
TU Dortmund

Faculty of Statistics

Master Thesis

Prediction of heat pump power
consumption using a state space model

Author: Ortrud Wartlick
(Student ID: 192323)

Supervisor: Prof. Dr. Christine Müller

November 12, 2023





Contents

1 Introduction 1

2 Aims 2

3 Dataset 3

3.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.2 Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Methods 10

4.1 Spectral analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.2 Sample autocorrelation function (ACF) . . . . . . . . . . . . . . . . . 10

4.3 Sample partial autocorrelation function (PACF) . . . . . . . . . . . . 11

4.4 Agglomerative hierarchical clustering . . . . . . . . . . . . . . . . . . 12

4.5 Paired t-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.6 Classical linear model . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.7 State space model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.7.1 Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.7.2 Particle filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.7.3 Optimisation of unknown parameters . . . . . . . . . . . . . . 18

5 Variables 19

5.1 Target variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2 Predictor variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Exploration using a linear model 34

7 State space model 48

7.1 V-model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.2 W-model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.3 P-model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.4 A-model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.5 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8 Summary 78

References 80



Appendix 82

A Household power consumption 82

B Miscellaneous 92



1 Introduction

In a world becoming more aware of climate change, heat pumps are an obvious sus-
tainable heating solution when powered by electricity from renewable energy sources
(Die Zeit 2022). In this master thesis, we analyse the electrical power consumption of
heat pumps in 38 single-family households in Hamelin, Germany, in the years 2019
and 2020 (Schlemminger et al. 2002). The aim of this project is to predict electrical
power consumption based on external variables, such as time of year, time of day,
temperature and daylight hours, as well as internal variables, such as household-
specific features and typical heat pump usage patterns.

In the first part of this thesis, the dataset is discussed (chapter 3) and potential
predictor variables for heat pump power consumption are created (chapter 5). A
descriptive analysis of heat pump power consumption data shows that like temper-
ature, the seasonal profile of power consumption is dominated by seasonalities with
periods of 1 year and 1 day. Furthermore, pumps can be sorted into distinct clusters
based on their mean daily load profiles (usage patterns). Finally, when yearly and
daily seasonalities are removed from the data, autoregressive components are visible
in the noise. Based on this descriptive analysis, 145 potential predictor variables
and interactions are then created that may affect heat pump power consumption
(chapter 5).

The second part of this thesis is concerned with modeling. First, static linear models
are used to answer some questions about fitting the data: How many pumps should
be fit simultaneously? Should pumps be fit in the clusters defined by their usage
patterns? Which of the 145 potential predictors are most relevant for modeling?
Chapter 6 addresses these questions using linear model ”experiments” in combina-
tion with forward selection. As a result of this analysis, we decide that 17 pumps
can be fit simultaneously and fitting these pumps in smaller, separate clusters is not
necessary. Of the 145 predictor variables and interactions constructed in chapter 5,
only 48 are relevant - the others are never selected during forward selection. Further-
more, only 4 selection rounds are needed for a model to describe power consumption
data comprehensively (chapter 6).

In the final chapter (chapter 7), four different state space model are formulated
and estimated using the Kalman filter (Petris et al. 2009). The first state space
model discussed is the ”V-model”, which assumes that the true feature effects are
constant and is therefore similar to the static linear model in chapter 6. The second
model is the ”W-model”, which extends the V-model by assuming that the true
feature effects have a variance. The third model is the ”P-model”, which uses a
particle filter for estimation instead of the Kalman filter. Finally, the ”A-model”
extends the W-model by adding AR(2) noise. The four models are optimised and
the mean prediction errors of the 17 included pumps are compared. The results
show that the W-model performs best both for short-term (1 hour) and longer-term
(24-hour) predictions of heat pump power consumption data. However, interesting
points are raised in the analysis which suggest that W- and A-models could be
improved by further modification of the model structure and / or the estimation
conditions (chapter 7).
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2 Aims

This project aims to address the following questions:

(1) Which variables may influence the electrical power consumption of heat pumps?
(2) Can heat pump power consumption be predicted using a state space model?

Question (1) is discussed in chapters 5 and 6 and question (2) is discussed in chap-
ter 7.
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3 Dataset

The dataset is described by Schlemminger et al. 2002. Here some information is
summarised.

3.1 Description

The dataset consists of electrical power consumption data (in Watt), measured in 38
separate single-family households (SFH) near Hamelin in Lower Saxony, Germany.
The buildings included in the dataset are numbered from 3 to 40. All buildings in the
dataset are equipped with a water-water-heat pump for underfloor space heating, a
6 kW heating rod as a backup heater to deliver additional space heating in case the
heat pump is not sufficient, and solar thermal panels to heat water for domestic use
(Schlemminger et al. 2002). If not enough solar energy is available (mainly in win-
ter), the heat pumps are also used to heat domestic water. Four buildings (13, 15, 26
and 35) are also equipped with a photovoltaic system (PV) to produce electricity.
Three households have a ventilation system installed (5, 9 and 16; Schlemminger
et al. 2002).

Power consumption data is measured with direct-connected electricity meters in
each household. Separate electricity meters are used to measure the household and
the heat pump power consumption. For the households with a ventilation system,
its power consumption is included in the heat pump measurement, as is the use of
the backup heater (Schlemminger et al. 2002). Measurements are read in intervals
of 10 seconds and transmitted to a database server using the building’s internet con-
nection. The raw power consumption data is then validated for internal consistence
between power data and also measured energy data and aggregated from 10 second
to 1 minute, 15 minute and 60 minute timeseries data, using the arithmetic mean
to aggregate power consumption data. The data is stored in HDF5 format on the
Zenodo platform (Schlemminger et al. 2002; Zenodo Platform 2022). Some of the
data is also available in CSV format on the OpenMeter platform but this is not used
here (Schlemminger et al. 2002; Logarithmo GmbH und Co. KG 2022).

Table 1 shows the names of the files downloaded from the Zenodo platform for the
present thesis. Because of technical limitations (RAM), only 60 minute timeseries
data is used. Power consumption data is available from May 2018 to December 2020,
and Schlemminger et al. 2002 also provide weather data from WetterOnline for the
same time period (WetterOnline 2021).
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File name
2018 data 60min.hdf5
2019 data 60min.hdf5
2020 data 60min.hdf5
2018 weather.hdf5
2019 weather.hdf5
2020 weather.hdf5

Table 1: Files downloaded from Zenodo.

HDF5 files are hierarchical in structure, ordering datasets in groups, similar to di-
rectories. The structure of the HDF5 files used here is shown in Table 2 (reproduced
from Schlemminger et al. 2002, Table 3).

File type Top-level nodes Middle-level nodes Low-level nodes

Power HDF5-files
(e.g. 2018 data 60min.hdf5)

MISC

ES1 TRANSFORMER

PV1
EAST
SOUTH
WEST

NO PV

SFH3
HOUSEHOLD
heat pump

...
HOUSEHOLD
heat pump

SFH40
HOUSEHOLD
heat pump

WITH PV ... ...

Weather HDF5-files
(e.g. 2018 weather.hdf5)

WEATHER SERVICE IN
..TEMPERATURE..
..WIND SPEED..
...

Table 2: HDF5 file structure of power files and weather files.

Variable Type Based on variable in file
PV binary (0: ”NO PV”, 1: ”WITH PV”) power file.keys() (∈ {”NO PV”, ”WITH PV”, ”MISC”})
id string (”SFH{n}”; n ∈ N+) power file[{PV}].keys()
timestamp datetime

(YYYY-mm-dd HH:MM:SS)
power file[{PV}/{id}/HOUSEHOLD].index (in seconds since 1970)
power file[{PV}/{id}/heat pump].index (in seconds since 1970)

household numerical (in Watt) power file[{PV}/{id}/HOUSEHOLD].P TOT
pump numerical (in Watt) power file[{PV}/{id}/heat pump].P TOT
number of persons non-negative integer (absolute count) power file[{PV}/{id}/HOUSEHOLD].attrs[”n inhabitants”]
square metres numerical (in m2) power file[{PV}/{id}/HOUSEHOLD].attrs[”living space”]
temperature numerical (in ◦C) weather file[WEATHER SERVICE/IN/

WEATHER TEMPERATURE TOTAL].TEMPERATURE TOTAL

Table 3: Variables extracted from HDF5 files.

The variables extracted from the HDF5 files are shown in Table 3. Extraction of
variables is based on a Python script provided by Jawana Gabrielski. The extracted
variables include the household id (SFH3 to SFH40), whether or not the household
produces electricity using a photovoltaic system (PV; the ”MISC”-property is not
used), the floor size of the building in square metres (ranging from 87 to 230m2)
and the number of persons living in the building (ranging from 1 to 4 persons). The
household and pump power consumptions are given in Watt in 60 minute intervals,
and a timestamp is provided in seconds since 1970 (UNIX timestamp). The times-
tamp variable is converted to a datetime variable using Python’s pandas package
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(The pandas development team 2020).

Schlemminger et al. 2002 provide a rough validation of household power consump-
tion data, excluding households which are missing more than one month of data in
2019 (households 6, 13, 17, 24, 25, 31, 37 and 40; see also section 3.2). The remaining
households have an average of 2.38 inhabitants. The German Federal Statistics Of-
fice provides a benchmark mean total power consumption of 3221 kWh for 2 person-
households and 4978 kWh for (on average) 3.65 persons per year (German Federal
Statistics Office 2021). Linear interpolation suggests that the expected annual house-
hold power consumption for the households in this dataset should therefore be 3625
kWh for 2.38 persons per year (Schlemminger et al. 2002). Excluding the electric-
ity commonly used for space heating and hot water (17.9%; Frondel et al. 2020),
which are here provided instead by heat pumps and solar thermal panels, results
in an expected annual household power consumption of 2976 kWh. The observed
mean household power consumption in the dataset is 2829 kWh in 2019, which is
consistent with the expectation and thus broadly validates the measurements. The
median of the annual household consumption is 2996 kWh, the minimum is 884
kWh (SFH15; a household with PV) and the maximum is 5489 kWh (SFH10).

The mean heat pump power consumption in the dataset is 4993 kWh in 2019,
with a median of 4012 kWh, minimum of 1431 kWh (SFH35; one of the smallest
with 100m2) and maximum of 14840 kWh (SFH20; one of the largest with 220m2),
which apparently is a bit less than expected, probably because domestic hot water
is heated by solar energy when available, and not by the heat pump (Schlemminger
et al. 2002). Schlemminger et al. 2002 warn that the households with the highest
heat pump power consumption (4, 20, 22, 34, 40) use the backup heating rod ex-
tensively (from 50% to 88% of power consumption measured as heat pump power
consumption is actually due to the backup heater), whereas 12 households only use
it rarely (15% of pump power consumption; Schlemminger et al. 2002). Unfortu-
nately, use of the backup heater is not reported as a variable. However, this caveat
should be kept in mind because use of the backup heater may well affect the heat
pump power consumption profiles which are studied later in this thesis (chapter 5ff).

For the present thesis, many new variables are created from the existing variables
described in Table 3. For coherence, existing variables are discussed in more detail
later, together with new variables in chapter 5.

3.2 Cleaning

There is some missing data in the dataset: Schlemminger et al. 2002 explain that
they achieve a data coverage of more than 90% for 23 of the 38 households. Small
data gaps can be due to technical failures of the data logger or a long disconnection
from the internet so that measured data cannot be transferred and is eventually
lost. For two households (24 and 25), more than 50% of the data is missing be-
cause measurement was halted by the building owners. Six further households are
missing more than one month of data (6, 13, 17, 31, 37 and 40), with no reason
given. Schlemminger et al. 2002 correct small data gaps of up to one day by linear
interpolation. Unfortunately, there is no information about which timestamps have
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been corrected this way. However, larger data gaps are clearly marked as missing
(NA) for each affected timestamp.

As will be discussed later, small data gaps are not a huge problem for the analyses
in this thesis because the affected time points can be excluded from the analysis
(chapter 6) or ”bridged” using the mean power consumption of other pumps at the
same time points (chapter 7). However, outliers - unusually large peaks and troughs
in power consumption - can be a problem when modeling the data, because these
outliers may not accurately reflect the dependence of power consumption on exter-
nal factors. For this reason, some data cleaning procedures are performed on the
dataset before moving on to the analysis. The cleaning procedures are illustrated in
Fig. 1, using household 3 as an example. This is a household with very little missing
data (Fig. 1A), which makes it easier to illustrate outliers.

We consider two types of outliers: The first are unusually large peaks in the heat
pump data in some households, which we think reflect a programmed, temporary
burst of heating power to kill Legionella bacteria in the system (mostly relevant
in wintertime, when the pumps are also used to heat water; Rosenkranz, A. 2021).
These types of outliers can be very regular (Fig. 1B), but for some pumps they
only appear in the winter months or not at all. This irregularity necessitates an
automatic approach to their detection and removal. The second type of outliers
are unusal troughs in the household power consumption data (Fig. 1C). We as-
sume that these are due to building owners being on holiday, so that the regular
household power consumption is reduced to standby levels. Because the timing of
holidays is unknown, we also use an automatic approach to detect and remove these.

The procedure to detect unusual peaks in heat pump power consumption data was al-
ready developed in a Fallstudien 2 seminar together with Bianca Strauss and Michael
Schweitzer. The procedure is as follows: First, using a centered, rolling window of
13 days width, a rolling standard deviation of power consumption is calculated for
each time point (R Core Team 2021). At the beginning and end of the timeseries,
a window of decreasing bandwidth is used. If the window contains missing values,
these are ignored; if the window contains only missing values, then the value of the
standard deviation is set to 0 for the time point. The rolling standard deviation is
usually larger overall in the winter months than in the summer months, when the
pump is mostly on standby. To ”detrend” the rolling standard deviation, a rolling
median of the rolling standard deviation is calculated using a centered window of 7
days width. The rolling median is removed from the rolling standard deviation to
yield a ”detrended rolling standard deviation”. This detrended standard deviation
is then thresholded to detect outliers. The (empirical) threshold used is 300 Watt,
which has been found to work well for most pumps (Fig. 1B). time points with a
detrended standard deviation greater than this threshold are marked as ”outliers”
(Fig. 1B).
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Figure 1: Data cleaning (example: household SFH3). A, total power consumption (house-
hold + pump) with missing values in black; B, pump power consumption with detected
outliers in black; C, household power consumption with detected holidays in black; D,
cleaned total power consumption data after removal of outliers and holidays.

The procedure to detect holidays in household pump power consumption data is
as follows: First, the day-night difference in household power consumption is calcu-
lated. For this purpose, day-time is defined as between 8:00 and 19:59 hours of a
given day, and night-time is defined as between 20:00 on the same day until 7:59 on
the next day. Thus the data is subdivided into alternating day-time and night-time
blocks, and the mean household power consumption is calculated for each block
(R Core Team 2021). Missing data is ignored for this calculation. If the difference
between subsequent mean day-time and night-time power consumptions is smaller
than 30 Watt and the absolute household power consumption for the affected time
points is smaller than 300 Watt, then these time points are marked as a potential
holiday, using a new, temporary variable X, which is 1 for potential holidays and 0
otherwise. For time points with missing data, X is set to 0 by default. This method
detects a lot of isolated potential holidays, which are unlikely to be real holidays.
We assume that a real holiday is at least three days long. We therefore calculate a
moving median of X using a centered rolling window of five days width. The value
of the moving median will be 1 if at least three in five consecutive days are marked
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as potential holidays. For example, a sequence of 00010001111010111000010 will
become 00000001111111111000000, detecting a single holiday of ten days duration.
This method is not perfect but it seems to detect holidays fairly reliably (Fig. 1C).

Before further analysis, the power consumption of time points with outliers or hol-
idays are set to NA to ensure that they do not distort the analysis in chapters 5ff.
Fig. 1D shows an example of a cleaned dataset (household 3), with outliers and
holidays removed. Of course, this introduces more missing data into the dataset.
Fig. 2 shows the percentage of missing data for each household in the dataset, after
cleaning. The large data gaps in 2019 and / or 2020 for households 6, 8, 10, 11, 13,
15, 24, 25, 31, 35, 37 and 40 are due to missing data reported already in the original
dataset (Schlemminger et al. 2002). Smaller data gaps of usually one week or less
have been introduced by removing holidays. The removal of other outliers does not
have a big effect because these only isolated time points.

Figure 2: Fraction of missing data in pump power consumption for each household over
time (aggregated per week). Light areas indicate large fractions of missing data. Note that
the households are sorted alphabetically: SFH10-SFH30, SFH3, SFH31-SFH40, SFH4-
SFH9.
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Gaps in the data are taken into account in later chapters: for ordinary least squares
estimation (OLS; chapter 6), the time points with missing power consumption val-
ues are simply discarded. This is possible because OLS does not take into account
the order of a timeseries. For Kalman filter and particle filter estimations (chap-
ter 7), which do progress through time points in an ordered fashion, data gaps in
the timeseries are ”bridged” for each individual pump using the mean heat pump
power consumption of all the other pumps at the affected time points to impute
missing data. Even then, the imputation is only temporary: it is only used so that
the Kalman and particle filters can proceed across the time points with missing
data, but the affected time points are not included in the analysis of predictions and
residuals for the affected pumps.

In principle, it is therefore possible to include all households in the analyses used
in this work. However, we do exclude some households (Table 4), either because of
very large blocks of missing data - then the household does not contribute much - or
for other reasons. For example, households 13, 15, 26 and 33 use a photovoltaic sys-
tem to produce electricity. This naturally affects their power consumption profiles -
the power consumption can even become negative when more electricity is produced
than is consumed. These households are therefore excluded from all further analysis.
In addition, household 24 has no data at all in 2019 and 2020 and is excluded. This
leaves 33 households which can in principle be included in the analysis. Of these,
households 6, 17, 25, 31, 34, 35 and 37 have very large data gaps. Households 5, 8,
11, 14, 15, 20, 22, 28, 34, 39 and 40 have unusually large or oddly shaped heat pump
power consumption profiles. In some cases (20, 22, 34 and 40), these atypical profiles
may be due to extensive use of the backup heater which can distort the heat pump
measurements (see section 3.1), but in other cases there is no known explanation.
Therefore, we do not exclude these households outright. In chapter 6 we experiment
with including or excluding ”atypical” pumps to test the effect these may have on
the analysis.

Households Excluded / Included?
13, 15, 26 and 33 Excluded from most further analysis because of PV
24 Excluded from further analysis because of no data in 2019-2020
6, 17, 25, 31, 34, 35 and 37 Sometimes excluded because of missing data in 2019-2020
20, 22, 34 and 40 Sometimes excluded because of extensive use of the backup heater
5, 8, 11, 14, 15, 28 and 39 Sometimes excluded because of atypical pump profiles
3-12, 14, 16-25, 27-32, 34-40 Included in some analysis (chapter 6; m = 33)
3, 4, 7, 9, 10, 12, 16, 18, 19, 21, 23, 27, 29, 30, 32, 36, 38 Included in all further analysis (chapter 6f; m=17)

Table 4: Excluded and included households; m: number of households in the group.

