberg-Feller CLT to determine the asymptotics
of (XN,1(s1), . . . , XN,1(sk), XN,2(t1), . . . , XN,2(tl)) for arbitrary k, l ∈ N and
s1, . . . , sk, t1, . . . , tl ∈ [−2, 2]. Obviously, these variables are centered, have
finite variance and satisfy the Lindeberg condition. Therefore, it remains to
show convergence of the entries of the covariance matrices. For i = 1, . . . , k
and j = 1, . . . , l, we get

1

N

N∑
n1=1

var(Φ(En1)) = 1,

1

N

N∑
n1=1

cov
(
1(−0.5,0.5]

(n1

N
− tj

)
Φ(En1),Φ(En1)

)
−→
N→∞

∫ 1

0

1(−0.5,0.5] (x− tj) dx,

1

N

N∑
n1=1

cov
(
1(−0.5,0.5]

(n1

N
− si

)
Φ(En1),1(−0.5,0.5]

(n1

N
− tj

)
Φ(En1)

)
−→
N→∞

∫ 1

0

1(−0.5,0.5] (x− si)1(−0.5,0.5] (x− tj) dx,
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in view of EΦ(E1) = 0 and EΦ2(E1) = 1.

(2) A useful moment bound.
For −2 ≤ s ≤ t ≤ 2, we obtain using EΦ(En1) = 0, EΦ2(En1) = 1 = EΦ4(En1)

E ‖XN(s)−XN(t)‖4
1

= E

(
1√
N

N∑
n1=1

Φ(En1)
[
1(−0.5,0.5]

(n1

N
− s
)
− 1(−0.5,0.5]

(n1

N
− t
)])4

=
1

N2

(
N∑

n1=1

∣∣∣1(−0.5,0.5]

(n1

N
− s
)
− 1(−0.5,0.5]

(n1

N
− t
)∣∣∣)2

+
1

N2

N∑
n1=1

[
1(−0.5,0.5]

(n1

N
− s
)
− 1(−0.5,0.5]

(n1

N
− t
)]4

.

Noting that ∣∣∣1(−0.5,0.5]

(n1

N
− s
)
− 1(−0.5,0.5]

(n1

N
− t
)∣∣∣ = 1

for at most 2|t− s|N indices n1, we end up with

E ‖XN(s)−XN(t)‖4
1 ≤ 4

(
(t− s)2 + N−1 |t− s|

)
. (3.4)

(3) Existence and continuity of the limiting process.
By step 1 and Kolmogorov’s existence theorem, there exists a process X with
the above-mentioned finite-dimensional distributions. Moreover, from (3.4)
we obtain by Fatou’s Lemma

E ‖X(s)−X(t)‖4
1 ≤ 4 (t− s)2.

Thus, the theorem of Kolmogorov and Chentsov implies that there exists a
continuous modification of X that we also refer to as X in the sequel.

(4) Tightness.
By van der Vaart and Wellner (2000, Theorem 1.5.6) it remains to show that
for any ε, η > 0 there is a partition −2 = t0 < t1 < · · · < tK = 2 such that

lim sup
N→∞

P

(
sup

k=1,...,K
sup

s,t∈[tk−1,tk]

|XN,1(s)−XN,1(t)| > ε

)
≤ η

since tightness of (XN,2)N is trivial.
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For XN,1 we obtain

P

(
sup

k=1,...,K
sup

s,t∈[tk−1,tk]

|XN,1(s)−XN,1(t)| > ε

)

≤ 2
K∑
k=1

P

(
sup

t∈[tk−1,tk]

|XN,1(tk−1)−XN,1(t)| > ε

2

)

= 2
K∑
k=1

P

(
sup

t∈[tk−1,tk]

∣∣∣∣∣ 1√
N

N∑
n1=1

φ(En1)

{
1(−0.5+tk−1,−0.5+t]

(n1

N

)
− 1(0.5+tk−1,0.5+t]

(n1

N

)}∣∣∣∣∣ > ε

2

)
For symmetry reasons we only consider

1√
N

N∑
n1=1

φ(En1)1(−0.5+tk−1,−0.5+t]

(n1

N

)
= QN(t)−QN(tk−1)

with QN(t) := 1√
N

∑N
n1=1 φ(En1)1(−2,−0.5+t]

(
n1

N

)
. The process QN has càdlàg

paths and independent increments. Moreover, note that it follows from the
proof of (2) and Markov’s inequality that for some α, β > 0, P (|QN(t) −
QN(s)| ≤ δ) ≥ β whenever |t − s| ≤ α and N ≥ N0. Therefore we can
proceed as in the proof of Theorem V.19 in Pollard (1984) to obtain

lim sup
N→∞

K∑
k=1

P

(
sup

t∈[tk−1,tk]

|QN(t)−QN(tk−1)| > ε

4

)
<
η

4

for a sufficiently fine equidistant grid.