Finally, note that later in this thesis, only data from 2019 and 2020 is used - data
from 2018 is discarded because it is not complete (Fig. 2). Data from 2019 is used
for feature generation (chapter 5) and the year 2019 is also used as a training or
adaptation period for different modeling approaches (chapter 6f). Data from 2020
is used for the analysis of predictions and residuals (chapter 6f).
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4 Methods

4.1 Spectral analysis

Every time series (xt)t∈N can be represented by a Fourier series: a sum of sine and
cosine waves with varying amplitudes and frequencies (or periods). In exponential
form, this can be expressed as (Shumway and Stoffer 2017, p.180, Eq. 4.27):

xt = n−1/2

n−1∑
j=0

d(ωj) exp(2πiwjt). (4.1)

Here, n is the number of time points, ωj = j/n are the Fourier frequencies and
d(ωj) is related to the amplitude of the oscillation with frequency ωj (Shumway and
Stoffer 2017, p.180, Eq. 4.27; other definitions are available but this is the one used
here). The Fourier periods are given by lj = 1/ωj for j > 0, with l0 := 0.

Spectral analysis makes use of the discrete Fourier transform to determine the domi-
nant periods of seasonalities in the data, i.e. those periods with the largest amplitude.
In Shumway and Stoffer 2017, the discrete Fourier transform (DFT) is defined as:

d(ωj) = n−1/2

n∑
t=1

xtexp(−2πiwjt). (4.2)

In R, the DFT can be calculated using stats::fft(x)/sqrt(length(x)) (R Core
Team 2021).

In Shumway and Stoffer 2017, the ”periodogram” or ”sample spectral density” is
defined as:

I(ωj) = |d(ωj)|2 (4.3)

for each ωj (Shumway and Stoffer 2017, p.180, Eq. 4.28). The dominant periods are
those periods with the largest I(ωj). These correspond to the Fourier oscillations
with the largest amplitudes which explain most of the variability in the data. The
plots in Fig. 3 are created by plotting I(ωj) vs. lj. Periods are plotted instead of
(the more usual) frequencies so that the dominant periods can be directly visually
identified.

4.2 Sample autocorrelation function (ACF)

The autocovariance of a stationary time series (Xt)t∈N is defined as

γ(h) = Cov(Xt+h, Xt), (4.4)

where h ≥ 0 is the ”lag” between the two time points (Shumway and Stoffer 2017,
p. 21, Eq. 1.23). The autocorrelation function is then given by

ρ(h) =
γ(h)

γ(0)
(4.5)
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(Shumway and Stoffer 2017, p. 21, Eq. 1.24). The autocovariance can be estimated
using observations xt, t = 1, . . . , n, and

γ̂(h) =
1

n

n−h∑
t=1

(xt+h − x)(xt − x), (4.6)

with γ̂(−h) = γ̂(h) for h = 0, 1, . . . , n − 1 (Shumway and Stoffer 2017, p. 27, Eq.
1.36). The sample autocorrelation function (ACF) can then be calculated using

ρ̂(h) =
γ̂(h)

γ̂(0)
(4.7)

(Shumway and Stoffer 2017, p. 28, Eq. 1.37). Note that ρ̂(h = 0) = 1 by definition.

If the time series (Xt)t is white noise, then for large n, the sample ACF is approx-
imately normally distributed with mean zero and standard deviation σρ̂(h) = 1/

√
n

(Shumway and Stoffer 2017, p. 28. Eq. 1.38). Thus, if ρ̂(h) ̸∈ [±2/
√
n] for h > 1

then ρ̂(h) is significantly different from 0 and (Xt)t is not white noise (Shumway and
Stoffer 2017, p.29). In the ACF plots in chapters 6 and 7, the interval [±2/

√
n] is

indicated by dashed blue lines. We use stats::acf to calculate and plot the sample
ACF (R Core Team 2021).

Since time series models are not the major focus of this thesis they are not dis-
cussed here in detail. However, note that the ACF of an autoregressive stationary
process of any order decays exponentially as h → ∞ (Shumway and Stoffer 2017, p.
95), whereas for an invertible moving average process of order q, ρ(h) = 0 for h > q
(Shumway and Stoffer 2017, p. 94, Eq. 3.43). For an ARMA process, ρ(h) decays
with increasing h (Shumway and Stoffer 2017, p. 99).

4.3 Sample partial autocorrelation function (PACF)

The partial autocorrelation function of a stationary time series (Xt)t∈N is defined as

ϕ(h) = Corr(Xt+h − X̂t+h, Xt − X̂t) (4.8)

where h ≥ 1 is the ”lag” between the two time points (Shumway and Stoffer 2017,
p. 97, Eq. 1.23). The partial autocorrelation measures the correlation between ran-
dom variables Xt+h and Xt with the effects of Xt+1, . . . , Xt+h−1 removed by linear
regression of Xt+h and Xt on Xt+1, . . . , Xt+h−1 yielding X̂t+h and X̂t (Shumway and
Stoffer 2017, p. 97).

For h = 1, there are no elements between Xt+h and Xt and therefore the partial au-
tocorrelation is just the autocorrelation: ϕ(h = 1) = ρ(h = 1) (see also section 4.2).
For h ≥ 2, the sample partial autocorrelation function (PACF) can be estimated
using observations xt, t = 1, . . . , n, for linear regressions,

x̂t+h =
∑h−1

k=1 βkxt+h−k

x̂t =
∑h−1

k=1 βkxt+k

(4.9)
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and then calculating ϕ̂(h) = Corr(xt+h − x̂t+h, xt − x̂t) (Shumway and Stoffer 2017,
p. 97). Note that, because of stationarity, E(Xt) = 0, so no intercepts are needed
in Eq. 4.9. Also because of stationarity, the coefficients β1, . . . , βh−1 are the same in
both regressions (Shumway and Stoffer 2017, p. 97). In practice, we use stats::pacf
to calculate and plot the sample PACF (R Core Team 2021).

Again, time series models are not discussed here since they are not the major focus
of this thesis. However, note that for an autoregressive stationary process of order
p (AR(p)), ϕ(h) = 0 for h > p (Shumway and Stoffer 2017, p. 98). For an invert-
ible moving average process of any order, the PACF decays as h → ∞ (Shumway
and Stoffer 2017, p. 99). For an ARMA process, ϕ(h) also decays as h increases
(Shumway and Stoffer 2017, p. 99).

4.4 Agglomerative hierarchical clustering

Given a finite set of objectsX = {x1, . . . , xn} with k dimensions (xi = (xi1, . . . , xik)
T ),

a clustering method partitions this set into disjoint subsets (or clusters) based on a
similarity or dissimilarity measure, so that the elements within a cluster are similar
to each other, and elements in different clusters are dissimilar (Miyamoto 2022, p.
1f). In this thesis, agglomerative hierarchical clustering is used to cluster households
by the mean centered load profiles of their pumps (see chapter 5). In this case,
n = 38 households, xi is the mean centered daily load profile of pump i, and k = 24
hours.

For agglomerative hierarchical clustering, each observation i is initially assigned
to its own cluster Ci = {xi} (Miyamoto 2022, p. 3). Then the pair-wise similarity S
or dissimilarity D between clusters is calculated. The clusters with the largest simi-
larity or smallest dissimilarity are merged into one cluster. This process is repeated
until there is one large cluster that contains all objects (Miyamoto 2022, p. 3). The
method is agglomerative because a bottom-up approach is used, starting with clus-
ters of one object each and forming increasingly bigger clusters, and hierarchical
because the order in which clusters are merged is recorded and yields a hierarchy
of clusters that can (for example) be displayed by a dendrogram (such as Fig. 5 in
chapter 5).

Here, the Ward method is used to determine the dissimilarity between clusters
(Miyamoto 2022, p. 24). For the Ward method, we first define the squared error
within cluster C as

E(C) =
∑
xi∈C

||xi − xC ||22 (4.10)

where xC is the mean of the objects in cluster C (Miyamoto 2022, p. 24, Eq. 2.22).
The increase in the error when clusters C and C ′ are merged is

∆E(C,C ′) = E(C ∪ C ′)− E(C)− E(C ′) (4.11)

(Miyamoto 2022, p. 24, Eq. 2.23). The increase in the error is used as a dissimilarity
measure, D(C,C ′) = ∆E(C,C ′). It is large when dissimilar clusters are merged,
and small when similar clusters are merged. For the initial clusters consisting of one
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object, the dissimilarity between two clusters C = {x} and C ′ = {y} is given by

D(C,C ′) = ∆E({x}, {y}) =
∣∣∣∣∣∣∣∣x− x+ y

2

∣∣∣∣∣∣∣∣2
2

+

∣∣∣∣∣∣∣∣y − x+ y

2

∣∣∣∣∣∣∣∣2
2

= ||x− y||22 , (4.12)

i.e. the Euclidean distance (Miyamoto 2022, p. 24, Eq. 2.25). As clusters are merged
during subsequent clustering steps, the dissimilarity calculation between clusters is
updated using an algorithm based on Eq. 4.11 (Miyamoto 2022, p. 24-26, Eq. 2.26).
In R, theWard method is implemented by the stats::hclust(..., method="ward.D")

function (R Core Team 2021).

Dendrogram

A dendrogram is used to visualise the hierarchical cluster (e.g. Fig. 5). A dendro-
gram displays the cluster as a tree whose endpoints (or leaves) are the individual
objects. The merging of two clusters is displayed as a merge of the cluster branches
(Miyamoto 2022, p. 11). Smaller clusters can be extracted from the big cluster by
cutting branches at a certain distance from the leaves.

4.5 Paired t-test

In chapter 6, we compare a number of measures M in different conditions C. For
example, the mean squared error (MSE) or median absolute error (MAE) of a linear
model fit are calculated for each of m = 17 pumps, first under the condition that
these pumps are all fit simultaneously (C”cluster” = 0) and then under the condition
that they are fit in smaller clusters (C”cluster” = 1). In general, the values of a
measure M measured for the same objects under conditions C = 0 and C = 1
can be compared using a paired t-Test (Heumann et al. 2016, p. 225). Here, the
one-sided hypothesis for these tests is given by:

H0 : µM ≤ 0 vs. H1 : µM > 0, (4.13)

where µM = E(M(C = 0) − M(C = 1)) = E(DM), i.e. the expected difference
between measures in pre- and post-conditions. If condition C = 1 improves the
fit and therefore decreases M , then M(C = 0) > M(C = 1) and µM > 0. We
assume that the difference DM = M(C = 0)−M(C = 1) is a random variable that
is approximately normally distributed at the boundary of the null hypothesis, i.e.
DM ∼ N(0, σ2

D) (Heumann et al. 2016, p. 225). Then for a random sample of n i.i.d.
differences DM,1, . . . , DM,n, the test statistic

T (DM) =
√
n

DM√
Var(DM)

(4.14)

is t-distributed with n−1 degrees of freedom (Heumann et al. 2016, p. 225). The null
hypothesis is rejected if the p-value p = PH0(T ≥ t(dM)) of the realised test statistic
t(dM) for observations dM,1, . . . , dM,n is < 0.05. In R, the one-sided paired t-test is
performed using stats::t.test(M ∼ C, data, paired = TRUE, alternative

= ’greater’) (R Core Team 2021).
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A note of caution: In the tests performed in chapter 6, a condition C comprises
four experiments, with measurements for the same 17 pumps in each experiment,
so n = 4m = 68 (see Table 9). The four experiments per condition differ in other
fit conditions and so the values of M are not expected to be the same for the same
pump across experiments, but strictly speaking, the measurements are not indepen-
dent since each pump appears four times. This affects the estimation of the variance
and the test statistic. These effects are neglected here.

4.6 Classical linear model

The classical linear model is used in chapter 5 to fit mean daily power consumption
as a function of mean daily temperature (see Eq. 5.3) and to fit the mean daily
temperature over time (see Eq. 5.4). It is also used in chapter 6 to fit heat pump
power consumption simultaneously for m pumps (see Eq. 6.1). Here, we discuss only
the simple case with one intercept. The more complex case of simultaneous fits with
several intercepts is described in detail in chapter 6.

The linear model is described by the following equation (Fahrmeir et al. 2013, p.
74):

Y = α + x1β1 + . . .+ xpβp + ϵ, ϵ ∼ N(0, σ2), (4.15)

where Y is a random variable and x1, . . . , xp are p different regressors or predictor
variables. The error term ϵ is a random variable that is assumed to be i.i.d. normally
distributed with E[ϵ] = 0 and homoscedastic variance σ2. Under these conditions, Y
is also normally distributed with E[Y ] = α+xTβ and variance σ2. The parameter α
describes an intercept while β1, . . . , βp describe the effects of the predictor variables
x1, . . . , xp.

Given n observations (yi, xi1, . . . , xip), i = 1, . . . , n, the unknown parameters α,
β1, . . . , βp can be estimated by minimising the squared error, Σn

i=1(yi − ŷi)
2, of pre-

dictions ŷi. This is also referred to as the ”ordinary least squares”-method (OLS). To
simplify the estimation, we first rewrite the model equation in matrix form (Fahrmeir
et al. 2013, p. 75):

Y = Fθ + ϵ, (4.16)

where

Y =

 Y1
...
Yn

 , F =

 1 x11 · · · x1p
...

...
. . .

...
1 xn1 · · · xnp

 , θ =


α
β1
...
βp

 , ϵ =

 ϵ1
...
ϵn

 . (4.17)

If F has full column rank, the OLS estimator is given by (Fahrmeir et al. 2013, p.
109):

θ̂ = arg min
θ

∥y − Fθ∥22 = (F TF )−1F Ty. (4.18)
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Given the assumptions for ϵ (i.i.d normally distributed with expectation 0 and ho-
moscedastic variance), the OLS estimator is also normally distributed, with

E(θ̂) = θ and Cov(θ̂) = σ2(F TF )−1 (4.19)

(Fahrmeir et al. 2013, p. 119). The variance σ2 can be estimated using

σ̂2 =
1

n− (p+ 1)

∣∣∣∣∣∣y − F θ̂
∣∣∣∣∣∣2
2

(4.20)

(Fahrmeir et al. 2013, p. 109). For the applications of the linear model in chapter 5,
the R stats::lm-function is used for OLS estimation (R Core Team 2021). For the
application with multiple intercepts and an expanding training window described
in chapter 6, custom functions are used based on Eq. 6.3. Time points with missing
data are excluded in either case. The R-code is submitted with this thesis.

Note that, for convenience, bold face notation for vectors and matrices is dropped
in the remainder of the thesis.

4.7 State space model

θ0 → θ1 → . . . → θt−1 → θt → θt+1 → . . .
↓ ↓ ↓ ↓
Y1 Yt−1 Yt Yt+1

Formally, a state space model consists of an Rq-valued latent time series (θt)t∈N0 and
an Rm-valued observable time series (Yt)t∈N, where

(1) (θt)t is a Markov chain and
(2) Yt depends only on θt and
(3) the Yt are independent given (θt)

(Petris et al. 2009, p. 40). Assumptions (1-3) imply that a state space model is com-
pletely specified by the initial distribution of θ0 and the conditional distributions of
θt|θt−1 and Yt|θt, t ≥ 1 (Petris et al. 2009, p. 40).

Dynamic linear models are a subgroup of state space models that assume linear
relationships between Yt and θt and between θt and θt−1, and normal distributions
for θ0 and any error terms (Petris et al. 2009, p. 41). A dynamic linear model is thus
given by

θ0 ∼ Nq(c0, C0) (4.21)

and two linear equations for t ≥ 1:

Yt = Ftθt + vt vt ∼ Nm(0m, Vt)
θt = Gtθt−1 + wt wt ∼ Nq(0q,Wt)

(4.22)

(Petris et al. 2009, p. 41). The known matrices Ft ∈ Rmxq and Gt ∈ Rqxq describe the
relationship between Yt and θt and θt and θt−1, respectively. The sequences (vt)t≥1

and (wt)t≥1 are two independent sequences of independent Gaussian random vectors
with expectation 0 and known variance matrices Vt ∈ Rmxm

+ and Wt ∈ Rqxq
+ (Petris
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et al. 2009, p. 41). It is assumed that θ0 is independent of vt and wt (Petris et al.
2009, p. 41).

Note that the linearity and normality assumptions imply that θt|θt−1 ∼ Nq(Gtθt−1,Wt)
and Yt|θt ∼ Nm(Ftθt, Vt) (Petris et al. 2009, p. 42). In fact, all joint, marginal and
conditional distributions involved are Gaussian (Petris et al. 2009, p. 53). This later
simplifies the estimation and forecasting process.

All state space models described in chapter 7 can be reduced to a form of Eq. 4.22,
with time-invariant Gt = G, Vt = V and Wt = W . The concrete specifications of Ft,
G, V and W are described in chapter 7 for each model discussed. In the following
sections, two approaches to estimating (θt)t and forecasting E(Yt+k|θt), k ≥ 1 are
described: the Kalman filter and the particle filter.

4.7.1 Kalman filter

The Kalman filter uses a Bayesian approach to estimate θt sequentially for t ≥ 1
given observations y1:t = y1, . . . , yt, an initial distribution for θ0, the linear state
equations 4.22 and the normality assumption. Let θ0 ∼ Nq(c0, C0). Then for t ≥ 1,

(1) θt|y1:t−1 ∼ Nq(at, Rt)
with at = Gtct−1 and Rt = GtCt−1G

T
t +Wt

(2) Yt|y1:t−1 ∼ Nm(ft, Qt)
with ft = Ftat and Qt = FtRtF

T
t + Vt

(3) θt|y1:t ∼ Nq(ct, Ct)
with ct = at +RtF

T
t Q

−1
t (yt − ft) and Ct = Rt −RtF

T
t Q

−1
t FtRt

where the third step represents the filtering step (Petris et al. 2009, p. 53).

In practice, we choose c0 = 0q and C0 = diagq(10
7, . . . , 107). If all elements of yt

are missing at time point t, then yt is set to 0m for that time point. If fewer than m
elements are missing in yt at time point t, then the missing elements are imputed
by setting the missing values to the mean yt of the measured values at that time
point. Alternatively, one could set the missing value to the preceding value of the
same pump, however, this is problematic when there are data gaps spanning a large
time period. It is actually not strictly necessary to replace the missing values at all,
see Petris et al. 2009, p. 59, but this is the approach taken here.

The distributions estimated by the Kalman filter can be used for forecasting as
follows. Let at := ct and Rt := Ct for k = 0. Then, for k ≥ 1,

(1) θt+k|y1:t ∼ Nq(at+k, Rt+k)
with at+k = Gt+kat+k−1 and Rt+k = Gt+kRt+k−1G

T
t+k +Wt+k

(2) Yt+k|y1:t ∼ Nm(ft+k, Qt+k)
with ft+k = Ft+kat+k and Qt+k = Ft+kRt+kF

T
t+k + Vt+k

(Petris et al. 2009, p. 70). So first, the next value of the state vector, θt+k, is esti-
mated and then Yt+k is predicted based on the θt+k estimate.

Note a special case: If the variances in Vt = V are zero or close to zero, then the
Kalman filter equations yield Qt ≈ FtRtF

T
t and ct = at +RtF

T
t Q

−1
t (yt − ft) ≈ at +
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RtF
T
t (F

T
t )

−1R−1
t F−1

t (yt − Ftat) = F−1
t yt. This implies that ft = Ftat = FtGtct−1 ≈

FtGtF
−1
t−1yt−1 ≈ yt−1 if Gt ≈ Iqxq. Similarly, for k-step ahead predictions, ft+k ≈ yt.

In other words, the forecasts are equal to the last observed value. Thus, careful
thought has to be given to specification of the variances in the model. For most
models discussed in chapter 7, the variances in V are large (specifically, much larger
than the variances in W ), but for the final ”A-model” discussed in chapter 7, V is
subsumed in W̃ and Ṽ is zero (see Eqs. 7.11f). This may cause a ”shift” of the pre-
dictions with respect to the observations. This problem is also discussed in chapter 7.