�

To sum up, we get the following theorem on the asymptotics of simplicial depth
by the continuous mapping theorem.

Theorem 3.1. Under the assumptions above

N

(
dS(θ, Z∗)−

1

4

)
d−→ 3

4
+

3

4
X2

2 (0)− 3

2

∫ 2

−2

X2
1 (t)dt.

Note, that the asymptotic distribution of the simplicial depth is not restricted to
the AR(1) model considered in this paper. It holds for all cases where depth of a two
dimensional parameter at three data points is given by alternating signs of the three
residuals. This holds in several other models as shown in Kustosz et al. (2015).
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4. Consistency of the test

Here we show consistency of the test given by (2.1) for hypotheses H0 : θ = θ0

and H0 : θ1 ≥ θ0
1 at all relevant alternatives θ∗ = (θ∗0, θ

∗
1)> by using a large upper

bound of the test statistic. Thereby, a test is called consistent at θ∗ if the power of
the test at θ∗ is converging to one for growing sample size. Hence we have to proof
here

lim
N→∞

Pθ∗

(
sup
θ∈Θ0

(
N

(
dS(θ, Z∗)−

1

4

))
< qα

)
= 1,

where qα is the α-quantile of the asymptotic distribution of N (dS(θ, Z∗)− 1/4) given
by Theorem 3.1.

Lemma 4.1. If there exists N0 ∈ N, δ ∈ (0, 1
4
), and a bounded function H : R3 → R

with

H(rn1(θ
∗), rn2(θ

∗), rn3(θ
∗)) (4.1)

≥ sup
θ∈Θ0

(
1{rn1(θ) > 0, rn2(θ) < 0, rn3(θ) > 0}

+ 1{rn1(θ) < 0, rn2(θ) > 0, rn3(θ) < 0}

)
for all n1, n2, n3 > N0 and

Eθ∗

(
H(rn1(θ

∗), rn2(θ
∗), rn3(θ

∗))

)
<

1

4
− δ, (4.2)

then the test given by (2.1) is consistent at θ∗.

Proof. Set M0 = {(n1, n2, n3);n3 > n2 > n1 > N0}, then

sup
θ∈Θ0

(
N

(
dS(θ, Z∗)−

1

4

))
≤ N(

N
3

) ( ∑
1≤n1<n2<n3≤N

sup
θ∈Θ0

(1{rn1(θ) > 0, rn2(θ) < 0, rn3(θ) > 0}

+ 1{rn1(θ) < 0, rn2(θ) > 0, rn3(θ) < 0})− 1

4

)
≤ N(

N
3

) ([(N
3

)
−
(
N −N0

3

)]
+

∑
(n1,n2,n3)∈M0

(
H(rn1(θ

∗), rn2(θ
∗), rn3(θ

∗))− 1

4

))
=: T.

Hence, we will work with T . To apply Chebyshev’s inequality, we need upper bounds
for the expectation and the variance of T . Since (4.2) holds on M0 and the indicators
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are bounded on the remaining indices, we get

Eθ∗(T ) ≤ N(
N
3

)([(N
3

)
−
(
N −N0

3

)
+

(
N −N0

3

)
(−δ)

])
.

Then there exists N1 > N0 such that

1(
N
3

)(N −N0

3

)
≥ 1− δ and

1(
N
3

) [(N
3

)
−
(
N −N0

3

)]
<
δ

2

for all N ≥ N1 implying

Eθ∗(T ) ≤ N

(
δ

2
+ (1− δ)(−δ)

)
= −N δ0

with δ0 = 1
2
δ − δ2 > 0 since δ < 1

4
. Setting

Hn1,n2,n3 = H(rn1(θ
∗), rn2(θ

∗), rn3(θ
∗)) − Eθ∗ [H(rn1(θ

∗), rn2(θ
∗), rn3(θ

∗))], we obtain
for the variance

varθ∗(T ) =
N2(
N
3

)2 Eθ∗

{ ∑
(n1,n2,n3)∈M0

Hn1,n2,n3

2}

=
N2(
N
3

)2

∑
(n1,n2,n3)∈M0

∑
(n1,n2,n3)∈M0

Eθ∗

(
Hn1,n2,n3 Hn1,n2,n3

)
.