Petris 2010 provide an R-package for kalman filtering (Petris 2010, dlm). However,
to have more flexibility for model definitions and variance optimisation, custom
R-functions are used to implement the Kalman filter in this thesis. The R-code is
submitted with this thesis.

4.7.2 Particle filter

”Sequential Monte Carlo”-methods or ”particle filters” approximate θt|y1:t by a set

of support points, or particles, x
(i)
t ∈ Rq, i = 1, . . . , N :

Ê(θt|y1:t) =
N∑
i=1

x
(i)
t w

(i)
t (4.23)

where w
(i)
t is the so-called importance or weight of x

(i)
t (Petris et al. 2009, p. 209).

The particles x(1), . . . , x(N) with the associated weights w(1), . . . , w(N) can be thought
of as a discrete approximation of the probability distribution of θt|y1:t.

The question then simply becomes how to determine the particles and the weights.
Any distribution assumption can be made, but for comparison with the Kalman
filter, we will assume that the normality assumptions for Eq. 4.22 still hold and
that θt|θt−1 ∼ Nq(Gtθt−1,Wt) and Yt|θt ∼ Nm(Ftθt, Vt). Let the initial N particles

x
(1)
0 , . . . , x

(N)
0 be drawn independently from a distribution θ0 ∼ Nq(c0, C0), and let

the initial weights be w
(i)
0 = 1/N, i = 1, . . . , N . Then for t ≥ 0,

(1) Draw new particles x
(i)
t , i = 1 . . . , N from Nq(Gtxt−1,Wt),

(2) Calculate weights w̃
(i)
t = fYt(Yt = yt|Ftx

(i)
t , Vt) and normalise them:

w
(i)
t = w̃

(i)
t /

∑N
i=1 w̃

(i)
t for i = 1, . . . , N ,

(3) Perform multinomial resampling: Draw a random sample ofN particles x
(i)
t , i =

1 . . . , N from the discrete distribution P (θt = x
(i)
t ) = w

(i)
t , i = 1, . . . , N ,

(4) Estimate Ê(θt|y1:t) = xt and Ĉov(θt|y1:t) = Cov(xt)

(Petris et al. 2009, p. 211; Cappe et al. 2007; Dahlin and Schön 2019).

In practice, we set c0 and C0 to the average of the estimates for E[θt|y1:t] and
Cov[θt|y1:t] found by the Kalman filter for the full W-model for the time points
in year 2020 (2019 is used as adaptation period for the kalman filter; Table 14).
Note that Wt here is also set to C0 and is not updated during the algorithm. Updat-
ing Wt = Ĉov(θt|y1:t) was also tried, but this leads to worse estimates: the variances
in Wt can become very small, which decreases the spread of particles drawn in step
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(1), and that makes the particle filter less flexible and results in bad adaptation
in subsequent steps. Therefore, Wt := C0 is used. This is even preferred to using
the optimised W of the W-model, because C0 contains larger variances, making
the particle filter more flexible. Note that no optimisation is necessary because all
variances are assumed as known. Missing data is treated the same way as for the
Kalman filter. Custom R-functions are used to implement the particle filter. The
R-code is submitted with this thesis.

Calculation of the k-step ahead predictions ft+k := E(Yt+k|y1:t) with covariance
Qt+k := Cov(Yt+k|y1:t) is based on the linear state equations (Eq. 4.22) and there-
fore completely analogous to forecasting with the kalman filter. Using the particle
filter estimates at := Ê(θt|y1:t) = xt and Rt := Ĉov(θt|y1:t) = Cov(xt), the following
procedure is used (Petris et al. 2009, p. 70): For k ≥ 1,

(1) at+k = Gt+kat+k−1 and
Rt+k = Gt+kRt+k−1G

T
t+k +Wt+k

(2) ft+k = Ft+kat+k and
Qt+k = Ft+kRt+kF

T
t+k + Vt+k.

4.7.3 Optimisation of unknown parameters

Optimisation of unknown parameters is performed using the stats::optim-function
in R (R Core Team 2021). The optimisation method used is ”Nelder-Mead”. The
optim-function takes as input a vector of initial values for the parameters to be
optimised, upper and lower bounds for the parameters to be optimised, an objective
function whose value is to be minimised and any additional parameters required
for the objective function. Here, the parameters to be optimised are the variances
contained in V and W and also AR-coefficients for the A-model. Initial values for
variances in V are set to 300 in the V-model and to 100282 (the optimised value)
in the W- and A-models. The bounds are set to (0, 106). Initial values for variances
in W are set to 1, with bounds of (0, 25000). Initial values for AR-parameters of
the A-model are set to 0.1, with bounds of (-1,1) for the A-model and (0,1) for
the A (+) model. The objective function to be minimised is a custom function
that returns an optimisation measure for a model fit with the Kalman filter (V-
model, W-model and A-model; no optimisation is necessary for LM- and P-models).
Different optimisation measures are described and tested in section 7.1. The R-code
for optimisation is submitted with this thesis.
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5 Variables

In this chapter, we will first have a closer look at the target variable to better
understand what features may influence it and how the dependence may be modeled.
Based on these insights, features (covariates or predictors) are created that will be
used in the subsequent modeling chapters.

5.1 Target variable

The main target variable in this thesis is the electrical power consumption (in Watt)
of the heat pump (Y = Ypump). Sometimes, the electrical power consumption of the
household without the pump is used for comparison (Yhousehold). In the following,
observations of the target variable are denoted by y.

Heat pump data shows strong seasonal behaviour (Fig. 3, 4; household 3 is used
as a typical example). A spectral analysis is performed to determine the dominant
seasonalities in the data, i.e. the periods of the Fourier basis functions that con-
tribute most to the variation in the data (see section 4.1). For heat pump data,
the dominant periods are 365.46 days (about 1 year) and 1.00 days (Fig. 3A). The
yearly seasonality may not hit 365 days exactly because 2020 is a leap year. The
seasonality with period of 1 day reflects the day-night cycle. Other seasonalities
are also observed (e.g. 0.5 days), but are less powerful (Fig. 3A). In contrast, for
household power consumption, the dominant periods are 1 day (the day-night cycle),
some periods smaller than 1 day, and 7 days (the working week) and while there is
a yearly seasonality, it is much less pronounced (Fig. 3B). In fact, the heat pump
spectrum is more similar to temperature than household data. Temperature data
also has dominant periods of 365.46 days and 1.00 day (Fig. 3C). The spectrum of
temperature is ”cleaner”, however, lacking many of the small, less powerful periods
apparent in pump data (Fig. 3A, C). Thus, the heat pump data probably reflects
changes in temperature during the seasons, but on top of that there are other, un-
known influences on heat pump power consumption.

Figure 3: Spectral analysis for pump power consumption data (A) and household power
consumption data (B) of household 3, as well as temperature data (C).
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Knowing that the data is mainly composed of yearly and daily seasonalities, we can
now separate y into different components to try to understand the structure of the
data even better. We do not use the Fourier transform to decompose and recompose
the data into separate parts but instead use arithmetic operations to stay as close
to the data as possible:

y(d, h) = ydaily mean(d) + yprofile mean(d, h) + yremainder(d, h) (5.1)

where d is the date (day), which runs from the first of January 2019 to the 31st of
December in 2020 and h is the daytime in full hours; h = 0, ..., 23. The means and
the remainder in equation 5.1 are defined as follows:

ydaily mean(d) = 1
24

∑23
h=0 y(d, h)

yprofile mean(d, h) = 1
14

∑d
t=d−14(y(t, h)− ydaily mean(t))

yremainder(d, h) = y(d, h)− ydaily mean(d)− yprofile mean(d, h)

(5.2)

Because there are only two years of measurements, we use the daily mean as an
approximate for the yearly seasonality instead of a mean across years. The profile
mean is the daily usage pattern. This can vary during the year so we calculate it
using a left-aligned rolling window with only 14 days width. Fig. 4 shows the y-
separation of heat pump data. An analogous analysis of household data is shown in
Appendix A, Fig. 44.

Fig. 4 shows that ydaily mean(d) captures the large scale variation in electrical power
consumption over the course of a year (Fig. 4A; red line). The remaining data
(y(d, h)−ydaily mean(d)) is mostly captured by the variation during the day, (Fig. 4B,
C; blue line). Fig. 4D confirms that ydaily mean(d)+yprofile mean(d) captures the essence
of the target variable. The remainder, yremainder(d, h), contains outliers that were not
detected during cleaning (section 3.2) and noise (Fig. 4E). Note that the noise is not
Gaussian (Fig. 4F-H). The noise may be generated by an ARMA process: although
no obvious parametrisation suggests itself, AR-components are clearly visible in the
ACF and PACF (Fig. 4G-H). There also appears to be a small 1-day seasonal com-
ponent still present in the noise, indicating that the profile mean may not capture
they daily seasonality completely.

The y-separation analysis suggests that a simple state space model may not be
sufficient to explain the data unless it allows for structured, non-white noise. On
the other hand, a simpler model could be used to explain the main seasonal data,
ydaily mean(d) + yprofile mean(d, h).
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Figure 4: Typical electrical power consumption of a heat pump (household 3). A: cleaned
data in black, ydaily mean in red; B: y− ydaily mean in black, yprofile mean in blue; C: close-up
of the region marked in magenta in B; D: ydaily mean+ yprofile mean; E: yremainder, note large
peaks; F: histogram of yremainder, note that the histogram is cut off at 1200 Watt, so does
not show the largest peaks visible in E; G: ACF of yremainder; H: PACF of yremainder.

Load profiles

Fig. 4C shows that daily usage patterns contribute significantly to the structure of
the data. These usage patterns can be different in different households, but there
could also be similarities, for example if two households have pumps of the same
type or are inhabited by persons with a similar lifestyle. To analyse usage patterns
more closely, we therefore cluster households by their mean daily usage patterns
(Fig. 5). For the purpose of clustering, each pump is characterised by a 24-dimensial
vector - the mean power consumption of the pump during the course of a day after
subtracting the daily mean, or ”centered load profile”, calculated based on 2019-
2020 data. The load profiles are centered (but not scaled), so that the baseline is
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zero for all pumps and does not interfere with the mean profiles and clustering. The
centered load profiles are then clustered using Ward’s minimum variance method (an
agglomerative hierarchical clustering method that minimises the total within-cluster
variance; see section 4.4). This cluster analysis is done separately for pump load pro-
files (Fig. 5, Fig. 6) and household load profiles (excluding the pumps; Appendix A:
Fig. 45, Fig. 46), because the usage of pumps is expected to be independent of the
usage of other electrical equipment.

Figure 5: Pumps clustered based on mean daily electrical power consumption profiles in
2019-2020.

Cluster Households Size
1 4, 5, 6, 9, 10, 15, 16, 21, 29, 31, 37, 38 and 39 m1 = 13
2 3, 11 and 34 m2 = 3
3 7, 8, 12, 20, 28, 30, 32, 33 and 36 m3 = 9
4 13, 17, 18, 19, 23, 24, 25, 26, 27 and 35 m4 = 10
5 14, 22 and 40 m5 = 3

Table 5: Pump clusters.

Fig. 5 shows five clearly separable pump clusters (Table 5). Note that these include
all households, also households that are later excluded from further analysis (see
chapter 3). Since the clusters are very distinct, it is worth looking at the in-cluster
load profiles in more detail to see how they differ. For this purpose, we recalculate
the centered load profiles for each cluster, but this time we also separate the profiles
by season and weekday / weekend. Note that we use six seasons to take daylight
saving time into account (Appendic B: Table 32; Grolemund and Wickham 2011, R:
lubridate::dst), but for clarity, only summer and winter are shown in Fig. 6.
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Figure 6: Mean centered pump load profiles by cluster, season and weekend. Rows rep-
resent pump clusters. The first two columns are summer weekdays and summer weekend
profiles; the last two columns represent winter weekday and winter weekend profiles. Gray:
load profiles of the individual pumps included in each cluster; black: mean profile; red:
moving average of the mean (using a circular rolling window of three hours width).

In summer, all centered pump cluster load profiles are close to zero (Fig. 6A-R). This
is expected because no or little space heating is required during the summer months.
However, in winter, there are large differences between clusters. For example cluster
1 has a small amplitude, indicating that the pump is used almost equally throughout
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the day, with only a small dip around noon (Fig. 6C). By contrast, cluster 2 has
a very large amplitude with heating mostly in the morning and late afternoon, a
small dip at noon and a large dip in heating during the night. Cluster 3 heats more
in the morning than in the afternoon. In conclusion, clusters really reflect different
usage patterns of the pumps. It is also interesting to note that pump clusters and
household clusters are not identical, confirming that pump usage is independent of
other electrical equipment (Fig. 5, Appendix A: Fig. 45).

5.2 Predictor variables

The previous section shows that there are slow (yearly) and fast (daily) variations in
pump power consumption (Fig. 3, 4). Slow variations could be explained by seasonal
changes in temperature or daylight hours, which both increase in the summer and
decrease during winter time. Fast variations could be explained by temperature-
or daylight-changes during the day as well as house-specific usage patterns. In this
section, we look at temperature, seasons, load profiles and house-specific features as
potential predictors. We mainly use 2019 data to create new features for the dataset.
All features are then normalised to their maximum value in 2019 to make them
comparable in scale. Note that ”predictor variables”, ”variables” and ”features” are
used synonymously in the following sections.

Temperature

A heat pump heats space by transferring heat from a cool place (outside) to a warm
place (inside). Therefore, the outside temperature (T ) is the most obvious predictor
for heat pump power consumption. For the households in this dataset, the desired
inside temperature is unknown, but measurements for the outside temperature are
available (Table 3). The relationship between power consumption and (outside) tem-
perature is shown in Fig. 7. Because the variance in the hourly data is huge, Fig. 7A,
D also show the relationship between the daily means of electrical power consump-
tion (ydaily mean; equation 5.2) and temperature (Tdaily mean(d) =

1
24

∑23
h=0 T (d, h)).

For the heat pump, power consumption decreases with increasing temperature (Fig.
7A). This relationship appears to be linear, with a ”kink” between 15° C and 18° C,
after which power consumption no longer decreases (Fig. 7A). This could correspond
to the outside temperature at which pumps stop heating. The ”kink” appears to be
present in the pump data of all households (Fig. 7B).
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Figure 7: Typical dependence of electrical power consumption on temperature (house
SFH3) for the heat pump (A-C) and the remaining household (D-F). A, D: cleaned data
in black, ydaily mean vs. Tdaily mean in red; B, E: moving averages of ydaily mean vs. Tdaily mean

using a rolling window of 41 days width (each black line represents one household), with
the ”kink” temperatures of the different households marked in red; C, F: histogram of the
”kink” temperatures.

Because the ”kink” temperature is relevant for modeling, we determine it for each
pump individually, using the following linear model:

Ydaily mean(j) = α(j, Tkink) +Tdaily mean · I[T≤Tkink] · β1(j, Tkink)
+Tdaily mean · I[T>Tkink] · β2(j, Tkink) + ϵ

(5.3)

for j = 1, . . . , 38 pumps and Tkink = 5◦C, 6◦C, ..., 25◦C. Here, ϵ is assumed to be
i.i.d normally distributed with expectation zero and a variance > 0. Note that the
intercepts α and the slopes β1 and β2 are of no particular interest here and therefore
no estimates are given. Instead, the question is which value for Tkink yields the best
fit for each individual pump. To determine the best-fitting ”kink” temperature, Tkink

is varied from 5° C to 25° C in steps of 1° C. A fit is performed for each value of
Tkink and the R2 of the fit is recorded. The value of Tkink which yields the largest
R2 is used as an estimate for the true kink temperature for the given pump. For
the heat pumps in this dataset, the kink temperatures range mainly from 15° C to
18° C (Fig. 7B, C). For comparison, the same analysis is performed for the house-
hold power consumption, excluding heat pumps. In this case, no strong dependence
on temperature is observed (Fig. 7D) and there is no well-defined ”kink” tempera-
ture (Fig. 7E, F). This is consistent with the previous observation that unlike pump
power consumption, household power consumption does not strongly mirror season-
alities in temperature (Fig.̧ 3).
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Figure 8: Predictor variables based on temperature. Features are shown on the left and
a close-up of a two-week period in January 2020 is shown on the right (magenta). All vari-
ables are normalised to the maximum value in year 2019. A, A’: temperature based on ° C;
B, B’: absolute temperature based on ° K; C, C’: ”T15 difference”; D, D’: ”T18 difference”.

Based on this analysis, the following predictor variables are created (Fig. 8): the
temperature (in ° Celsius), the absolute temperature (in ° Kelvin), ”T15 difference”
= (15◦C−T ) · I[T≤15◦C], ”T18 difference” = (18◦C−T ) · I[T≤18◦C], ”Tse15” = I[T≤15]

(se: ”smaller equal”), ”Tg15” = I[T>15] (g: ’greater’), ”Tse18” = I[T≤18] and ”Tg18”
= I[T>18] . The absolute temperature is included for comparison and because its
values cannot become negative (or zero in the present data). Because the ”kink”
can occur at different temperatures for different pumps, two cutoff temperatures are
featurised (15° C and 18° C). ”T15 difference” and ”T18 difference” cut off values
above the respective ”kink” temperatures and then flip the temperature profile up-
side down. The other variables are binary variables describing the ”kink”. Some of
the predictor variables are complementary (for example: Tse15 and Tg15), however,
this is not a problem; it just means that later, at most one of them will be selected
during forward feature selection. All variables are normalised to the maximum value
in 2019 to make them comparable in scale (Table 6).
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Variable Maximum in 2019
number of persons 4.00
square metres 230.00
pump power at zero 4008.72
household power at zero 613.81
temperature 37.25
T15 difference 23.54
T18 difference 26.54
temperature kelvin 310.40
day profile pump 937.27
day profile household 651.96
altitude 1.06
maxaltitude 2.12
daylight hours 16.81

Table 6: Maximum values of new metric variables in 2019, used for normalisation.

Season profiles

Fig. 7A-C suggest that the electrical power consumption of heat pumps depends on
temperature. The temperature data contains a lot of noise, which may or may not
be directly reflected in the heat pump profile. We provide a smooth alternative: the
season profile (Fig. 9, 10). The season profile is determined based on the mean daily
temperature, using the following model (Fig. 9):

Tdaily mean(d) = α + sin(2πd
l
)β1 + cos(2πd

l
)β2 + sin(4πd

l
)β3 + cos(4πd

l
)β4 + ϵ,

α̂ = 10.6796; β̂1 = −2.0194; β̂2 = −8.1666; β̂3 = 0.8902; β̂4 = 0.4472
R2 = 0.7654

(5.4)

where l is the period of the maximum spectral density of the temperature data (365
days: Fig. 3C), and d = 1, ..., 365 are consecutive days in the year 2019. Including
second harmonics effectively also includes the period of 182.5 days (4d

l
= 2d

l/2
), which

improves the fit. The error term ϵ is assumed to be i.i.d normally distributed with
expectation zero and variance greater zero. The OLS estimator for the intercept, α̂,
the amplitudes of the periodic terms, β̂, and the R2 are given.

The OLS estimator is used to calculate a season profile for 2019 and 2020 (for
simplicity, the value of 29.2.2020 is set to the same value as 28.2.2020). The sea-
son profile obtained this way is min-max-normalised and flipped upside-down to
obtain a ”season profile” variable with values between 0 and 1 that peaks in win-
ter (Fig. 10A). Separate winter and summer profiles are then obtained from the
”season profile” variable by subtracting 0.5, discarding values above zero (for the
summer profile) or below zero (for the winter profile) and min-max scaling the re-
sulting profiles (Fig. 10B, C). The season, summer and winter profiles allow a future
model to select different kinds of profile shapes with different steepness.