For
(
N−N0

3

)(
N−N0−3

3

)
combinations, all n1, n2, n3 are different from n1, n2, n3, so that

the independence of the residuals rn(θ∗) implies
Eθ∗(Hn1,n2,n3 Hn1,n2,n3) = 0 for these cases. In all other cases,
Eθ∗(Hn1,n2,n3 Hn1,n2,n3) is bounded by some b2 so that

varθ∗(T ) ≤ N2(
N
3

)2

((
N −N0

3

)2

−
(
N −N0

3

)(
N −N0 − 3

3

))
b2.

Hence for all ε > 0, there exists N2 ≥ N1 > N0 such that δ0 + qα
N2

> 0 and

varθ∗(T ) ≤ εN2

(
δ0 +

qα
N2

)2
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for all N ≥ N2. Finally, Chebyshev’s inequality provides for all N ≥ N2 using
qα
N
≥ qα

N2

Pθ∗

(
sup
θ∈Θ0

(
N

(
dS(θ, Z∗)−

1

4

))
≥ qα

)
≤ Pθ∗

(
T ≥ qα

)
≤ Pθ∗

(
|T − Eθ∗(T )| ≥ qα − Eθ∗(T )

)

≤ Pθ∗

(
|T − Eθ∗(T )| ≥ qα +N δ0

)
≤
εN2

(
δ0 + qα

N2

)2

N2
(
δ0 + qα

N

)2

≤
ε
(
δ0 + qα

N2

)2

(
δ0 + qα

N2

)2 = ε,

since qα < 0 (see Section 5). �

The following Lemma is easy to see by induction.

Lemma 4.2. If Y0 = y0 and the errors satisfy En ≥ y0 − θ0 − θ1y0 + c for all n for
some y0 > 0 and c > 0, then Yn is strictly increasing with

Yn ≥

(
n−1∑
k=0

θk1

)
c+ y0.

If, for example, the errors have a shifted Fréchet distribution as used in the sim-
ulations in Section 5, then En ≥ y0 − τy0 + c and med(En) = 0 is satisfied for some
y0 > 0, c > 0, and τ > 1.

Theorem 4.1. If the errors satisfy En ≥ y0 − τy0 + c for all n for some y0 > 0,
c > 0, τ > 1, Y0 = y0, Θ = [0,∞)× [τ,∞), θ0

0 ≥ 0, θ0
1 > τ and

Θ0 = {(θ0, θ1)> ∈ Θ; θ1 ≥ θ0
1} or Θ0 = {(θ0

0, θ
0
1)>},

then the test given by (2.1) is consistent at all θ∗ ∈ Θ \Θ0.

Proof. Set Θh
0 = {(θ0, θ1)> ∈ Θ; θ1 ≥ θ0

1} for the half-sided null hypotheses and
Θp

0 = {(θ0
0, θ

0
1)>} for the point null hypothesis and use h defined in (3.1).
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If θ∗ ∈ Θ \Θh
0 then

sup
θ∈Θh0

h(rn1(θ), rn2(θ), rn3(θ))

≤ sup
θ∈Θh0

(
1{rn1(θ) > 0}+ 1{rn2(θ) > 0}

)

= sup
θ∈Θh0

(
1{rn1(θ

∗) > θ0 − θ∗0 + (θ1 − θ∗1)Yn1−1}

+ 1{rn2(θ
∗) > θ0 − θ∗0 + (θ1 − θ∗1)Yn2−1}

)
≤ 1{rn1(θ

∗) > −θ∗0 + (θ0
1 − θ∗1)Yn1−1}

+1{rn2(θ
∗) > −θ∗0 + (θ0

1 − θ∗1)Yn2−1}

since θ0 ≥ 0 and θ1 ≥ θ0
1 for θ = (θ0, θ1)> ∈ Θh

0 . According to Lemma 4.2, for all
γ > 0 there exist N0 such that

Yn ≥

(
n−1∑
k=0

θk1

)
c+ y0 ≥ γ

for all N ≥ N0. In particular γ can be chosen such that −θ∗0 + (θ0
1 − θ∗1)γ > k and

Pθ∗(rn(θ∗) > k) < 1
2
(1

4
− δ) with δ ∈ (0, 1

4
) since θ0

1 > θ∗1. Setting

H(rn1(θ
∗), rn2(θ

∗), rn3(θ
∗)) = 1{rn1(θ

∗) > k}+ 1{rn2(θ
∗) > k},

Conditions (4.1) and (4.2) are satisfied, so that consistency holds for all
θ∗ ∈ Θ \Θh

0 .