27



Figure 9: Seasonal profile based on the mean daily temperature in 2019.

Figure 10: Predictor variables based on seasons. All variables are normalised to the
maximum value in year 2019.

Household power consumption (excluding heat pumps) may not depend directly
on temperature (Fig. 7D-F) but there may still be a small yearly seasonal depen-
dence (Fig. 3B), for example on the variation in daylight hours: people tend to
use more electric light during the winter months, when the days are shorter, than
during the summer. For this reason, we also include ”daylight hours” = time of
sunset−time of sunrise as a feature (Fig. 10D; Thieurmel and Elmarhraoui 2022,
R: sunCalc::getSunlightTimes). Finally, we also include binary variables for the
traditional four seasons (spring (month = March, April or May), summer (month
= June, July or August), autumn (month = September, October or November) and
winter (month = December, January or February); Fig. 10E-H), although it is un-
likely that these features will be selected by any model because they change much
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more abruptly than pump or household data (Fig. 4, Appendix A: Fig. 44).

In summary, in addition to temperature, the following predictor variables can cap-
ture long-term seasonal dependencies (Fig. 10): season profile, summer profile, win-
ter profile, daylight hours, spring, summer, autumn and winter (binary variables).
All variables are normalised to the maximum value in year 2019 to make them
comparable in scale (Table 6).

Day profiles

Fig. 4 shows that short-term (daily) seasonalities also contribute to electrical power
consumption. For pumps, temperature could explain yearly as well as daily sea-
sonalities. However, household power consumption is more likely to depend on us-
age patterns (for example: times of cooking, watching television, using the inter-
net, using the washing machine, and so on). These cannot be predicted by exter-
nal factors. For this reason, two new features are created: ”day profile pump” and
”day profile household” (Fig. 11A, B). These features are based on the mean cen-
tered load profiles of year 2019 (2020 data is not included). The centered load pro-
files are available by cluster, season (Appendix B, Table 32) and weekday / weekend
(Fig. 6 and Appendix A, Fig. 46). The values of the features are determined as fol-
lows: For every time point in the dataset and for every household in the dataset, the
”day profile pump” feature is assigned the value of the centered load profile value for
the cluster of the given household’s pump, and for the season, weekday / weekend
and hour of day of the given time point. The ”day profile household” feature is con-
structed analogously (Fig. 11B). Note that excluding 2020 data is necessary when
constructing the features because later, 2020 data is used to analyse the goodness of
fits. Unfortunately, 2019 was a pre-Covid year and 2020 was not, so the load profile
features may not be able to capture 2020 data perfectly.

In addition, temperature and daylight both depend on the sun altitude in the sky,
and sun altitude also varies both yearly and daily, so could contribute to both sea-
sonal variations in pump and household data. For this reason, the sun altitude at the
location of Hamelin (latitude 52.3759°N and longitude 9.7320°E) is also added to the
predictor variables (Thieurmel and Elmarhraoui 2022, R: sunCalc::getSunlight

Times). The sun altitude is measured in radians (for example it is 0 when the sun
is at the horizon and π/2 at the zenith). Importantly, the sun altitude is negative if
the sun is located below the horizon, i.e. at night. To avoid negative numbers in the
variable, we shift and flip the variable: ”sun altitude” = (max(altitude) − altitude)
(Fig. 11C). All variables are normalised to the maximum value in year 2019 (Table 6).

Finally, the weekend (day = Saturday or Sunday) is added to the predictor variables
(Fig. 11D; hours are not shown), mainly because in the spectral analysis, a period
of 7 days is seen in the spectral analysis for both pump consumption data (Fig. 3A;
not very powerful) and household power consumption (Fig. 3B; quite powerful). To
capture periods smaller than one day, the hours of the day (00:00-03:59, 04:00-07:59,
08:00-11:59, 12:00-15:59, 16:00-19:59, 20:00-23:59) are also added as binary variables
(not shown).
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Figure 11: Predictor variables based on daily patterns. For readability, in A and B, only
the profile for one cluster is shown (A: pump cluster 2, B: cluster 5; both clusters include
household 3). C, C’: sun altitude; D, D’: weekend factor. All variables are normalised to
the maximum value in year 2019.

Household-specific features

Households do not only differ by their usage patterns. Larger houses take more
power to heat, and older, less efficient pumps may require more electricity to heat
a house of the same size. Similarly, household power consumption is likely to be
affected by the number of persons living in the house (German Federal Statistics
Office 2021). For these reasons, we also consider the number of persons and the
building floor size in m2 as predictor variables (Table 7, Fig. 12). For these features,
missing values for a variable are imputed using the mean of the variable values across
households. The efficiency of pumps is unknown, as is the desired inside temperature.
To capture these effects, we calculate the mean pump power consumption and mean
household power consumption for each household for temperatures |T | < 1◦C in
2019, yielding new variables ”pump power at zero” and ”household power at zero”
(Table 7, Fig. 12). The magnitude of the ”pump power at zero” variable is affected
by (unknown) pump efficiency but also building size and desired indoor temperature,
so it is not a clean measure of any one of the three, but it does give some indication
of efficiency. All household specific features are normalised to the maximum value
of the feature across all households (Fig. 12, Table 6).
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Figure 12: Household-specific features. Since these variables are constant in time, they
are plotted against each other rather than over time. All variables are normalised to the
maximum value of all houses.

Interactions

In addition to the new predictor variables introduced in the previous sections, inter-
actions between these predictors are also included up to the fourth order. Especially
plausible are interactions of household-specific features with seasons and temper-
ature, but interactions between season profiles and temperature are also included.
This corresponds roughly to quadratic effects of temperature (since the season pro-
file is determined based on the mean daily temperature in year 2019), but is less
noisy than quadratic temperature. Since ydaily mean and yprofile mean are additive, one
would not expect interactions between seasons or temperature and load profiles.
However, we do include some interactions between season profiles and load profiles
just in case. It is better to have too many interactions rather than too few, because
later, forward selection is performed, so irrelevant predictors will not be selected.
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All existing, new and interaction variables are shown in Table 8. The naming of
interaction variables is agglunative. For example, temperature T15 season profile is
the interaction between temperature, Tse15 and season profile variables. The fea-
ture season profile2 pump power at zero is the interaction between season profile
squared with the pump power at zero variable. In total, there are 145 features and
interactions in the dataset.

id number of persons square metres pump power at zero household power at zero
SFH3 2.00 140.00 662.83 259.60
SFH4 2.00 160.00 2602.23 380.69
SFH5 3.00 160.00 1232.18 405.09
SFH6 1.00 140.00 2910.90 354.30
SFH7 2.00 150.00 925.33 374.36
SFH8 2.00 160.00 1243.39 250.04
SFH9 4.00 195.00 1709.75 564.79
SFH10 3.00 135.00 1062.00 613.81
SFH11 4.00 230.00 3098.70 357.82
SFH12 2.00 112.00 735.63 378.18
SFH13 2.00 130.00 1653.92 448.21
SFH14 2.00 150.00 2972.34 486.67
SFH15 1.00 120.00 973.10 253.52
SFH16 4.00 136.00 1565.96 340.29
SFH17 2.00 200.00 1873.57 568.35
SFH18 2.00 87.00 561.42 457.74
SFH19 2.00 203.00 714.28 434.94
SFH20 *2.27 *138.25 4008.72 356.86
SFH21 1.00 110.00 2267.07 322.10
SFH22 4.00 117.00 2824.33 414.46
SFH23 2.00 113.00 747.87 356.12
SFH24 4.00 120.00 *1713.96 *372.02
SFH25 3.00 100.00 613.07 495.42
SFH26 1.00 120.00 1269.63 222.01
SFH27 1.00 110.00 1289.65 138.84
SFH28 3.00 145.00 2831.70 418.81
SFH29 2.00 104.00 1813.90 206.31
SFH30 1.00 100.00 1132.64 257.44
SFH31 2.00 135.28 1196.56 401.20
SFH32 4.00 160.00 713.39 329.36
SFH33 2.00 111.00 1896.61 309.52
SFH34 1.00 110.00 2823.94 193.01
SFH35 3.00 100.00 568.94 549.24
SFH36 2.00 108.00 874.73 334.63
SFH37 2.00 199.00 2715.97 303.77
SFH38 2.00 190.00 1699.21 466.14
SFH39 2.00 135.00 2243.06 246.88
SFH40 2.00 120.00 3387.94 514.38

Table 7: Values of constant household-specific features. Starred values indicate imputation
of a missing value by the mean of the variable across all households.
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Variable
number of persons, square metres, pump power at zero, household power at zero,
Hour0, Hour4, Hour8, Hour12, Hour16, Hour20, weekend,
Spring, Summer, Autumn, Winter, season profile, summer profile, winter profile,
altitude, maxaltitude, daylight hours,
day profile pump, day profile household,
temperature, Tse15, Tg15, Tse18, Tg18, T15 difference, T18 difference, temperature T15, temperature T18,
temperature persons, temperature sqmetres,
temperature T15 persons, temperature T15 sqmetres, temperature T18 persons, temperature T18 sqmetres,
temperature kelvin, temperature kelvin T15, temperature kelvin T18,
temperature kelvin T15 sqmetres, temperature kelvin T18 sqmetres,
T15 difference persons, T18 difference persons, T15 difference sqmetres, T18 difference sqmetres,
temperature T15 season profile, temperature T18 season profile,
season profile sqmetres, winter profile sqmetres,
T15 difference season profile, T18 difference season profile,
T15 difference season profile sqmetres, T18 difference season profile sqmetres,
temperature T15 winter profile, temperature T18 winter profile,
T15 difference winter profile, T18 difference winter profile,
T15 difference winter profile sqmetres, T18 difference winter profile sqmetres,
season profile sqmetres T15, season profile sqmetres T18,
winter profile sqmetres T15, winter profile sqmetres T18,
day profile pump sqmetres, day profile pump sqmetres daylight, day profile pump sqmetres sunaltitude,
day profile pump sqmetres season profile, day profile pump sqmetres winter profile,
day profile pump sqmetres season profile T15, day profile pump sqmetres winter profile T15,
day profile pump T15, day profile pump T18, day profile pump T15 difference, day profile pump T18 difference,
day profile pump sqmetres T15, day profile pump sqmetres T18,
day profile pump sqmetres T15 difference, day profile pump sqmetres T18 difference,
day profile pump sqmetres daylight T15, day profile pump sqmetres daylight T18,
day profile pump sqmetres sunaltitude T15, day profile pump sqmetres sunaltitude T18,
day profile household persons, day profile household sqmetres,
day profile household daylight, day profile household sunaltitude,
day profile household sqmetres daylight, day profile household sqmetres sunaltitude,
temperature T15 pump power at zero, temperature T18 pump power at zero,
T15 difference pump power at zero, T18 difference pump power at zero,
season profile pump power at zero, winter profile pump power at zero,
winter profile pump power at zero T15, winter profile pump power at zero T18,
season profile pump power at zero T15, season profile pump power at zero T18,
T15 difference season profile pump power at zero, T15 difference winter profile pump power at zero,
T18 difference season profile pump power at zero, T18 difference winter profile pump power at zero,
T15 difference season profile sqmetres pump power at zero, T15 difference winter profile sqmetres pump power at zero,
T18 difference season profile sqmetres pump power at zero, T18 difference winter profile sqmetres pump power at zero,
day profile pump power at zero, day profile pump power at zero daylight, day profile pump power at zero sunaltitude,
day profile pump power at zero season profile, day profile pump power at zero winter profile,
day profile pump power at zero season profile T15, day profile pump power at zero winter profile T15,
day profile pump power at zero T15, day profile pump power at zero T18,
day profile pump power at zero T15 difference, day profile pump power at zero T18 difference,
day profile pump power at zero daylight T15, day profile pump power at zero daylight T18,
day profile pump power at zero sunaltitude T15, day profile pump power at zero sunaltitude T18,
day profile household power at zer,o
day profile household power at zero daylight, day profile household power at zero sunaltitude,
temperature T18 2, temperature T15 2,
T15 difference2, T18 difference2,
T15 difference2 sqmetres, T18 difference2 sqmetres,
T15 difference2 pump power at zero, T18 difference2 pump power at zero,
T15 difference2 sqmetres pump power at zero, T18 difference2 sqmetres pump power at zero,
season profile2, winter profile2,
season profile2 sqmetres, winter profile2 sqmetres,
season profile2 pump power at zero, winter profile2 pump power at zero,
season profile2 sqmetres pump power at zero, winter profile2 sqmetres pump power at zero

Table 8: All 145 predictor variables and interactions included in the dataset. For interac-
tions, the names of the interacting features are concatenated. 2:= squared; T15 := Tse15;
T18 := Tse18.
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6 Exploration using a linear model

There are 145 predictors, and Kalman optimisation is slow and therefore unsuited
to exploration. For this reason, we use linear modeling with ordinary least squares
(OLS) first to narrow down predictors and answer questions such as: What is the
necessary number of forward selection rounds? Should one fit households individu-
ally, in clusters, or all together? Is a manual pre-selection of households based on
missing data and other criteria sensible (Table 4)? Should one fit the full data or
the reduced seasonal data ydaily mean + yprofile mean (Eq. 5.2; Fig. 4)? Since the real θ
is assumed to be constant in the linear model, the linear model is simpler than a
state space model and does not require optimisation of variances, which makes it
faster. Furthermore, since the linear model is not dynamic, i.e. does not depend on
time, missing data can just be excluded from the estimation.

The linear model used in this chapter is:

Y = Imxmα +Xmxpβ + ϵ, (6.1)

where

Y =

Y1
...
Ym

 ∈ Rm, α =

α1
...

αm

 ∈ Rm, β =

β1
...
βp

 ∈ Rp and ϵ =

 ϵ1
...
ϵm

 ∈ Rm. (6.2)

Here, Y is the power consumption of m heat pumps observed at the same time.
In this chapter, m can range from m = 1 to m = 33, depending on how many
households are fit simultaneously. The vector α contains the intercepts for the m
pumps, and the vector β contains the effects of the p predictor variables, which form
the columns of Xmxp. These effects are assumed to be the same for all pumps. The
random vector ϵ is assumed to have expectation zero and variance σ2Imxm, but for
the moment it is not assumed to follow a multivariate normal distribution, since
that is unnecessary for the work in this chapter. This means that the distribution
of Y is unknown. However, because the expectation of ϵ is zero, the expectation of
Y equals Imxmα +Xmxpβ and its variance is σ2Imxm.

For a training dataset that comprises time points t0 up to t, the OLS estimator
is given by:

θ̂t =

[
α̂t

β̂t

]
=

(
X̃T

t X̃t

)−1

X̃T
t yt, where X̃t :=


Imxm Xmxp(t0)
Imxm Xmxp(t1)
...

...
Imxm Xmxp(t)

 and yt :=


y(t0)
y(t1)
...

y(t)

 .

(6.3)
Because we do not assume a multivariate normal distribution for ϵ, the distribution
of θ̂t is unknown. This means that we cannot calculate confidence intervals and
significance for parameter estimates. However, we can still calculate the variance:

Cov
(
θ̂t

)
= σ2(X̃T

t X̃t)
−1. (6.4)
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An estimate of this covariance matrix can be calculated using the following estimate

for σ2: σ̂2 = 1
mT−(m+p)

∣∣∣∣∣∣yt − X̃tθ̂t

∣∣∣∣∣∣2
2
. Here, T is the total number of time points used

in Eq. 6.3. The diagonal elements of the covariance estimate are used as estimators
for the variances of the individual θ elements.

Finally, the 1-step ahead prediction for all included pumps at time point t + 1
with data Xmxp(t+ 1) and design matrix Z̃t+1 =

[
Imxm Xmxp(t+ 1)

]
is given by

ŷ(t+ 1) = Z̃t+1θ̂t, Cov (ŷ(t+ 1)) = σ2Z̃(X̃T
t X̃t)

−1Z̃T + σ2Imxm, (6.5)

and the prediction residuals are r(t+1) = y(t+1)− ŷ(t+1). Again, we can estimate
the covariance in Eq. 6.5 by replacing σ2 with σ̂2. The diagonal elements of the
estimated covariance matrix are used to estimate the variances of the 1-step ahead
predictions for the pumps included in the fit. Note that no distribution assumptions
are necessary to obtain these variances.

In the remainder of this chapter, we proceed the following way: First, we define
a number of fit ”conditions”. These are simply binary decisions that could be made
when fitting the data and should provide insights into how these decisions affect the
goodness of the fit. The purpose here is to determine the best fit conditions using
the fast linear model procedure so that these conditions can then be carried forward
when fitting the state space model in chapter 7. Conditions include:

• Pump selection: Using only pre-selected households with ”typical” pump pro-
files (m = 17; ”selected”=1) vs. using all households without PV (m = 33;
”selected”=0); see also Table 4.

• Clusters: Fitting pumps in clusters (”cluster”=1) vs. all together (”cluster”=0).
• Data reduction: Fitting only the seasonal components (ydaily mean+yprofile mean;
”reduced”=1) or the full data (”reduced”=0); see also Eq. 5.2 and Fig. 4.

A combination of conditions (for example: ”selected” = 0 and ”cluster”=1 and ”re-
duced”=0, or 1|0|0 for short) is here referred to as an ”experiment”. The experiments
performed in this chapter are shown in table 9. For household power consumption,
linear model experiments are summarised in Appendix A, Table 47.

The following metrics are used in this chapter to evaluate the goodness of fits:

• MAE(j) = median(|rj|) for j = 1, . . . ,m
• MSE(j) = 1

8783
||rj||22 for j = 1, . . . ,m

• |r|(j) = |rj| (absolute mean of residuals) for j = 1, . . . ,m

• s(j) =
∑8783

i=1 (rj,i−rj)
3

8782·σ̂3 (skewness of residuals) for j = 1, . . . ,m

where rj are the residuals for the predictions made for pump j. The MAE (median
absolute error) and MSE (mean squared error) are used to evaluate prediction errors;
the absolute mean and skewness of the residuals are used to evaluate the shape of
the residuals. Note that, even though there are always m or mc (c: clustered) pumps
fit simultaneously in an experiment, each metric is calculated individually for each
pump. Sometimes, we then use the mean of only those 17 pumps which are included
in all experiments, e.g. MAE17 :=

1
17

∑17
j=1 MAE(j), so that the outcomes of different

conditions can be easily compared.
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selected cluster reduced m MAE17 MSE17 |r|17 s17
0 0 0 33 122.96 111679.95 40.19 1.20
0 0 1 33 114.02 60995.63 40.94 0.51

0 1 0
∑5

c=1mc = 33 107.92 101691.17 43.61 1.39

0 1 1
∑5

c=1mc = 33 98.73 51173.68 45.07 0.46
1 0 0 17 108.72 100975.00 45.79 1.39
1 0 1 17 89.50 51022.66 45.64 0.31

1 1 0
∑4

c=1mc = 17 98.91 98481.67 44.13 1.44

1 1 1
∑4

c=1mc = 17 85.32 46612.71 45.27 0.36
Table 9: Linear model experiments. Each row corresponds to a combination of experimen-
tal conditions: ”selected”: all pumps are included (0) vs. only selected pumps are included
(1); ”cluster”: all included pumps are fit simultaneously (0) vs. only pumps of the same
cluster are fit simultaneously (1); ”reduced”: all data is used for fitting (0) vs. only re-
duced (seasonal) data is used (1). m: the number of pumps included in the experiment;
mc: the number of pumps in cluster c. There are five clusters, but if only selected pumps
are included, then the fifth cluster is empty. The MAE (median absolute error), MSE
(mean squared error), |r| (absolute mean of residuals) and s (skewness of residuals) are
calculated separately for each pump, but then for each experiment, the mean outcomes of
those 17 pumps which are included in all experiments is calculated, so that the outcomes
of different experiments can be compared directly.

We first perform forward selection for each ”experiment”. Forward selection starts
with an intercept model, which is fit on 2019 data and used to predict 2020 data
(for all time points at once). The mean median absolute error (MAE; mean across
all included pumps) on 2020 predictions is used to assess the goodness of the fit.
(The MAE rather than the MSE is used because there are many outliers in the data
and the MAE is more robust.) In each round of forward selection, we then iterate
through all predictor variables in the dataset, perform a fit on 2019 data including
the variable, use the fit to predict 2020 data and calculate the MAE for those pre-
dictions (mean across all included pumps). At the end of each selection round, the
feature which most reduces the MAE is selected permanently. This process usually
continues until no feature can be found which reduces the MAE even further. For
the dataset used here, only four selection rounds are necessary; further rounds only
reduce the MAE minimally (Fig. 13). However, it is clear that some conditions (for
example: ”selected”=0, including all pumps) have a significantly worse MAE, which
may well affect which features are selected. This is a first indication that it may be
better to exclude ”atypical” pumps.

Tables 10 and 11 show which features are commonly selected across experiments. The
same information is also available for household power consumption (Appendix A,
Tables 25 and 26). Unsurprisingly, most selected features are based on temperature
profiles or load profiles. Table 11 is useful because features which are not in this
table are never selected and therefore likely irrelevant. This information can be used
to speed up the Kalman filter analysis in chapter 7. Note that the effects of selected
features is discussed later in this chapter, when a preferred model has been chosen.
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Figure 13: Model selection for different linear model experiments. Only the most relevant
experiments are shown. The cluster example is based on cluster 2 (Table 5). MAE is the
mean of the MAEs of all pumps included in an experiment.

Variable Frequency
T15 difference season profile pump power at zero 6
T18 difference season profile sqmetres pump power at zero 3
T15 difference season profile sqmetres pump power at zero 2
T18 difference winter profile sqmetres pump power at zero 2
T15 difference season profile 1
T15 difference season profile sqmetres 1
T15 difference winter profile pump power at zero 1
T18 difference season profile 1
winter profile pump power at zero T15 1
winter profile sqmetres T15 1
winter profile2 sqmetres pump power at zero 1

Table 10: Features selected during the first round of forward selection in at least one
experiment, together with the frequency with which they are selected across experiments.
Note that there are 4 un-clustered experiments and 4 clustered experiments (Table 9; =2
clustered fits of five clusters for all pumps + 2 clustered fits of 4 clusters for selected
pumps; one cluster is empty when ”atypical” pumps are excluded), so there are 20 fits
with model selection in total.
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Variable Frequency
T15 difference season profile pump power at zero 6
T18 difference winter profile sqmetres pump power at zero 5
day profile pump power at zero winter profile T15 4
T18 difference season profile sqmetres pump power at zero 4
T15 difference season profile sqmetres pump power at zero 3
T15 difference winter profile sqmetres pump power at zero 3
T18 difference season profile 3
day profile pump sqmetres T15 difference 2
T15 difference persons 2
T15 difference pump power at zero 2
T15 difference season profile 2
T15 difference sqmetres 2
T15 difference winter profile 2
T15 difference2 sqmetres pump power at zero 2
temperature T15 winter profile 2
winter profile sqmetres T15 2
winter profile2 pump power at zero 2
Autumn 1
day profile pump power at zero season profile 1
day profile pump power at zero season profile T15 1
day profile pump power at zero sunaltitude 1
day profile pump power at zero T15 difference 1
day profile pump power at zero T18 difference 1
day profile pump power at zero winter profile 1
day profile pump sqmetres sunaltitude T15 1
day profile pump sqmetres T18 difference 1
day profile pump sqmetres winter profile 1
day profile pump sqmetres winter profile T15 1
day profile pump T15 difference 1
season profile2 sqmetres 1
season profile2 sqmetres pump power at zero 1
summer profile 1
T15 difference 1
T15 difference season profile sqmetres 1
T15 difference winter profile pump power at zero 1
T15 difference2 pump power at zero 1
T18 difference winter profile 1
T18 difference winter profile pump power at zero 1
T18 difference winter profile sqmetres 1
T18 difference2 sqmetres 1
temperature kelvin T15 sqmetres 1
temperature sqmetres 1
Winter 1
winter profile pump power at zero T15 1
winter profile sqmetres 1
winter profile sqmetres T18 1
winter profile2 1
winter profile2 sqmetres pump power at zero 1

Table 11: Features selected at least once in four rounds of forward selection in any
experiment, together with the frequency with which they are selected across experiments.
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Figure 14: For linear model experiments, fits are performed on an expanding training
window, t0 = 2019-01-01 00:00:00 to t = 2020-01-01 00:00:00+τ , for τ = 0, ..., 8782 hours
(8783 fits in total). Predictions and evaluations are performed on the time period given
by the sequence (2020-01-01 00:01:00+τ)τ .

Forward selection is only used to determine the features to be used in each ex-
periment. To make comparison with a Kalman filter approach possible later (see
chapter 7), for each experiment we then use the features selected for that experi-
ment to fit the data using an expanding training window, including data from t0 =
2019-01-01 00:00:00 to t = 2020-01-01 00:00:00+τ , for τ = 0, ..., 8782 hours (Fig. 14;
366 ·24−1 = 8783 hours in 2020 are included in the analysis). For each τ , we obtain
an estimate for θ and then calculate the 1-step-ahead prediction, i.e the prediction
for the time point 2020-01-01 00:00:00 +τ +1 hour. This means that for each exper-
iment, there are 8783 OLS estimates and 1-step-ahead predictions for all the time
points in 2020, which can be used to evaluate the experiment. To simplify the eval-
uation, we define the prediction residuals for each pump included in an experiment
as a vector given by the sequence rpump := (ypump(t+ 1)− ŷpump(t+ 1))t, where t =
2020-01-01 00:00:00+τ , for τ = 0, ..., 8782 hours.

For the 17 pumps included in all experiments, one-sided, paired t-tests of the evalua-
tion metrics are performed with null hypothesisH0 : µM ≤ 0, where µM = E(M(C =
0)−M(C = 1)). The null hypothesis is rejected if M(C = 1) is significantly smaller
than M(C = 0), i.e. if the fit improves under C = 1 compared to C = 0 as measured
by M (for test details see section 4.5). The test results are shown in Fig. 15.
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Figure 15: Effects of different fit conditions on MAE (median absolute error), MSE (mean
squared error), |r| (absolute mean of residuals) and s (skewness). A-D (first row): effect
of pump selection; E-H (second row): effect of fitting in clusters; I-L (third row): effect
of using only reduced (seasonal) data. Paired t-tests are performed for each outcome,
only including those 17 pumps which are included in all experiments. Since there are four
experiments for each condition (Table 9), n = 68 for each test (see section 4.5).

Selecting only ”typical” pumps to be fit simultaneously improves the MAE for those
17 pumps compared to when all pumps are fit simultaneously (Fig. 15A; p = 0.0078).
In other words, including ”atypical” pumps in a simultaneous fit of all pumps wors-
ens predictions for the ”typical” pumps. That could be an indication that ”typical”
and ”atypical” pumps are best described by different features and should therefore
not be fit simultaneously. However, MSE, |r| and s of the ”typical” pumps do not
improve significantly when ”atypical” pumps are excluded (Fig. 15B-D). Similar
effects are observed when fitting in clusters, though the reduction in MAE is less
strong (Fig. 15E-H; Table 9). Using only seasonal data for the fits reduces predic-
tion errors (MAE: p = 0.002; MSE: p = 0) and reduces the skewness of residuals
(s: p = 0). However, in this case, reduction of MAE and MSE is expected because
much of the noise in the data is removed before the fit (Fig. 4). Similarly, because
asymmetric peaks are removed from the profiles before the fit, more symmetric (less
skewed) residuals are also an expected result. Nevertheless, this results suggests that
reduction of the data to the seasonal component is a good idea - if one is only in-
terested in the seasonal component because, of course, while outcomes improve, all
other information that may be contained in the noise is lost.
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The t-test results are interesting, but an in-depth analysis of predictions and residu-
als paints a more nuanced picture. Fig. 16 shows examples for predictions in different
linear model experiments. Household 3 is used as an example because it has little
missing data and a ”typical” pump profile (Table 4), so its predictions should only
be affected by the fit conditions. There is no big difference between predictions in
different experiments (Fig 16A-J), except when reduced data is used (Fig 16K-L).
In that case, no ”day profile”-feature is selected and the fit cannot reproduce the
daily variation in the data, indicating that perhaps, in this case more than four
rounds of feature selection are required. Note that this behaviour is not captured
by the MAE because it is robust with respect to peaks and troughs. In this case,
the MSE is actually a better measure, although the MSE is also smaller for reduced
data (Table 9) because much of the noise has been removed beforehand.

Fig. 17 shows the residual analysis for the pump of household 3 in the 1|0|0 ex-
periment (”selected”=1, ”cluster”=0, ”reduced”=0). This example is used here to
provide an overview of the general residual structure before different experiments
are compared. It is clear that residuals are not homoscedastic (Fig. 17A, B), simply
because pumps are much less active in the summer than in the winter. Accordingly,
summer residuals are much smaller, more symmetric and more ”normal” than winter
residuals (Fig. 17B, C). Winter residuals still have a daily pattern (Fig. 17D), i.e. the
fit does not capture the daily variation in the data very well. For the same reason, a
seasonality of 24 hours is still observed in the ACF and PACF of residuals (Fig. 17E,
F). The ACF and PACF also show that there is other structure in the noise, like
at least two AR components (Fig. 17E, F). This is not unexpected, because even
though load profiles are included as a feature, these are only the mean cluster load
profiles of 2019 by season and weekday/weekend, whereas predictions and residuals
are analysed in the 2020 period. Individual pumps may deviate a little bit from the
mean cluster profile. Furthermore, 2019 was a pre-Covid year, while in 2020 there
were many lockdown periods, which may have led to changes in pump usage patterns.

Fig. 18A shows that including only ”typical” pump profiles or fitting in clusters
does not make residuals more ”normal”. There is actually no reason why it should,
since ”typical” pumps also have asymmetric peaks. What is more interesting is that
even in ”reduced” conditions, where noise is removed before fitting, the residuals
are still not ”normal” (Fig. 18B). Thus, fitting only the seasonal components of
the data does not actually improve residual structure. However, this may be partly
due to the fact that in this experiment, no ”day profile” feature is selected during
forward feature selection (Fig. 16K, L). Similarly, residuals still have daily pattern
in all experiments (Fig. 19A-F). These results suggest that selecting, clustering or
reducing data does not improve residual structure.
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Figure 16: Comparison of 1-step-ahead predictions for the pump of household SFH3
for different linear model experiments with a simultaneous fit of m pumps. Only the
most relevant experiments are shown. The prediction intervals given are based on ± two
standard deviations, based on the diagonal elements of the covariance matrix of the 1-step
ahead prediction described in 6.5. No distribution assumption is made, so the interval
shown does not (necessarily) correspond to a 95%-prediction interval.
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Figure 17: Residual analysis in the 1|0|0 linear model experiment. Note that in this
experiment, 17 pumps are fit simultaneously, but for clarity, the residual analysis of only
one of these pumps (SFH3) is shown.

Figure 18: Comparison of the normality of winter residuals in different experiments. Only
the most relevant experiments are shown.
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Figure 19: Comparison of patterns of winter residuals in different fit conditions.

In summary, there is a case for including only ”selected”, ”typical” pump profiles
in fits: ”atypical” pumps have larger MAEs and may therefore distort the mean
MAE that is used as a selection criterion during forward selection (Fig. 13), so ex-
cluding them may lead to better / more targeted feature selection. The same is not
true for clustering, which has only a small effect on feature selection. A cluster may
even have a larger MAE than a non-clustered fit (Fig. 13A), perhaps because fitting
fewer pumps simultaneously can lead to less generalisable models. However, cluster-
ing does improve the MAE17 of ”typical” pumps overall, so it is also a valid choice
(Table 9). Reducing the data to seasonal components is a valid choice if one is only
interested in the seasonal components, however, reductions in MAE and MSE are
probably only down to the removal of noise, and residual structure is not improved
(Fig. 18, 19).

Even though the approach taken in this chapter may in hindsight seem unnecessarily
complicated, the process actually helped make the following decisions clear. Taking
all the above considerations into account, we will proceed with ”typical” pumps (”se-
lected”=1), no clustering (”selected”=0), and no data reduction (”reduced”=0). We
decide not to cluster because it is faster to fit all pumps simultaneously than to fit
five clusters separately, and clustering brings no huge improvement. We decide not
to reduce the data to seasonal components because in the next chapter, we will try
to also explain some of the structure in the noise (chapter 7). Other decisions are
definitely possible and valid.

In the last section of this chapter, the OLS estimator and the effects of selected
features are discussed for the 1|0|0 linear model (”selected”=1, ”cluster”=0, ”re-
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duced”=0). The following features are selected in this experiment:

• T15 difference season profile pump power at zero,
• T18 difference winter profile sqmetres,
• day profile pump sqmetres T18 difference and
• day profile pump sqmetres sunaltitude T15

Note that the first two features describe the long-term seasonality with an interac-
tion of temperature and season profiles (see also chapter 5). Recall that season and
winter profile are derived from the mean daily temperature with slightly different
profile shapes. So the interaction is similar to a quadratic effect. The features are
modified by an interaction with household-specific features (pump efficiency and
building size). This allows the profiles to adapt a little bit to each individual pump
in the simultaneous fit. Using two features of this type allows the model to form a
weighted sum of the two which may adapt better to the real shape.

The last two features are load profile features that describe variation during the
day. The interactions with household-specific features and, even more strangely,
temperature or sun altitude are odd in this case because the load profiles are based
on real data from 2019. However, they only include mean cluster profiles and 2020
may have different usage patterns for Covid-related reasons, so these adaptations
may be due to that.

Fig. 20A shows the OLS estimators for the intercepts of the 17 pumps included in
the experiment. The estimators for the four selected features, are shown in Fig. 20B-
E - for these features, the estimator values are the same for all pumps. Note that
there are 8783 estimates, one for every time point in 2020 (see Fig. 14), so the es-
timators are plotted over time. If the selected model is close to the true, unknown
data-generating process, then the θ̂ estimates should be constant over time. They are
not. Perhaps this is not too surprising: the data is very noisy, so adding a single data
point to the training dataset in the expanding training window can change the fit
parameters substantially. They show definite patterns, however, which suggests that
there is one or more unknown features missing in the dataset that are still needed
to explain the data. Note that constant stretches during summer time may simply
be due to the fact that data points added during that period have feature values
of zero due to temperatures larger than 15 or 18°C. However, the estimator values
are at least very far from zero (Fig. 20B-E), suggesting that the selected features
have significant effects. (Even though significance cannot be shown here because no
distribution assumption has been made.)

Because the estimators are not constant in time, it is difficult to table feature ef-
fects in the traditional way. Instead, Fig. 21 visualises the effect of each feature by
plotting the contribution of each feature to the model over time in a cumulative
fashion, using the pump of household 3 as an example. The contribution of a feature
is defined as xt,feature · θ̂t,feature. Fig. 21A shows the effect of the intercept and the first
selected feature. Fig. 21B shows the effect of the intercept and the first two selected
features. This combination already captures much of the long-term seasonal profile.
Adding the last two features (Fig. 21C and D) adds much ”noise” in the form of
daily pump usage patterns.

45



Figure 20: OLS estimators for the 1|0|0 linear model experiment. A, inter-
cepts. Note that there are 17 intercepts because 17 pumps are fit simultaneously
(Eq. 6.3). B, OLS estimator for T15 difference season profile pump power at zero;
C, OLS estimator for T18 difference winter profile sqmetres; D, OLS esti-
mator for day profile pump sqmetres T18 difference; E, OLS estimator for
day profile pump sqmetres sunaltitude T15. An interval of ± two standard devia-
tions is given. This is based on the diagonal elements of the covariance matrix in
Eq. 6.3. No distribution assumption is made, so these intervals are not equivalent to
95%-confidence intervals.

Note that the first two features already produce quite a ”noisy” profile because they
are linked to temperature and thus reflect hourly variation in the temperature. We
also tried excluding features with hourly temperature values from the fits completely
(not shown), thinking that the temperature variation may interfere with the load
profile features, in the sense that the temperature variation already covers some of
the pump power consumption variation that should actually be covered by a load
profile feature instead. However excluding features with hourly changes in temper-
ature did not improve the fit (not shown).
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Figure 21: Contribution of selected features to the model in the 1|0|0
linear model experiment. A, contribution of the intercept (red) and the
T15 difference season profile pump power at zero feature (green); B, adding
the T18 difference winter profile sqmetres feature (blue); C, adding the
day profile pump sqmetres T18 difference feature (magenta); D, adding the
day profile pump sqmetres sunaltitude T15 feature (black).
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7 State space model

We now treat heat pump power consumption, (Yt)t∈N, as an observable time series
in Rm which only depends on latent states described by (θt)t and (µt)t. In this case,
heat pump power consumption can be described using the following state space
model (Petris et al. 2009):

Yt = Ftθt + µt

θt = Gtθt−1 + wt

µt = ϕ1µt−1 + ϕ2µt−2 + vt

(7.1)

where t runs from 2019-01-01 00:00:00 to 2020-12-31 23:00:00 in steps of 1 hour and

Yt =

Yt,1
...

Yt,m

 ∈ Rm, Ft =
[
Imxm Xmxp(t)

]
∈ Rmx(m+p), Gt = I(m+p)x(m+p),

ϕ1 ∈ (−1, 1), ϕ2 ∈ (−1, 1),

θt =



αt,1
...

αt,m

βt,1
...

βt,p


∈ Rm+p and θ0 ∼ Nm+p(0m+p, C0),

µt =

µt,1
...

µt,m

 ∈ Rm and µ0 ∼ Nm(0m, Z0),

with C0 = diagm+p(10
7, . . . , 107) and Z0 = diagm(10

7, . . . , 107).

(7.2)

The sequence (θt)t∈N0 is assumed to be a Markov series in Rp, where α contains
the intercepts of m pumps and β the feature effects for p features contained in the
columns of X (same notation as in chapter 6). In chapter 6, we show that m = 17
pumps can be fit simultaneously and only p = 4 features are required to describe
the data well.

The sequence (µt)t∈N0 with µt = Yt − Ftθt describes the (latent) stationary time
series remaining when the trends and seasonalities described by Ftθt are removed
from Yt (see also Fig. 4). E[µt] is assumed to be 0, so that E[Yt|θt] = Ftθt. Note that
the equation for µt (7.1) describes an AR(2) process, but this is just a first, simple
assumption.

Finally, the error terms are assumed to follow multivariate normal distributions:

vt ∼ Nm(0m, Vt) with Vt = V = σ2
pumpImxm and

wt ∼ Nm+p(0m+p,Wt) with Wt = W = diagm+p(σ
2
α,1, . . . , σ

2
α,m, σ

2
β,1, . . . , σ

2
β,p).