If θ∗ ∈ Θ\Θp
0 and θ0

1 > θ∗1, then consistency at θ∗ follows as above. If θ0
1 < θ∗1, then

there exists γ > 0 with θ0
0 − θ∗0 + (θ0

1 − θ∗1)γ < −k and Pθ∗(rn(θ∗) < −k) < 1
2
(1

4
− δ)

so that

H(rn1(θ
∗), rn2(θ

∗), rn3(θ
∗)) = 1{rn1(θ

∗) < −k}+ 1{rn2(θ
∗) < −k}

satisfies Conditions (4.1) and (4.2). If θ0
1 = θ∗1, then k := θ0

0 − θ∗0 6= 0 and

h(rn1(θ), rn2(θ), rn3(θ))

= 1{rn1(θ
∗) > k, rn2(θ

∗) < k, rn3(θ
∗) > k}

+ 1{rn1(θ
∗) < k, rn2(θ

∗) > k, rn3(θ
∗) < k}

=: H(rn1(θ
∗), rn2(θ

∗), rn3(θ
∗)).

Since p(1− p)p+ (1− p)p(1− p) = p(1− p) < 1
4

for all p 6= 1
2

and

p = Pθ∗(rn(θ∗) < k) 6= 1
2
, Condition (4.2) is also satisfied. Hence consistency holds

for all θ∗ ∈ Θ \Θp
0 as well.

�
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5. Simulation of the power of the test

Since confidence sets can be constructed from point hypotheses, we consider the
most important hypothesis H0 : θ = θ0. To simulate the power of the test based
on the simplicial depth for this hypothesis, approximate quantiles of the asymptotic
distribution given by Theorem 3.1 were determined, and an efficient algorithm for
calculating the test statistic was developed.

5.1. Quantiles of the asymptotic distribution.
To calculate approximate quantiles, we use an equidistant partition of [−2, 2] defined
by t0 = −2, ti+1 = ti + h and tK = 2 with h = 0.001 and generate 200000 repetitions
of the process x(t0), x(t1), . . . , x(tK). According to Lemma 3.2, (X(t0)>, X(t1)>, . . . ,
X(tK)>)> has a multivariate normal distribution with a degenerated 2K × 2K co-
variance matrix. To avoid degeneracy in some cases and to reduce the computational
costs, we simulate (x1(t1), x1(t2), . . . , x1(tK))> from the conditional distribution of
(X1(t1), X1(t2), . . . , X1(tK))> given (X2(t1), X2(t2), . . . , X2(tK))> = x,
where x = (x2(t0), ..., x2(t0))> results from one realization of the standard normal
distribution. Then an approximation of the integrated limit process is given by

WK =
3

4
+

3

4
x2(t0)2 − 3

2

K−1∑
k=0

1

2
(x1(tk+1)2 + x1(tk)

2)(tk+1 − tk).

Taking the empirical quantiles of WK , yields the approximate quantiles of the as-
ymptotic distribution presented in Table 1. A complete quantile plot is depicted in
Figure 2.

−8 −6 −4 −2 0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

qα

α

Figure 2. Quantiles of the approximate distribution of N(dS(θ, Z∗)− 1/4)
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5.2. Calculation of the test statistic.
To evaluate the full depth statistic dS(θ, z∗), we apply parallel computation and ma-
trix based operations which reduce the computational costs to order N2 compared
to the naive calculation with order N3. Therefore we use tilted triangular matrices
and Hankel matrices to calculate depth with one residual fixed in an efficient way.
In particular the new algorithm allows a parallel computation of the remaining loop.
All computations are performed in R (see R Core Team, 2013) with the packages
for multi-core computation (see Yu, 2002; Tierney et al., 2013; Venables and Ripley,
2002) and a package for fast matrix calculations (see Novomestky, 2012).