(7.3)

The state space model in Eq. 7.1 has been purposefully constructed in such a way
that all the models discussed in this chapter build on each other (Table 12). To start
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with, the V-model assumes that ϕ1 = ϕ2 = 0 and that σ2
α,1 = . . . = σ2

α,m = σ2
β,1 =

. . . = σ2
β,p = 0 (therefore Yt = Ftθ + vt). Thus, the V-model is a static linear model

and the main difference to chapter 6 is the use of the Kalman filter for estimation
(Petris et al. 2009; see section 4.7.1). Only one variance has to be optimised for this
model type (σ2

pump), which is still comparatively fast. Therefore, for the V-model we
also perform four rounds of forward selection on the features of Table 11 to determine
the best 4 predictor variables to use in this chapter. Next, the W-model extends the
V-model by allowing θ to have a distribution, with σ2

α,1, . . . , σ
2
α,m, σ

2
β,1, . . . , σ

2
β,p > 0

(Table 12). This corresponds to a dynamic linear model (Petris et al. 2009). No
forward selection is performed here because now 22 variances need to be optimised,
which takes a long time (see section 7.2). The P-model is the same as the W-model
but uses particle filter estimation instead of Kalman filter estimation (Chen et al.
2004; Dahlin and Schön 2019; see section 4.7.2). Finally, the A-model uses the full
model described in Eq. 7.1, including autoregressive noise. Different approaches are
of course possible (e.g. SARIMAX-models), but these are not discussed here.

Model name Simplifications Estimation method Effects
V-model ϕ1 = ϕ2 = 0

W = 0(m+p)x(m+p)

Kalman filter Assuming Gaussian white noise and
constant θ (similar to LM).

W-model ϕ1 = ϕ2 = 0 Kalman filter Assuming only Gaussian white noise.
θ now has a distribution and can vary more.

P-model Same as W-model Particle filter Effect of different estimation method.
A-model ϕ1 ∈ (−1, 1) and ϕ2 ∈ (−1, 1) Kalman filter Effect of autoregressive noise.

Table 12: Simplifications of the state space model described in Eq. 7.1.

In the following sections, V-, W-, P- and A-models are discussed separately, followed
by a direct comparison of the best models from each category in section 7.5.
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V (MAE) V (MAE Q90) V (MAE I2SD Q90) W W (I0) W (F0) A A (+)
σ2
pump 1000000 0.000394 100282.6 100281.999421 100281.999845 100281.999991 100281.999983 100281.999974

σ2
α,1 1.015163 0 2.577791 1.045823 1.075869

σ2
α,2 1.011326 0 1.213115 0.934970 0.893348

σ2
α,3 1.029908 0 1.467405 1.182054 1.286944

σ2
α,4 0.999150 0 1.081836 0.793606 0.685980

σ2
α,5 0.994385 0 1.013149 0.827437 0.718173

σ2
α,6 1.005898 0 1.685200 1.038117 1.062203

σ2
α,7 0.973658 0 0.000000 0.455367 0.130865

σ2
α,8 1.005757 0 1.018199 0.941601 0.908465

σ2
α,9 1.019647 0 0.415401 0.875419 0.810874

σ2
α,10 1.023965 0 1.870225 1.744559 2.197428

σ2
α,11 1.005329 0 0.915891 1.183200 1.296882

σ2
α,12 1.016609 0 1.371562 0.670738 0.507946

σ2
α,13 0.999994 0 0.858268 1.050405 1.083880

σ2
α,14 1.000780 0 0.912704 0.684084 0.515346

σ2
α,15 1.010383 0 0.001154 1.092611 1.158760

σ2
α,16 0.992137 0 3.413601 1.130336 1.209185

σ2
α,17 1.018701 0 0.785319 0.889871 0.806919

σ2
β,1 1.035839 7.587610 0 0.893560 0.817043

σ2
β,2 1.017378 3.549609 0 1.184449 1.281179

σ2
β,3 0.997226 2.091091 0 0.684916 0.456805

σ2
β,4 0.987317 1.150874 0 0.569645 0.297151

ϕ1 -0.507544 0.012122
ϕ2 0.539784 0.890863

Table 13: Optimised model parameters for different models.
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θ̂\Model LM V (MAE) V (MAE Q90) V (MAE I2SD Q90) W W (I0) W (F0) P (103) P (104) A A (+)
Intercept SFH10 178.65±6.82 178.59±18.22 178.6±0 178.6±5.72 234.17±36.81 172.9±5.82 177.41±45.19 220.66±36.71 204.81±36.74 233.67±37.52 256.12±116.62
Intercept SFH12 116.53±7.31 120.71±18.37 120.72±0 120.72±5.77 194.14±37.02 109.23±5.89 137.32±37.59 170.26±36.92 158.46±36.95 190.75±36.74 210.22±111.66
Intercept SFH16 46.71±7.18 49.14±18.17 49.14±0 49.14±5.7 98.97±37.03 36.98±5.85 38.38±39.29 94.01±36.92 75.04±36.96 101.12±38.74 117.15±121.96
Intercept SFH18 79.38±7.28 91.79±18.61 91.8±0 91.8±5.84 199.84±37.3 71.09±6.02 141.37±36.65 181.66±37.19 161.28±37.22 194.22±35.68 187.09±105.02
Intercept SFH19 -35.46±7.56 -31.33±19.82 -31.31±0 -31.31±6.22 46.03±37.14 -2.85±6.38 -0.58±36.02 24.4±37.05 18.11±37.08 47.95±35.98 109.76±105.94
Intercept SFH21 251.69±6.9 251.92±18.34 251.9±0 251.91±5.75 217.27±37.23 222.93±6.04 150.24±40.72 221.07±37.14 195.4±37.15 219.66±37.95 244.18±116.62
Intercept SFH23 6±6.95 4.36±18.35 4.37±0 4.37±5.76 115.69±36.67 -6.75±5.89 43.31±6.36 92.72±36.56 80.12±36.61 110.57±30.96 106.17±73.9
Intercept SFH27 55.41±7.47 60.74±18.09 60.74±0.01 60.74±5.68 101.89±36.86 42.38±5.85 41.28±35.93 90.98±36.74 73.29±36.79 100.47±36.69 121.1±111.94
Intercept SFH29 109.14±8 103.01±18.12 103.01±0 103.01±5.68 93.75±37.11 77.06±5.93 29.99±28.81 91.43±37.01 68.8±37.05 93.84±36.2 122.4±108.96
Intercept SFH3 65.33±7.64 70.32±18.58 70.34±0 70.33±5.84 182.45±37.03 71.8±5.92 132.46±41.8 161.9±36.93 149.88±36.96 182.77±42.58 188.97±139.26
Intercept SFH30 9.96±6.79 5.19±18.19 5.2±0 5.2±5.7 26.2±36.97 -15.47±5.89 -34.14±35.05 16.06±36.89 -4.09±36.91 23.38±38.85 47.77±122.26
Intercept SFH32 99.75±7.41 98.92±18.79 98.94±0 98.93±5.9 202.91±36.95 108.59±5.99 151.62±38.7 184.08±36.86 170.71±36.87 202.15±33.85 230.1±97.4
Intercept SFH36 50.41±7.08 66.87±18.28 66.88±0 66.88±5.74 184.53±36.9 52.14±5.88 124.8±34.5 165.22±36.8 148.47±36.83 181.26±37.75 149.3±117.01
Intercept SFH38 158.42±7.62 136.77±19.37 136.76±0 136.76±6.08 221.24±37.56 140.98±6.19 162.06±35.08 224.43±37.44 206.57±37.49 229.32±34.8 275.92±98.42
Intercept SFH4 12.71±7.73 29.99±20.08 29.96±0 29.96±6.31 10.38±38.72 9.62±6.57 13.96±8.18 27.49±38.6 7.77±38.65 20.42±39.9 56.61±120.74
Intercept SFH7 139.97±7.38 132.92±18.44 132.94±0 132.93±5.79 211.62±36.61 135.05±5.87 148.34±48.45 190.79±36.51 180.89±36.55 210.88±38.25 263.32±120.05
Intercept SFH9 389.05±7.58 364.28±19.55 364.28±0 364.28±6.13 451.7±37.85 369.97±6.25 392.82±33.83 454.32±37.75 439.09±37.77 460.03±37.13 508.36±109.6
T15 difference

season profile
sqmetres

579.79±39.93 592.07±103.31 591.83±0 591.87±32.43 976.58±109.33 1474.78±160.32 677.6±45.1 953.92±108.58 908.82±108.73 913.45±103.3 97.08±163.04

T18 difference
winter profile
sqmetres
pump power at zero

4659.69±75.26 4276.59±195.62 4277.3±0 4277.21±61.43 4431.47±205.33 2960.57±203.74 4708.32±87.16 3869.55±204.69 4383.31±204.78 4245.32±210.13 4459.04±461.41

T18 difference
winter profile

285.09±22.51 356.69±57.87 356.69±0 356.68±18.16 -359.82±107.06 24.82±119.27 53.85±32.07 -394.72±105.43 -193.13±105.57 -290.75±95.15 -18.95±144.03

day profile pump
T15 difference

1104.73±27.88 1019.3±71.86 1019.32±0 1019.32±22.55 1008.42±97.2 973.1±102.48 1000.57±22.82 1026.03±97.07 1123.66±97.11 996.91±77.62 990.26±70.84

Table 14: θ̂i ± 2

√
Ĉ(i, i) for i = 1, . . . , 21 in 2020 for different models.
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7.1 V-model

The V-model is given by

Yt = Ftθt + vt
θt = θt−1 = . . . = θ0 = const.,

(7.4)

with the definitions of Yt, Ft, θt and vt given in Eqs. 7.2ff. The V-model is a
linear model (Eq. 7.4 reduces to Eq. 6.1 in chapter 6), but now the Kalman fil-
ter is used for estimation (see section 4.7.1). The Kalman filter uses a Bayesian
approach. This means that even though the true θ is constant in the V-model,
for estimation, we start with a non-informative prior, θ̂0 ∼ Nm+p(0m+p, C0) (with
C0 = diagm+p(10

7, . . . , 107), see Eq. 7.2), which adapts to the data as estimation
proceeds sequentially through the time points, from 2019-01-01 00:00:00 to 2020-
12-31 23:00:00. In the end, the Kalman filter yields an estimate for θ for each time
point (for more detail, see section 4.7.1):

ct := Ê[θt|y1:t]
Ct := Ĉov[θt|y1:t].

(7.5)

Note that Ct is not zero even though the true θ is constant because the estimator
has a variance. The estimation procedure also yields k-step-ahead predictions:

ft+k := Ê[Yt+k|y1:t]
Qt+k := Ĉov[Yt+k|y1:t]

(7.6)

(unless noted otherwise, here, k = 1 hour). The diagonal of Qt+1|t yields m predic-
tion variances for time point t+ 1, one for each of the m pumps fit simultaneously.
Note that, like in chapter 6, estimation is performed on the whole data period, but
we only analyse estimators, predictions and residuals in the year 2020. Data from
2019 is used as an adaptation period.

Another difference to the linear model of chapter 6 is that one now has to opti-
mise the variance in the model specification. The V-model uses vt ∼ Nm(0m, V )
with V = σ2

pumpImxm, so there is only one variance to optimise: σ2. We use Nelder-
Mead optimisation (R Core Team 2021, R: optim(..., method="Nelder-Mead")).
The parameter σ2

pump is systematically varied between 0 and 106 and its optimum
value is determined using a combination of the following measures:

• MAE17: This is the mean MAE of the 1-step ahead predictions in 2020, across
all pumps included in the fit (as defined in chapter 6). Note that, if MAE17

is minimal, it means that predictions are good, but Q is not constrained, so
prediction intervals can be unexpectedly large or small.

• Q9017: ”Q90” is the 90%-quantile of the prediction variances estimated by
the Kalman filter for the timepoints in 2020. The quantile is calculated for
each individual pump included in the fit, and then the 90%-quantile of these
quantiles is calculated to obtain Q9017. Note that if Q9017 is minimal, Q is
very small for all pumps, so prediction intervals are very small.
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• I2SD17: ”I2SD”(j) is a measure for the mean fraction of data points yt+1(j)
contained in the intervals [ft+1|t(j)± 2

√
Qt+1|t(j, j)] across time points in the

year 2020 for the jth pump (j = 1, . . . ,m). I2SD17 is the mean of this measure
across all 17 pumps included in the fit. Note that, if I2SD17 is close to 0.95,
the prediction intervals on average contain 95% of the data and are neither
too large nor too small.

The V-model is the first time in this thesis that optimisation becomes necessary.
Therefore, for the V-model, we test different optimisation measures based on the
above criteria. Three measures are tested: ”MAE” (minimisingMAE17), ”MAE Q90”
(minimising MAE17 + Q9017) and ”MAE I2SD Q90”, an empirically devised func-
tion of the three:

MAE I2SD Q90 =


MAE17 + 100 · (1− 5

6
I2SD17) if I2SD17 < 0.9

MAE17 + 25 + Q9017 if I2SD17 = 1
MAE17 + (100 · I2SD17 − 95)2 otherwise.

(7.7)

The coefficients in Eq. 7.7 have been chosen in such a way that MAE I2SD Q90 is
continuous over I2SD17 and that the penalty due to I2SD17 is around the same order
of magnitude as MAE17. The effect of I2SD17 is linearly reduced as I2SD17 → 0.9.
For 0.9 ≤ I2SD17 < 1 there is a quadratic effect with a minimum for I2SD17 = 0.95.
For I2SD17 = 1, the Q9017-measure is added to penalise larger variances.

Fig. 22, Fig. 23, Table 13 and Table 15 show the effects of using different opti-
misation measures. Forward feature selection is still based on the MAE17 (see chap-
ter 6), but now, in each feature trial, σ2

pump is optimised based on one of the above
three measures. Forward selection is almost the same for each of the three measures
(Fig. 22A), and indeed, the same features are selected in all cases (Table 15). Note
that the features selected here are different from the features selected for the 1|0|0
linear model (see chapter 6). This is probably due to the fact that in chapter 6,
whole-scale 2020 predictions are used to speed up forward selection, whereas here,
only 1-step ahead predictions are used. In addition, the Kalman filter is more flexible
than the OLS estimator.

Importantly, the prediction variance as estimated by Q9017 is very different for the
three optimisation measures (Fig. 22B, Table 13). At the end of the fourth round of
forward selection, optimisation by ”MAE” yields the model with the largest variance
(σ2

pump,opt = 106), ”MAE Q90” yields the smallest variance (σ2
pump,opt = 0.000394)

and for ”MAE I2SD Q90”, the variance lies in between (σ2
pump,opt = 100282.6). This

effect can also be seen when comparing predictions (using pump of household 3 as an
example): ”MAE I2SD Q90” is the only optimisation measure that yields plausible
prediction intervals (Fig. 23, compare prediction intervals in B, D and F).
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Figure 22: Forward selections for different V-models.

Model name Forward-selected features m MAE17 (k=1) MSE17 (k=1) I2SD17 (k=1)

V-model (MAE)

T15 difference season profile sqmetres
T18 difference winter profile sqmetres pump power at zero
T18 difference winter profile
day profile pump T15 difference

17 104.43 98643.51 1

V-model (MAE Q90)

T15 difference season profile sqmetres
T18 difference winter profile sqmetres pump power at zero
T18 difference winter profile
day profile pump T15 difference

17 104.44 98645.74 0

V-model (MAE I2SD Q90)

T15 difference season profile sqmetres
T18 difference winter profile sqmetres pump power at zero
T18 difference winter profile
day profile pump T15 difference

17 104.44 98645.33 0.95

Table 15: Comparison of different V-models.
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Figure 23: 1-step predictions for the pump of household 3 for different V-models with a
simultaneous fit of m=17 pumps. A, B: V-model (MAE); C, D: V-model (MAE Q90); E,
F: V-model (MAE I2SD Q90).
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Figure 24: Thetas for different V-models. Note that for better readability, in A,
only one of the 17 intercepts is shown (that for pump of household 3) for all
three models. B, theta for feature T15 difference season profile sqmetres; C, theta for
feature T18 difference winter profile sqmetres pump power at zero; D, theta for feature
T18 difference winter profile; E, theta for feature day profile pump T15 difference. The
dashed vertical line indicates the beginning of the analysis period (2020).

Not only the selected features are the same, but their estimated θ values are also
(almost) the same, since the estimation of the expected value is not affected by σ2

pump

(Table 14, Fig. 24; section 4.7.1). Note that there is a somewhat tumultuous adap-
tation period where the estimation of θ fluctuates wildly, but by 2020, θ values are
much more constant (Fig. 24). The fact that the estimators are essentially the same
for the three different V-models means that feature effects (Fig. 25), predictions
(of the expected value, not the variance; Fig. 23) and residuals (Fig. 26) are also
essentially the same. Therefore, only the MAE I2SD Q90 V-model will be discussed
further.

56



Figure 25: Feature effects for V-model (MAE I2SD Q90).

Feature effects for the V-model (MAE I2SD Q90) are shown in Fig. 25, using the
pump of household 3 as an example. Because the estimators are not constant in time,
the effect of each feature is visualised by plotting the contribution of each feature to
the model over time. As in chapter 6, the contribution of a feature at time point t
is defined as xt,feature · θ̂t,feature. Fig. 25A-C show the effects of the intercept and the
first three selected features:

• T15 difference season profile sqmetres,
• T18 difference winter profile sqmetres pump power at zero and
• T18 difference winter profile.

This combination captures the long-term seasonal profile. The last selected feature
(day profile pump T15 difference) adds daily variation in the form of daily pump
usage patterns (Fig. 25D).

Note that the first three features describe the long-term seasonality with an in-
teraction of temperature (T15 difference or T18 difference) and season profiles (sea-
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son profile or winter profile). The season and winter profile are derived from the
mean daily temperature, allowing for slightly different profile shapes (chapter 6,
Fig. 10). So the interaction between temperature and season profiles is similar to a
quadratic temperature effect. In addition, the features are modified by an interaction
with household-specific features (building size and pump efficiency). This allows the
long-term seasonal profile to adapt a little bit to each individual pump in the simul-
taneous fit. Using three features of this type allows the model to form a weighted
sum to adapt better to the real shape than a single such feature might. Although
the selected features are slightly different than for the 1|0|0 linear model (chapter 6),
the overall effects are very similar.

Figure 26: Residual analysis for the V-model (MAE I2SD Q90). Note that in this con-
dition, 17 pumps are fit simultaneously, but for clarity, the residual analysis of only one
of these pumps (SFH3) is shown here.

The residual analysis in Fig. 26 is also very similar to what was observed for the
linear model (Fig. 17). This is expected because the structure of the data has not
changed. The Kalman filter can adapt better to data than the OLS estimator, but
as we set θ-variances to zero in the V-model (W = 0(m+p)x(m+p); Table 12), this
adaptability is still constrained. For this reason, the mean prediction error is only
slightly smaller in the V-model than in the 1|0|0 linear model (MAE17=104.44 Watt
vs. 108.72 Watt in the linear model; MSE17=98645.33 vs. 100975.00 in the linear
model; Table 9 and 15). In the next section, we will observe the effect of removing
the restriction on W .
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7.2 W-model

The W-model is given by:
Yt = Ftθt + vt
θt = θt−1 + wt

(7.8)

with the definitions of Yt, Ft, θt, vt, wt and θ0 given in Eqs. 7.2ff. Note that the
expectation of θt is still constant, but θt now has a distribution and so can vary.
There are now 22 parameters to be optimised: σ2

pump, σ
2
α,1, . . . , σ

2
α,m, σ

2
β,1, . . . , σ

2
β,p.

For optimisation, the ”Nelder-Mead”-method and the ”MAE I2SD Q90”-measure
described in the previous section are used. Because there are now 22 parameters,
optimisation takes a very long time (three days on a computer with 4 CPUs and 20
GB RAM), and for this reason no forward selection is performed for the W-model.
Instead, the features selected for the V-model are carried forward (Table 15). These
features are:

• 15 difference season profile sqmetres,
• T18 difference winter profile sqmetres pump power at zero,
• T18 difference winter profile and
• day profile pump T15 difference.

Three models are compared in this section: The full W-model, with 22 parameters,
the W (I0) model, where σ2

α,1 = . . . = σ2
α,m = 0 (the variances of the intercept

thetas), so there are only 5 parameters, and W (F0), where σ2
β,1 = . . . = σ2

β,p = 0
(the variances of the feature thetas), so that there are 18 parameters. The values of
the optimised parameters are shown in Table 13. In general, σ2

pump ≈ 100282 while
the θ variances have values between 0 and 10.

Model name m MAE17 (k=1) MSE17 (k=1) I2SD17 (k=1)
W-model 17 89.27 77112.73 0.96
W-model (I0) 17 100.92 87742.34 0.96
W-model (F0) 17 88.59 81277.84 0.96

Table 16: Comparison of different W-models.

Predictions for the different W-models are compared in Fig. 27, using the pump of
household 3 as an example.
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Figure 27: 1-step predictions for the pump of household 3 for different W-models with
a simultaneous fit of m=17 pumps. A, B: W-model; C, D: W-model (I0); E, F: W-model
(F0).
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Table 16 summarises the three W-models. Overall the W (I0) model performs worst.
For that model, the intercept variances are 0, and the θ values of the features are
constrained by the fact that 17 pumps are fit simultaneously - these pumps have
individual intercepts, but there is only one θ for each feature which has to work
for all the pumps (Eq. 7.1f). So the variance of the feature thetas does not have
much scope to work in. Even so, the W (I0) model still performs better than the
V-model (MAE17=100.92 Watt vs. 104.44 Watt in the V-model; MSE17=87742.34
vs. 98645.33 in the V-model; Table 15 and 16). The W (F0) model performs even
better (MAE17=88.59 Watt) because now the intercepts can vary freely. Finally, the
full W-model performs similar to the W (F0) model with respect to the MAE17,
but much better for the MSE17 (77112.73 vs. 81277.84; Table 16).

Figure 28: Thetas for different W-models. Note that for better readability, in
A, only one of the 17 intercepts is shown (that for pump SFH3) for all three
models. B, theta for feature T15 difference season profile sqmetres; C, theta for fea-
ture T18 difference winter profile sqmetres pump power at zero; D, theta for feature
T18 difference winter profile; E, theta for feature day profile pump T15 difference. The
dashed vertical line indicates the beginning of the analysis period (2020).

Fig. 28 shows the Kalman estimator for the different W-models. Unlike for the V-
models, θ is quite different for the three W-models. For example, the intercept values
vary a lot in the full W-model and the W (F0) model, but not as much in the W
(I0) model, which has zero intercept variances and fairly constant intercept values
in 2020 (Fig. 28A). The other models seem to make use of the intercept variance
to adapt more closely to the data and in this way achieve better predictions. For
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example, there are peaks in the intercept value during winter time including a par-
ticularly large peak at the end of 2020, reflecting increased power consumption (e.g.
see Fig. 27A). This adaptation by the intercepts is not a good thing: one would
prefer the θ estimator to be fairly constant over time because that would be a sign
that the model reflects the true data-generating process. This is not the case here.
However for short-term predictions, it does not matter if there are large changes
in θ, as long as these changes are happening on a much larger timescale than the
prediction (see also section 7.5).

Residuals for the full W-model and the pump of household 3 are shown in Fig. 29.
The residual analysis of the W-model is not notably different from the V-model
(compare Fig. 26 and Fig. 29). Furthermore, there is no big difference in the nor-
mality and patterns of winter residuals in different W-models (Fig. 30 and Fig. 31),
indicating that although the W-model is more adaptable than the V-model (compare
Table 15 and Table 16), it still does not capture all the variability in the data. In
the next section, we test the particle filter, an alternative estimation method which
is better able to capture data variability that happens on a very short timescale.

Figure 29: Residual analysis for the W-model. Note that in this condition, 17 pumps are
fit simultaneously, but for clarity, the residual analysis of only one of these pumps (SFH3)
is shown here.
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Figure 30: Normality analysis of winter residuals for different W-models.

0 3 6 9 12 16 20

−
10

00
10

00
30

00

W−model

Daytime (Hour)

R
es

id
ua

ls
 (

W
at

t)

A

0 3 6 9 12 16 20

−
10

00
10

00
30

00

W−model (I0)

Daytime (Hour)

R
es

id
ua

ls
 (

W
at

t)

B

0 3 6 9 12 16 20

−
10

00
10

00
30

00

W−model (F0)

Daytime (Hour)

R
es

id
ua

ls
 (

W
at

t)

C

Figure 31: Residual patterns for different W-models.

7.3 P-model

The P-model is based on the same description as the W-model.

Yt = Ftθt + vt
θt = θt−1 + wt

(7.9)

with the definitions of Yt, Ft, θt, vt and wt given in Eqs. 7.2ff. Note that like for the
W-model, the features of the V-model are used. However, now a ”Sequential Monte
Carlo”-method or ”particle filter” is used for estimation instead of the Kalman filter
(see section 4.7.2).

The particle filter users N particles to approximate the distribution of θt|y1:t. Any
distribution assumption can be made. We use θ0 ∼ Nm+p(c, C), where c and C are
the average of the estimates for E[θt|y1:t] and Cov[θt|y1:t] found by the Kalman fil-

ter for the full W-model in 2020 (Table 14). N initial particles, x
(i)
0 , i = 1, . . . , N ,

63



are drawn from this distribution. Each particle represents a potential value for θ0.
Proceeding sequentially through the time points, θt is estimated as follows (see sec-

tion 4.7.2 for more detail): First, N new particles x
(i)
t , i = 1, . . . , N are drawn from

Nm+p(xt−1,W ), where xt−1 is the mean of the N particles of the previous time

point and W := C. Then, for each new particle x
(i)
t , i = 1, . . . , N , the value of the

probability density at Yt = yt under Yt ∼ Nm(Ftx
(i)
t , V ) is calculated, using the

optimised V of the full W-model. The probability density values are normalised to
their sum over all particles and the normalised values are used as weights in the next
step, when resampling the particles with replacement. Weighted resampling ensures
that particles which describe the data at this time point well are enriched in the
sample. Then the estimates are calculated for the time point: Ê[θt|y1:t] = xt and

Ĉov[θt|y1:t] = Cov[xt] (see section 4.7.2).

Here we test two versions of the particle filter: N = 103 and N = 104 (Table 17,
Fig. 32). Given that θt is 21-dimensional, even 104 particles are probably too few
particles to cover the parameter space adequately. Unfortunately, increasing the
number of particles further slows the estimation to an unfeasible degree (for 106

particles, the computation did not complete within five days on a computer with 4
CPUs and 20 GB RAM). However, even with comparably few particles, the particle
filter works suprisingly well (Table 17, Fig. 32). In fact, with respect to the MAE17

measure, the best P-model (104) is as good as the best W-model (MAE17 = 88.76
vs. 88.59 for the W (F0) model), and the MSE17 is even better (MSE17 = 75512.31
vs. 77112.73), indicating that perhaps now some peaks and troughs, which do not in-
fluence the MAE17 but which do influence the MSE17, are predicted slightly better.

There is not a big difference between 103 and 104 particle filters when it comes
to predictions, feature effects and residuals (Fig. 32-36). Like the Kalman filter es-
timator for the W-model, the intercepts of P-models vary considerably, absorbing
much of the data variation that cannot be explained by the features, whose θ values
are more constrained by fitting 17 pumps simultaneously. Recall that, during sum-
mer time, most of the features are zero because temperatures are higher than 15°C
or 18°C, meaning that data points in this period do not affect the value of the θ
estimator much. However, in the winter periods, the particle filter estimator is much
”noisier” than the Kalman filter estimator (Fig. 33; for a direct comparison, see also
Fig. 43 in section 7.5). That reflects the fact that particles can adapt better to the
data and explains the smaller MSE17. Despite the greater flexibility, the particle
filter is not a huge improvement on the Kalman filter for the W-model, suggesting
that structural changes in the model, rather than changes in the estimation method
are required to improve the model further.

Model name m MAE17 (k=1) MSE17 (k=1) I2SD17 (k=1)
P-model (103) 17 90.84 76475.07 0.96
P-model (104) 17 88.76 75512.31 0.96

Table 17: Comparison of different P-models.
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Figure 32: 1-step predictions for the pump of household 3 for different P-models with a
simultaneous fit of m=17 pumps. A, B: P-model (103); C, D: P-model (104).
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Figure 33: Thetas for different P-models. Note that for better readability,
in A, only one of the 17 intercepts is shown (that for pump of household
3). B, theta for feature T15 difference season profile sqmetres; C, theta for fea-
ture T18 difference winter profile sqmetres pump power at zero; D, theta for feature
T18 difference winter profile; E, theta for feature day profile pump T15 difference. The
dashed vertical line indicates the beginning of the analysis period (2020).
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Figure 34: Residual analysis for the P-model with 104 particles. Note that in this condi-
tion, 17 pumps are fit simultaneously, but for clarity, the residual analysis of only one of
these pumps (SFH3) is shown here.

Figure 35: Normality analysis of winter residuals for different P-models.
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Figure 36: Residual patterns for different P-models.

7.4 A-model

The next step in this state space model evolution is the A-model:

Yt = Ftθt + µt

θt = θt−1 + wt

µt = ϕ1µt−1 + ϕ2µt−2 + vt

(7.10)

with the definitions of Yt, Ft, θt, µt, θ0, µ0, vt, wt, ϕ1 and ϕ2 given in Eqs. 7.2ff.
Here, we assume that E[µt] = 0, so that E[Yt|θt] = Ftθt like in all previous models.
The sequence (µt)t is used to model Yt − Ftθt as a stationary AR(2) process. The
A-model is a very simple extension of the W-model that tries to take into account
autoregressive noise (see also Fig. 29). This is only a first approach to non-white
noise in heat pump power consumption data that could be extended in the future.

For the A-model, Kalman filter estimation is used, because its parameter space
is even higher-dimensional than the W-model, so the particle filter is (probably) less
suited. The higher dimensionality becomes apparent when Eq. 7.10 is rewritten for
use with the Kalman filter:

Yt =
[
Ft Imxm 0mxm

]  θt
µt

µt−1

 θt
µt

µt−1

 =

I(m+p)x(m+p) 0(m+p)xm 0(m+p)xm

0mx(m+p) ϕ1Imxm ϕ2Imxm

0mx(m+p) Imxm 0mxm

θt−1

µt−1

µt−2

+

wt

vt
0m

 .

(7.11)

With F̃t =
[
Ft Imxm 0mxm

]
, θ̃t = (θTt , µ

T
t , µ

T
t−1)

T , w̃t = (wT
t , v

T
t , 0

T
m)

T and
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G̃t :=

I(m+p)x(m+p) 0(m+p)xm 0(m+p)xm

0mx(m+p) ϕ1Imxm ϕ2Imxm

0mx(m+p) Imxm 0mxm

 ,

Eq. 7.11 reduces to:
Yt = F̃tθ̃t

θ̃t = G̃tθ̃t−1 + w̃t.
(7.12)

This reformulation of the A-model can be used for estimation with the Kalman filter
(see section 4.7.1). Note that vt is subsumed in w̃t and that ṽt = 0m. One could think
about changing this in a future version; remember that this is just a first extension
of the W-model. Also note that the ”new” matrix G̃t describes the relationship be-
tween θ̃t and θ̃t−1. In the case of the W-model, the relationship is described by the
identity (Gt = I(m+p)x(m+p)). Finally, note that θ̃t has dimension 3m+ p = 55. This
is why we do not use the particle filter for estimation.

In the A-model, there are 24 parameters to be optimised: σ2
pump, σ2

α,1, . . . , σ
2
α,m,

σ2
β,1, . . . , σ

2
β,p, ϕ1 and ϕ2. For optimisation, the ”Nelder-Mead”-method and the ”MAE

I2SD Q90”-measure described in section 7.1 are used. Like for the W-model, opti-
misation takes a very long time (three days on a computer with 4 CPUs and 20 GB
RAM), and for this reason no forward selection is performed. Instead, the features
previously selected for the V-model are used (Table 15). These features are:

• 15 difference season profile sqmetres,
• T18 difference winter profile sqmetres pump power at zero,
• T18 difference winter profile and
• day profile pump T15 difference.

Two models are tested in this chapter. For the standard A-model, ϕ1 and ϕ2 are
constrained to be in (−1, 1) (optimised values are: ϕ1 = −0.5075 and ϕ2 = 0.5398;
Table 13). For the A (+) model, ϕ1 and ϕ2 are coerced to be in (0, 1) (optimised
values are: ϕ1 = 0.0121 and ϕ2 = 0.8909; Table 13). The reason for the constraint is
the empirical finding that the MAE17 is much better if ϕ1 and ϕ2 are optimised on
(0, 1) instead of (−1, 1) (Table 18).

Model name m MAE17 (k=1) MSE17 (k=1) I2SD17 (k=1)
A-model 17 73.23 100024.86 0.95
A-model (+) 17 53.69 102130.69 0.93

Table 18: Comparison of different A-models.
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Figure 37: 1-step predictions for the pump of household 3 for different A-models, with a
simultaneous fit of m=17 pumps. A, B: A-model; C, D: A-model (+).

Compared to the W-model, theMAE17 of both A-models is much better (MAE17 =
53.69 for the A (+) model compared to 88.59 for the best W-model; Table 16 and
18). However, the MSE17 is much worse (100024.86 for the best A-model compared
to 77112.73 for the best W-model). To understand this discrepancy, it is useful to
look closely at the predictions and residuals (Fig. 37 and 38). The predictions follow
the data much more closely than with previous models, although they appear to
be slightly shifted to the right (Fig. 37B and D). This may be due to the fact that
ṽt is zero in Eq. 7.12. In that case, ft+1 ≈ yt (for details, see section 4.7.1). This
problem could be fixed by introducing ṽt ̸= 0m in Eq. 7.12) in a future extension of
the model. In any case, the residuals are more symmetric (Fig. 38B, C and Fig. 39)
and less patterned (Fig. 38D and Fig. 40), which explains the smaller MAE17, but
because of the shift the magnitude of the residuals is still large (Fig. 38D), and the
now large negative residuals contribute more to the MSE17. Interestingly, the ACF
and PACF show that while the AR components have been successfully incorporated
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in the model, there still are two MA components visible in the residuals (Fig. 38E,
F). Thus, an ARMA(2,2) model may be more appropriate to describe the noise.

Figure 38: Residual analysis for the A-model with positive AR coefficients. Note that
17 pumps are fit simultaneously, but for clarity, the residual analysis of only one of these
pumps (SFH3) is shown here.

Figure 39: Normality analysis of winter residuals for different A-models.
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Figure 40: Patterns of winter residuals for different A-models.

Figure 41: Thetas for different A-models. Note that for better readability, in
A, only one of the 17 intercepts is shown (that for the pump of household
3). B, theta for feature T15 difference season profile sqmetres; C, theta for fea-
ture T18 difference winter profile sqmetres pump power at zero; D, theta for feature
T18 difference winter profile; E, theta for feature day profile pump T15 difference. The
dashed vertical line indicates the beginning of the analysis period (2020).
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Except for the difference in MAE17 (Table 18), there is no big difference between
the two A-models: in both cases, residuals are more symmetric but still not normal
(Fig. 39 and 40). The estimates for θ are quite different for the intercepts and feature
1 and 3 (Fig. 41B and (Fig. 41D; Table 14). The intercepts also are shifted with
respect to each other, which must be due to the different optimisation constraints
on ϕ1 and ϕ2, since that is the only difference between the two models. Note that the
averages of the estimates for µt lie within two standard deviations of 0 (Table 19),
consistent with the assumption that E[µt] = 0 (Eq. 7.10).

estimate lower bound upper bound contains zero

µ̂1 -1.44 -119.24 116.37 TRUE

µ̂2 -9.59 -122.45 103.28 TRUE

µ̂3 3.40 -119.68 126.47 TRUE

µ̂4 5.24 -101.05 111.53 TRUE

µ̂5 -0.71 -108.54 107.12 TRUE

µ̂6 -24.39 -142.21 93.42 TRUE

µ̂7 21.08 -55.25 97.41 TRUE

µ̂8 -14.61 -127.73 98.51 TRUE

µ̂9 -32.96 -143.20 77.29 TRUE

µ̂10 25.94 -114.23 166.11 TRUE

µ̂11 -22.73 -145.91 100.45 TRUE

µ̂12 8.82 -90.49 108.13 TRUE

µ̂13 66.56 -51.52 184.64 TRUE

µ̂14 -11.12 -112.14 89.89 TRUE

µ̂15 -15.46 -137.82 106.91 TRUE

µ̂16 -47.37 -168.61 73.86 TRUE

µ̂17 -9.29 -121.02 102.43 TRUE

Table 19: µ̂(j)± 2

√
Ĉ(j, j) for j = 1, . . . , 17 in 2020 for the A (+) model.

7.5 Comparison

In this section, the linear model (LM), V-model (MAE I2SD Q90), the full W-
model, the P-model (104) and the A-model (+) are compared (Table 20ff). The
same analysis for household data is shown in Appendix A, Tables 27-31 and Fig. 52.
Note that for this section, the estimations have been re-run with slightly different

starting values for θ0; instead of 0m+p, θ̂ of 2020 has been used (Table 20). For this
reason, the MAE17 (k=1) and MSE17 (k=1) may be slightly different in Table 20
than in previous tables. Furthermore, the LM-model listed in these tables does not
correspond directly to the 1|0|0-model described in chapter 6, which used different
features; for better comparability, that model was re-run with the features selected
by the V-model (Table 15), so that all models in this section are using the same
features. These features are:

• 15 difference season profile sqmetres,
• T18 difference winter profile sqmetres pump power at zero,
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• T18 difference winter profile and
• day profile pump T15 difference.

The linear model with these features actually performs slightly better than the model
from chapter 6 (Table 20 vs. Table 9), indicating that forward selection with the
V-model has identified better features. (Recall that model selection was performed
slightly differently for the linear model, not using 1-step-ahead predictions to min-
imise CPU time, see chapter 6).

Model name Method m MAE17 (k=1) MSE17 (k=1) I2SD17 (k=1)
LM-model OLS 17 104.24 98498.98 0.97
V-model (MAE I2SD Q90) Kalman 17 103.96 97492.82 0.95
W-model Kalman 17 88.93 76402.41 0.96
P-model (104) Particle 17 88.76 75512.31 0.96
A-model (+) Kalman 17 53.49 101795.13 0.95

Table 20: Comparison of different model types.

Model name m MAE17 (k=1) MAE17 (k=6) MAE17 (k=12) MAE17 (k=18) MAE17 (k=24)
LM-model 17 104.24 104.21 104.19 104.17 104.14
V-model (MAE I2SD Q90) 17 103.96 103.73 103.76 103.97 104.08
W-model 17 88.93 89.24 89.35 89.54 90.09
P-model (104) 17 88.76 97.68 102.18 99.74 93.04
A-model (+) 17 53.49 92.72 102.91

Table 21: MAE17 of the best models from each model type for different k.