5.3. Simulation study. We compare the test based on simplicial depth for
H0 : θ = θ0 using θ0 = (θ0

0, θ
0
1)> = (0.2, 1.01)> with five other tests. Three of them are

simplified depth statistics using partial evaluation of the full simplicial depth and were
proposed in Kustosz et al. (2015). This simplifies the calculation and allows a simple
derivation of limit distributions which is the normal distribution. The simplified
statistics are defined by

d1
S(θ, z∗) =

1⌊
N
3

⌋ bN3 c∑
n=1

1{r3n−2(θ) > 0, r3n−1(θ) < 0, r3n(θ) > 0}

+ 1{r3n−2(θ) < 0, r3n−1(θ) > 0, r3n(θ) < 0},

d2
S(θ, z∗) =

1⌊
N−1

2

⌋ bN−1
2 c∑

n=1

1{rn(θ) > 0, rbN+1
2 c(θ) < 0, rN−n+1(θ) > 0}

+ 1{rn(θ) < 0, rbN+1
2 c(θ) > 0, rN−n+1(θ) < 0},

d3
S(θ, z∗) =

1

N − 2

N−2∑
n=1

1{rn(θ) > 0, rn+1(θ) < 0, rn+2(θ) > 0}

+ 1{rn(θ) < 0, rn+1(θ) > 0, rn+2(θ) < 0}.

The other two tests are the simple sign test defined by

Ts(θ, z∗) =
1√
N

N∑
n=1

sign(rn(θ)),

which is described in Huggins (1989) for stochastic processes, and an OLS test based
on the limit distributions derived in Wang and Yu (2013). The sign test uses the exact
error distribution of the residual signs when the med(En) = 0 assumption holds. For
the OLS test we define critical values based on the asymptotic independence of the
marginal estimators. Since we do not know the exact error distribution, we apply the
OLS test assuming normal errors in all examples. We evaluate the power of the six
tests on a grid defined by θ0 ∈ [−0.15, 0.52] with mesh size 0.01 and θ1 ∈ [1, 1.021]
with mesh size 0.0003. For each grid point, we simulate R = 100 processes of length
N = 100 with the underlying parameter combination and with starting value y0 = 15.
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We use three different distributions for the errors: a normal distribution with
mean zero and variance 0.01, a contaminated normal distribution given by An + Pn ·
Bn, whereby An ∼ N (0, 0.1), Bn ∼ N (5, 1) and Pn ∼ Pois(5/100) are independent
random variables for each n, and a Fréchet distribution defined by the density

fα,β,γ(x) =
γ

α

(
x− β
α

)−1−γ

exp

(
−
(
x− β
α

)−γ)

and parameters α = 1.928, β = −2, γ = 10. Thereby, the normal distribution and
the Fréchet distribution satisfy med(En) = 0, but only the Fréchet distribution also
satisfies the conditions of Theorem 4.1 for consistency, if the starting value is large
enough. The aim of the simulation study is to show how the proposed simplicial
depth test behaves if the assumptions are not completely satisfied. In particular, the
errors with contaminated normal distribution provide innovation outliers in the sense
of Fox (1972).

Figure 3 shows the power functions for the normally distributed errors. Thereby,
the horizontal and vertical lines denote the components of θ0 so that their intersec-
tion is θ0. One can clearly see, that the OLS test performs best under the normal
distribution. This is not surprising, since it assumes the correct error distribution.
The sign test behaves quite well close to the alternative. Unfortunately in case of
explosive processes the power also decreases when θ0 and θ1 lead to residuals which
have a poor fit but indicate an error median of zero. This for example happens, if the
first half of residuals is positive and the second half is negative. As a result this test
is very unstable in case of explosive AR(1) processes. The dS test clearly outperforms
the simplified depth tests. It also shows a better performance than the OLS test in
direction of a diagonal with positive slope, but accepts a wider range of values on a
diagonal with negative slope.

In Figure 4, the comparison for errors with the contaminated normal distribution
is depicted, and Figure 5 provides the comparison for errors with the Fréchet distri-
bution. Now the simplicial depth test performs clearly best. The OLS test suffers
from heavy bias due to the skewed error distributions and the sign test still shows
the identifiability problem.