Model name m MSE17 (k=1) MSE17 (k=6) MSE17 (k=12) MSE17 (k=18) MSE17 (k=24)
LM-model 17 98498.98 98369.63 98080.22 97942.95 97892.23
V-model (MAE I2SD Q90) 17 97492.82 97492.1 96565.66 96371.02 96247.94
W-model 17 76402.41 77018.04 76484.83 76523.74 77009.31
P-model (104) 17 75512.31 90529.88 95117.3 94270.08 81213.1
A-model (+) 17 101795.13 103619.02 92469.09

Table 22: MSE17 for the best models from each model type for different k.

Model name m I2SD17 (k=1) I2SD17 (k=6) I2SD17 (k=12) I2SD17 (k=18) I2SD17 (k=24)
LM-model 17 0.97 0.97 0.97 0.97 0.97
V-model (MAE I2SD Q90) 17 0.95 0.95 0.95 0.95 0.95
W-model 17 0.96 0.96 0.96 0.96 0.96
P-model (104) 17 0.96 0.95 0.95 0.95 0.96
A-model (+) 17 0.93 0.99 0.99

Table 23: I2SD17 for the best models from each model type for different k.
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Figure 42: MAE17 (A) and MSE17 (B) for k-step ahead predictions for different k and
different model types (mean over all 17 included pumps). Note that the lines for the LM-
model and the V-model overlap.

Tables 21-22 and Fig. 42 show how the MAE17(k) and MSE17 for a k-step-ahead
prediction range from k=1 to k=24 hours. Note that, for the A-model, because of
computational (RAM) limitations only values for up to k=12 could be calculated.
With respect to the MAE17, the A-model performs best up for to 5-step ahead
predictions (Fig. 42A). After that, predictions get worse as the AR-effect on the
prediction reduces to zero the farther ahead one moves from currently known data.
The P-model performs as well as the W-model for 1-step-ahead predictions, but
interestingly, not after that (Fig. 42A). The reason may be that the P-model θ esti-
mates are actually too closely adapted to the data. This means they capture more
data variation but are less suited for prediction. Note that MAE17(k) of the P-model
even oscillates. This suggests that the particle estimator perhaps even captures some
daily seasonality, so that paradoxically, the estimator could be used to predict 1 and
24 hours ahead, but should not be used for predictions in between. Of course, this
makes the P-model less attractive overall. Finally, the V-model is very similar to
the LM-model, which is expected because they are very similar in structure. As
expected, the V-model performs worse than the more flexible W-model (Fig. 42A).

The results for the MSE17 are similar: the W-model performs best (Fig. 42B). How-
ever, here the A-model shows a very strange behaviour: its MSE17 is larger for small
k and decreasing with increasing k (Fig. 42A). It appears that, with respect to the
MSE17, the autoregressive component actually worsens predictions, and losing the
AR-effect for increasing k improves predictions again. This suggests two things: (1)
The MAE, while robust, is perhaps not a good measure for the prediction error,
at least not on its own, and (2) the A-model as estimated here is not suitable for
prediction. This is partly due to the model structure as discussed in the previous
section, as well as estimation conditions.
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Figure 43: Thetas for different model types. Note that for better readabil-
ity, in A, only one of the 17 intercepts is shown (that for pump SFH3). B,
theta for feature T15 difference season profile sqmetres; C, theta for feature
T18 difference winter profile sqmetres pump power at zero; D, theta for feature
T18 difference winter profile; E, theta for feature day profile pump T15 difference.
The dashed vertical line indicates the beginning of the analysis period (2020).

Fig. 43 shows the estimators for different model types in 2020. Recall that all mod-
els use the same features. Yet the estimated θ have very different values (see also
Table 14). Those for LM- and V-models are similar, and those for W- and P-models
are similar (though P is much noisier), but W-, P- and A-models are very differ-
ent to the V-model. No forward selection was performed for W-, P- and A-models
for computational reasons, and Fig. 43 suggests that this may be a mistake. For

example, θ̂ = 356.68 in 2020 on average for the V-model but θ̂ = −359.82 for the

W-model and θ̂ = −18.95 for the A-model (Table 14). The models are very similar
in structure and the matrix Ft is the same for all, so this huge difference in the
estimates could support the assumption that the ”wrong” features are being used
in the W- and A-models. Another problem may be that the W- and A-models have
many more parameters to optimise than the V-model (1 for the V-model, 22 for the
W-model and 24 for the A-model). That makes the W- and A-models more vulner-
able to optimisation problems such as getting stuck in local minima.

To summarise, the W-, P- and A-models described in this thesis may not yet be
the best of their type for structural and estimation reasons. I think that these mod-
els could be substantially improved by making the following changes:

• W-model:
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– Try setting σ2 := σ2
α,1 = . . . = σ2

α,m = σ2
β,1 = . . . = σ2

β,p > 0. This
would probably not be a big problem since all these variances are small
compared to σ2

pump and it would reduce the number of parameters to
optimise to from 22 to 2 (σ2

pump and σ2).

– Use forward selection, possibly based on MSE17 instead of MAE17, to
identify optimal features for the W-model, instead of using the features
selected by the V-model. If only two parameters are optimised during
each feature trial, optimisation should be fast enough to make forward
selection feasible.

• P-model:
– Use forward selection, or at least features selected for the W-model in-

stead of the V-model. (Since the P-model has the same structure as the
W-model, using features selected for the W-model would be justified.)

– Try different distribution assumptions, because the normal distribution
assumption does not appear to be justified (e.g. Fig. 35). (This is easiest
to test with the particle filter, since the particle filter does not require
specific distribution assumptions.)

• A-model:
– Add a ṽt ∼ Nm(0m, Ṽ )-term to Eq. 7.12 to avoid a shift in predictions (see

also section 4.7.2). Use Ṽ = diagm(σ
2
v) to add only one new optimisation

parameter.
– Try setting σ2 := σ2

α,1 = . . . = σ2
α,m = σ2

β,1 = . . . = σ2
β,p > 0. For the A-

model, this would reduce the number of parameters to optimise to from
24 to 5 (σ2

pump, σ
2
v , σ

2, ϕ1 and ϕ2).
– Use forward selection to identify the best features for the A-model.
– Use ARMA(2,2) instead of AR(2) noise (Fig. 38).

In conclusion, we have presented five types of models that can be used to model
and predict heat pump power consumption data. Of these, the W-model performs
best in terms of MAE17 and MSE17 for predictions up to 24 hours ahead. However,
there are still many improvements that could be made, both in the structure of the
models and in their estimation, that should improve predictions even further.
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8 Summary

Heat pumps play an important role in renewable energy policy because instead of
fossil fuels they use up to 75% environmental heat for space heating (Robert Bosch
GmbH 2022). However, heat pumps are still operated using electrical power (Robert
Bosch GmbH 2022). In this project, hourly electrical power consumption data of 38
heat pumps from households in Hamelin, Germany (Schlemminger et al. 2002), is
used to study, model and predict heat pump power consumption in the years 2019
and 2020.

Analysis of external and internal variables, such as temperature, seasons, pump load
profiles and household-specific features demonstrates that (1) heat pump power con-
sumption, like temperature, shows seasonal behaviour which is dominated by periods
of 1 year and 1 day; (2) the mean centered daily load profiles of heat pumps can
be sorted into distinct clusters, which may reflect pump usage patterns or technical
specifications; and (3) after removal of yearly and daily seasonalities, structure is
visible in the remaining noise, including autoregressive effects (chapter 5). Based on
this analysis, 145 potential predictor variables and interactions are created that may
affect heat pump power consumption.

A preliminary study using linear models (LM) and ordinary least squares (OLS)
estimation shows that (1) 17 of 38 pumps can be fit simultaneously; (2) these 17
pumps do not need to be fit in separate clusters; (3) only 48 of 145 available fea-
tures are relevant for heat pump power consumption; and (4) only four rounds of
forward selection are necessary to determine the most relevant features for a model
(chapter 6). The goodness of model predictions can be described using the mean
MAE (median absolute error) and MSE (mean squared error) of the 17 pumps fit
simultaneously in a given model.

Based on the above findings, different variations of a state space model are developed
and tested (chapter 7). The ”V-model” has the same structure as a linear model and
the true feature effects are assumed to be constant, but are now estimated using a
Kalman filter. Because the Kalman filter is more flexible than OLS estimation, the
V-model outperforms a simple linear model, but not by much (V: MAE17 = 103.96,
MSE17 = 97492.82 vs. LM: MAE17 = 104.21, MSE17 = 98498.98 for 1-hour-ahead
predictions). Forward feature selection with the V-model yields three temperature-
and season-profile features whose weighted sum predicts the long-term seasonal be-
haviour apparent in heat pump power consumption data, while the fourth selected
feature is based on mean cluster load profiles and adds daily variation.

An extension of the V-model is the ”W-model”: a dynamic linear model where
feature effects have a variance. For computational reasons, no forward selection is
performed; instead, the features discovered for the V-model are used. Because of the
W-model’s greater flexibility, the W-model has much smaller prediction errors than
the V-model (W: MAE17 = 88.93, MSE17 = 76402.41). The ”P-model” is the same
as the ”W-model”, but a particle filter is used for estimation instead of a Kalman
filter. However, this does not substantially reduce the prediction error as compared
to the W- model (P: MAE17 = 88.76, MSE17 = 75512.31).
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Finally, the ”A-model” is an extension of the ”W-model” that incorporates AR(2)
noise. The A-model paradoxically performs better than the W-model with respect
to the MAE but worse with respect to the MSE (A: MAE17 = 53.49, MSE17 =
101795.13). This suggests that the model specification and estimation conditions
for the A-model are not yet optimal. Possibly, an ARMA-model should be used to
describe the noise, feature selection should be performed per model type instead of
relying on features found by the V-model, and optimisation should be more reliant
on the MSE than the MAE. These are avenues that can be explored further in the
future. For the moment, the W-model can be used to predict heat pump power
consumption for at least up to 24 hours ahead.
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Appendix

A Household power consumption

Figure 44: Typical electrical power consumption of a house without its heat pump
(yhousehold; house SFH3). A: cleaned data in black, ydaily mean in red; B: y − ydaily mean

in black, yprofile mean in blue; C: close-up of the region marked in magenta in B; D:
ydaily mean + yprofile mean; E: yremainder, note large peaks; F: histogram of yremainder, note
that the histogram is cut off at 1200 Watt, so does not show the largest peaks visible in
E; G: ACF of yremainder; H: PACF of yremainder.
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Figure 45: Houses clustered based on mean daily electrical power consumption profiles
of their households excluding the pumps.
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Figure 46: Mean load profiles of household power consumption during the course of a
day in summer (first two columns), winter (last two columns), on weekdays (first and third
column) and weekends (second and last column) for eight clusters (rows).
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selected cluster reduced m MAE17 MSE17 r mean r skewness
0 0 0 33 94.36 71822.13 11.40 2.86
0 0 1 33 76.97 18612.25 11.44 0.83
0 1 0 33 92.65 71129.07 11.26 2.80
0 1 1 33 76.04 18461.51 11.26 0.86
1 0 0 33 93.32 71241.57 11.39 2.84
1 0 1 33 76.96 18324.82 11.09 0.81
1 1 0 33 91.70 70838.47 11.43 2.80
1 1 1 33 73.69 17598.83 11.24 0.87

Table 24: Linear model experiments. Selected: all households are included (0) vs. only
selected households are included in the fit (1); cluster: all households are fit simultaneously
(0) vs. only households of the same cluster are fit simultaneously (1); reduced: all data is
used for fitting (0) vs. only reduced data is used (1); m: the number of households included
in the experiment. Outcomes MAE (median absolute error), MSE (mean squared error),
r mean, r skewness), given as the mean of only those 17 households which are included in
all experiments, so that the outcomes of different experiments can be easily compared.

Variable Frequency
day profile household 9
day profile household daylight 8
day profile household power at zero 6
day profile household sqmetres 5
day profile household power at zero daylight 3
day profile household persons 1

Table 25: First selected features during forward selection in any experiment, together
with the frequency with which they are selected across experiments, for household power
consumption data.
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Variable Frequency
weekend 19
day profile household 11
Hour8 11
day profile household daylight 9
daylight hours 9
day profile household power at zero 8
Hour4 7
day profile household power at zero daylight 6
Autumn 5
day profile household sqmetres 5
day profile household power at zero sunaltitude 4
Hour12 4
Hour16 4
altitude 3
Hour20 3
Spring 3
maxaltitude 2
season profile sqmetres 2
winter profile2 2
day profile household persons 1
day profile household sqmetres daylight 1
day profile household sqmetres sunaltitude 1
day profile household sunaltitude 1
Hour0 1
Summer 1
summer profile 1
temperature kelvin 1
Winter 1
winter profile sqmetres 1
winter profile2 sqmetres 1

Table 26: Features which are selected at least once in four rounds of forward selection in
any experiments, together with the frequency with which they are selected across experi-
ments, for household power consumption data.
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Figure 47: Effects of different fit conditions on MAE, MSE, r and s.

Figure 48: Model selection for the 1|0|0 linear model for household power consumption
data.
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Figure 49: 1-step prediction for 1|0|0 linear model for household power consumption data
(example: household 3).

Figure 50: Residual analysis for the 1|0|0 linear model for household power consumption
data (example: household 3).
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Figure 51: Theta estimates for the 1|0|0 linear model for household power consumption
data.
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Feature
day profile household daylight
Hour4
weekend
day profile household power at zero

Table 27: Features selected by the V-model for household power consumption data.

Model name m MAE17 (k=1) MAE17 (k=6) MAE17 (k=12) MAE17 (k=18) MAE17 (k=24)
LM-model 17 93.56 93.59 93.59 93.57 93.6
V-model (MAE I2SD Q90) 17 98.27 99.28 98.43 97.29 97.99
W-model 17 98.05 99.31 98.32 97 97.81
P-model (104) 17 103.27 148.77 176.49 161.05 98.53
A-model (+) 17 83.08 107.6 104.46

Table 28: MAEs of the best models from each model type for household power consump-
tion data.

Model name m MSE17 (k=1) MSE17 (k=6) MSE17 (k=12) MSE17 (k=18) MSE17 (k=24)
LM-model 17 71474.73 71499.19 71468.94 71458.54 71482.71
V-model (MAE I2SD Q90) 17 71995.41 72757.71 72105.18 71234.38 71830.78
W-model 17 70745.13 71611.56 70943.32 70081.17 70750.33
P-model (104) 17 72903.33 103857.03 119006.98 98058.97 71071.29
A-model (+) 17 91812.01 78309.35 72407.74

Table 29: MSEs of the best models from each model type for household power consump-
tion data.
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V (MAE I2SD Q90) W A (+)
σ2
pump 72923.66 72922.999967 72923.000016
σ2
1 1.145805 1.333099

σ2
2 0 0.941278

σ2
3 1.515356 0.925855

σ2
4 0.155041 0.968894

σ2
5 1.875026 1.129895

σ2
6 1.128112 1.023865

σ2
7 0.938157 1.070511

σ2
8 0.256259 0.862536

σ2
9 2.249404 1.137614

σ2
10 1.224707 1.051620

σ2
11 0.603326 1.135784

σ2
12 0 0.968070

σ2
13 0.776388 1.097203

σ2
14 1.147777 1.019182

σ2
15 1.629266 0.739525

σ2
16 1.328594 1.298165

σ2
17 1.803883 0.631629

σ2
18 0.963884 0.829717

σ2
19 0.966094 0.451437

σ2
20 0.538686 1.085892

σ2
21 0.324318 0.388784
ϕ1 0.792010
ϕ2 0.051122

Table 30: Optimised parameters for different model types for household power consump-
tion data.

Theta LM V (MAE I2SD Q90) W P (104) A (+)
SFH10 627.29±4.86 621.21±4.94 601.28±34.19 602.69±34.11 617.32±89.15
SFH12 337.68±5.15 339.35±4.94 338.89±4.86 343.44±4.86 363.85±81.75
SFH16 255.12±5.12 266.14±4.94 278.06±36.65 277.89±36.56 270.54±81.42
SFH18 315.23±5.09 319.14±4.94 308.07±20.78 306.78±20.76 305.39±82.34
SFH19 379.79±4.91 378.59±4.94 375.12±38.64 376.1±38.53 377.22±85.56
SFH21 314.31±4.87 315.37±4.95 299.94±34.06 299.49±33.98 306.98±83.48
SFH23 358.02±4.9 357.54±4.95 357.01±32.54 356.57±32.47 354.87±84.41
SFH27 130.56±5.3 167.41±4.94 149.3±23.55 150.69±23.53 151.25±79.99
SFH29 167.95±5.7 221.62±4.95 223.06±40.43 223.29±40.32 219.71±85.7
SFH3 240.95±5.3 258.27±4.94 259.19±34.76 258.79±34.68 256.79±84.04
SFH30 239.01±4.83 240.5±4.95 260.28±29.15 260.31±29.1 257.68±85.66
SFH32 305.55±5.11 309.98±4.95 309.51±4.87 319.05±4.87 312.92±82.33
SFH36 309.57±5.04 312.93±4.95 302.49±31.03 304.13±30.99 304.16±84.93
SFH38 418.64±5.14 409.3±4.94 424.11±34.21 424.33±34.13 418.55±83.39
SFH4 358.65±4.93 357.68±4.94 373.39±37.32 373.26±37.22 366.55±76.98
SFH7 356.77±5.18 355.31±4.94 358.39±35.47 358.42±35.39 353.95±88.56
SFH9 535.27±5 518.8±4.95 540.81±38.27 540.14±38.17 527.54±74.02
day profile household daylight 410.49±26.1 430.61±25.41 785.63±69.8 829.6±69.62 588.42±108.25
Hour4 -8.76±3.29 -10.55±3.21 -3.88±25.89 -3.95±25.8 -4.46±25.35
weekend 10.91±2.68 9.27±2.61 11.47±20.39 10.59±20.33 14.77±46.2
day profile household power at zero 490.26±26.21 452.65±25.72 138.48±61.25 89.23±61.14 339.65±100.32

Table 31: Thetas obtained for different model types for household power consumption
data. The mean is calculated for the year 2020 and two standard deviations are given.
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Figure 52: MAE17 for k-step ahead predictions for different k and different model types
for household power consumption data.

B Miscellaneous

Season 2019 2020
Spring 1 01.03.2019, 00:00 - 31.03.2019, 02:59 01.03.2020, 00:00 - 30.03.2020, 02:59
Spring 2 31.03.2019, 03:00 - 30.05.2019, 23:59 30.03.2020, 03:00 - 30.05.2020, 23:59
Summer 01.06.2019, 00:00 - 31.08.2019, 23:59 01.06.2020, 00:00 - 31.08.2020, 23:59
Autumn 1 01.09.2019, 00:00 - 27.10.2019, 01:59 01.09.2020, 00:00 - 25.10.2020, 01:59
Autumn 2 27.10.2019, 02:00 - 30.11.2019, 23:59 25.10.2020, 02:00 - 30.11.2020, 23:59
Winter 01.12.2019, 00:00 - 31.12.2019, 23:59

01.01.2019, 00:00 - 28.02.2019, 23:59
01.12.2020, 00:00 - 31.12.2020, 23:59
01.01.2020, 00:00 - 29.02.2020, 23:59

Table 32: Seasons for cluster profile analysis.
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