In Figures 6, 7, 8, we compare the tests evaluated on the diagonal given by
θ0 = 50.7 − 50 · θ1, where the slope of the diagonal is negative. The straight line
goes from (−0.325, 1.0205) to (0.725, 0.9995) through H0 defined by θ = (0.2, 1.01)T .
In the Figures the x-axis is defined by the parameter λ ∈ [0, 1] from the parametric
form of the straight line given by (0.725, 0.9995)T + λ · (−1.05, 0.021)T . On this line
λ = 0.5 coincides with H0. Here, the main advantage of the full simplicial depth
compared to the sign test is clearly visible. Additionally, these figures show how the
new test outperforms the OLS test in the case of nonnormal errors where the OLS
test in particular does not keep the level anymore.

Summarising we see, that the dS test can be applied to explosive AR(1) processes
under quite general conditions and does not suffer of systematic failure or heavy bias
in case of skewed errors or outliers. Further, by the price of additional computational
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costs, the full simplicial depth statistic defines a test with higher power than the
simplified statistics based on simplicial depth.

θ1

θ 0

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

1.005 1.010 1.015 1.020
0.0

0.2

0.4

0.6

0.8

1.0

(a) dS

θ1

θ 0

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

1.005 1.010 1.015 1.020
0.0

0.2

0.4

0.6

0.8

1.0

(b) d1S

θ1

θ 0

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

1.005 1.010 1.015 1.020
0.0

0.2

0.4

0.6

0.8

1.0

(c) d2S

θ1

θ 0

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

1.005 1.010 1.015 1.020
0.0

0.2

0.4

0.6

0.8

1.0

(d) d3S

θ1

θ 0

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

1.005 1.010 1.015 1.020
0.0

0.2

0.4

0.6

0.8

1.0

(e) OLS
θ1

θ 0

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

1.005 1.010 1.015 1.020
0.0

0.2

0.4

0.6

0.8

1.0

(f) Sign

Figure 3. Power of the tests based on normally distributed errors
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Figure 4. Power of the tests based on errors with contaminated nor-
mal distribution
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Figure 5. Power of the tests based on errors with Fréchet distribution
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Figure 6. Power evaluated along θ = (0.725, 0.9995)> +
λ(−1.05, 0.021)> for normally distributed errors
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Figure 7. Power evaluated along θ = (0.725, 0.9995)> +
λ(−1.05, 0.021)> for errors with contaminated normal distribution
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6. Application

Figure 9 shows the growth of the crack width yn in prestressed concrete in an
experiment conducted by Maurer and Heeke (2010), where n = 1, ..., 75 is the discrete
observation index recorded at each 2256 load cycles.
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Figure 9. Observed crack growth processes in mm recorded at load
cycles ranging from 44761 to 211624 measured in steps of 2256.

Crack growth is usually modelled by the so called deterministic Paris-Erdogan
equation (see e.g. Pook, 2000, Chapter 2.1) given by

dy

dt
= θyk,

where y is the crack length or crack width, t the time usually measured by the number
of load cycles, k is a material constant often assumed to satisfy k = 1, and θ is an
unknown parameter. Since crack growth is not a deterministic process, a stochastic
differential equation given by

dYt = θY k
t dt+ dZt

is more adequate, where Zt is an error process which could be the Wiener process but
also some nonnegative process like a Gamma or Gamma-Poisson process. Since the
process Yt cannot be observed continuously, a discretization must be used to estimate
θ. The simplest discretization is given by the Euler-Maruyama approximation (see
e.g. Iacus, 2008, Chapter 2.1) leading to

Yn = Yn−1 + θY k
n−1(tn − tn−1) + Zn − Zn−1,

where Yn and Zn are the processes at tn. The usual assumption is that the increments
Ẽn := Zn − Zn−1, n = 1, . . . , N , are independent. In Kustosz and Müller (2014), the
AR(1) model

Yn = Yn−1 + θYn−1(tn − tn−1) + Ẽn

was used, where the jumps visible in the crack growth process in Figure 9 were con-
sidered as outliers since they are caused by the breaking of the prestressing wires. To
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ensure that the crack width Yn is increasing, the error En must be bounded by below.
However, Ẽn should possess an infinitely divisible distribution to be the increment of
a continuous process Zt. Such distributions are either unbounded or bounded by zero,
see e.g. Klenke (2006), Chapter 16. But if the distribution is bounded by zero its me-
dian cannot be zero. To ensure an infinitely divisible distribution with median equal
to zero, we can subtract the median of Ẽn from Ẽn by setting En := Ẽn−med(Ẽn).
This leads to an AR(1) model of the form (1.1), where θ0 is the median of the in-
crement Ẽn and θ1 is the autoregressive parameter θ multiplied with the stepwidth
introduced by discrete observations. In Kustosz and Müller (2014), only the drift
parameter θ1 was estimated and tested in a model without θ0 and the requirement of
an infinitely divisible distribution was neglected. With the results presented here we
are able to estimate and test θ1 as well as θ0 in a more adequate model.
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(a) Empirical simplicial depth for the observed
crack growth process. The black line around
θ0 = −0.1 is the 95% parameter confidence re-
gion derived by dS . The region marked by the
circle is the 95% parameter region interval re-
sulting from an ordinary least squares estima-
tor.
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(b) Fit of the residuals of the crack
growth process. The dots represent
the pairs (yn−1, yn) from the observed
data. The light gray region are fits
based on the 95% OLS parameter
confidence sets. The dark gray region
is defined by fits from the 95% confi-
dence regions based on the dS test.

Figure 10. Empirical results for crack growth data

Figure 10(a) provides the depth contours and the 95% confidence set for θ =
(θ0, θ1)> based on dS and the ordinary least squares estimator. The robustness of
the proposed method can be reviewed by consideration of the fits compared to a
plot of yn against yn−1 presented in Figure 10(b). While the OLS confidence region
clearly follows the large increments and overestimates the central observations, the
dS confidence regions are more concentrated on the main part of the residuals. Fur-
ther the OLS confidence region is remarkably wider than the depth based region,
demonstrating a better performance of the depth based method.
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älteren Spannbetonbrücke. Bericht für Landesbetrieb Straßenbau NRW. Technical
report, TU Dortmund University.

Mizera, I. (2002). On depth and deep points: a calculus. Ann. Statist. 30, 1681-1736.
Müller, Ch.H. (2005). Depth estimators and tests based on the likelihood principle

with application to regression. J. Multivariate Anal. 95, 153-181.
Novomestky, F. (2012). matrixcalc: collection of functions for matrix calculations. R

package version 1.0-3. http://CRAN.R-project.org/package=matrixcalc
Paulaauskas, V. and Rachev, T. (2003). Maximum likelihood estimators in regression

models with infinite variance innovations. Statist. Papers 44, 47-65.
Pollard, D. (1984). Convergence of Stochastic Processes. Springer, New York.
Pook, L. (2000), Linear Elastic Fracture Mechanics for Engineers: Theory and Ap-

plication, WIT Press, Southampton.
R Core Team (2013). R: A language and environment for statistical computing.

R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-
project.org/.

Rousseeuw, P.J. and Hubert, M. (1999). Regression depth. J. Amer. Statist. Assoc.
94, 388-433.

Stute, W. and Gründer, B. (1993). Nonparametric prediction intervals for explosive
AR(1)-processes. J. Nonparametr. Stat. 2, 155-167.

Tierney, L., Rossini, A.J., Li, N. and Sevcikova, H. (2013). snow: sim-
ple network of workstations. R package version 0.3-13. http://CRAN.R-
project.org/package=snow

Tukey, J.W. (1975). Mathematics and the picturing of data. In Proc. Int. Congress
Math., Vancouver 1974, 2, 523- 531.

Van der Vaart, A. W. and Wellner, J. A. (2000). Weak Convergence and Empirical
Processes. With Applications to Statistics. Springer, New York.

Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics with S. Fourth
Edition. Springer, New York.

Wang, X. and Yu, J. (2013). Limit theory for an explosive autoregressive process.
Working Paper, No. 08-2013. Singapore Management University, School of Eco-
nomics.

Wellmann, R., Harmand, P. and Müller, Ch.H. (2009). Distribution-free tests for
polynomial regression based on simplicial depth. J. Multivariate Anal. 100, 622-
635.



31

Wellmann, R. and Müller, Ch.H. (2010a). Tests for multiple regression based on
simplicial depth. J. Multivariate Anal. 101, 824-838.

Wellmann, R. and Müller, Ch.H. (2010b). Depth notions for orthogonal regression.
J. Multivariate Anal. 101, 2358-2371.

Yu, H. (2002). Rmpi: parallel statistical computing in R. R News 2/2:10-14.



32

α 0.005 0.01 0.025 0.05 0.1 0.2
qα -2.6543 -2.2404 -1.6792 -1.2545 -0.8271 -0.4032
Table 1. Quantiles of the integrated Gaussian process
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