
TECHNICAL UNIVERSITY OF DORTMUND

Department of Mechanical Engineering

Institute of Production Systems (IPS)

MASTER THESIS

Unsupervised approaches for Anomaly detection in quality management of
screw connections

First examiner: Prof. Dr.Christine Müller
Secondary examiner: M.Sc. Nikolai West

Submitted by: Naveen Kumar Bhageradhi
Matriculation number: 231678

Issued on: 05.02.2024
Submitted on: 05.08.2024

Dortmund, August 2024

Table of contents I

Table of contents
Table of contents . I

List of abbreviations . IV

List of formulas . V

List of figures . VII

List of tables . IX

1 Introduction . 1
1.1 Objective of the thesis . 1
1.2 Structure of thesis . 2

2 Fundamentals . 2
2.1 Time series data . 2
2.2 Outlier vs Anomaly . 3
2.3 Types of anomalies . 3
2.4 Types of anomaly detection methods . 5
2.5 Industry applications of anomaly detection . 6
2.6 Need for anomaly detection in Manufacturing industry 7

2.6.1 General anomaly detection procedure . 8
2.7 Different steps in screw tightening process . 8

3 Related work . 9

4 Methods . 10
4.1 Mann Whitney U-test . 10
4.2 Min-max normalization . 11
4.3 Linear interpolation . 11
4.4 Ensemble learning . 12

4.4.1 Weighted ensemble learning . 12
4.5 Dynamic Time Warping (DTW) . 13
4.6 Semi-supervised models . 14

4.6.1 Isolation Forest . 14
4.6.2 Autoencoder . 16
4.6.3 One-Class Support Vector Machine (OC-SVM) 19

4.7 Supervised models . 22
4.7.1 ROCKET classifier . 22
4.7.2 Catch22 Features . 24
4.7.3 Random Forest Classifier . 24
4.7.4 Shape based classifier . 24

Table of contents II

4.7.5 Time Series Forest (TSF) classifier . 26
4.7.6 Rotation Forest . 27
4.7.7 Convolutional Neural Network (CNN) . 28
4.7.8 KNN classifier . 29

4.8 Unsupervised models . 30
4.8.1 Spectral Clustering . 30
4.8.2 K-means clustering . 32
4.8.3 K-shape clustering . 33
4.8.4 Affinity propagation . 35
4.8.5 Self Organizing Maps (SOM) . 37

4.9 Cluster ensemble methods . 39
4.9.1 Co-association matrix method . 39
4.9.2 Relabel and maximum voting method . 40

4.10 Evaluation Metrics . 41
4.10.1 Confusion matrix . 41
4.10.2 Classification report . 41
4.10.3 Hyperparameter tuning . 42
4.10.4 Cross-validation . 42
4.10.5 AUC-ROC curve . 43
4.10.6 Adjusted Rand Index (ARI) . 43

5 Project workflow . 44
5.1 Screw tightening Anomaly detection Architecture 45

5.1.1 Training pipeline . 45
5.1.2 Prediction pipeline . 47

5.2 Screw-tightening machine . 48
5.3 Description of the dataset . 49

5.3.1 Different phases in the screw-tightening procedure 49
5.3.2 Different errors in screw-tightening . 50

5.4 Data pre-processing . 52
5.4.1 Handling duplicate values . 53
5.4.2 Handling missing values . 54
5.4.3 Cutting/padding time series sequences . 56
5.4.4 Torque normalization . 58

5.5 Data analysis and hypothesis . 58
5.5.1 Comparison between baseline sub-categories 58
5.5.2 OK category vs multiple surface error categories 59

6 Validation and Results . 61
6.1 Binary classification (Semi-supervised methods) 61

6.1.1 Isolation forest results . 61

Table of contents III

6.1.2 One-class SVM results . 63
6.1.3 Autoencoder results . 66
6.1.4 stacked bar charts and color categories . 69
6.1.5 Weighted ensemble learning results . 70

6.2 Supervised methods . 72
6.2.1 KNN DTW results . 73
6.2.2 Time Series Forest (TSF) results . 74
6.2.3 ROCKET classifier results . 75
6.2.4 Catch22 results . 76
6.2.5 Shaplet transform classifier results . 77
6.2.6 CNN results . 78

6.3 Supervised models combined results . 79
6.4 Unsupervised methods . 81

6.4.1 K-means clustering results . 82
6.4.2 K-shape clustering results . 84
6.4.3 Spectral clustering results . 87
6.4.4 Self-Organizing Maps results . 89
6.4.5 Affinity propagation results . 92

6.5 Unsupervised models combined results . 95
6.6 Cluster ensemble results . 97

6.6.1 Co-association matrix method . 97
6.6.2 Relabel and maximum voting method . 98

6.7 Prediction using Streamlit . 99

7 Conclusion and Future Work . 101

8 List of references . 104

Appendix . 108

List of abbreviations IV

List of abbreviations

ARI Adjusted Rand Index
ANN Artificial Neural Network
AUC Area Under the Curve
CSV Comma Seperated Values
CNN Convolutional Neural Network
CV Cross-Validation
DTW Dynamic Time Warping
HMM Hidden Markov Model
JSON JavaScript Object Notation
KNN K-Nearest Neighbours
LSTM Long Short-Term Memory
LOF Local Outlier Factor
ML Machine Learning
NMI Normalized Mutual Information
OC-SVM One-Class Support Vector Machine
ROCKET RandOm Convolutional KErnel Transform
RF Random Forest
ROC Receiver Operating Curve
ResNet Residual Neural Network
SOM Self Organizing Maps
SVM Support Vector Machine
TSF Time Series Forest
TABL Temporal Attention-Augmented Bilinear Network

List of Formulas V

List of Formulas
1 Mann Whitney test statistic . 10
2 Min-max normalization . 11
3 Linear interpolation . 11
4 Weighted ensemble label prediction . 12
5 DTW optimal path . 13
6 Anomaly score (Isolation Forest) . 14
7 Autoencoder loss function . 17
8 Autoencoder matrix notation . 17
9 Autoencoder loss function matrix notation . 18
10 OC-SVM objective function for optimal hyperplane 20
11 OC-SVM objective function with constraints . 20
12 OC-SVM lagrangian function . 20
13 OC-SVM Wolfe dual problem . 21
14 OC-SVM decision function . 21
15 Convolutional operation ROCKET classifier . 22
16 Proportion of positive values in ROCKET classifier 23
17 Distance between time series subsequences . 25
18 Split point calculation . 25
19 Information gain at split point . 25
20 Information gain of a shaplet . 26
21 Mean calculation in TSF . 26
22 Standard deviation calculation in TSF . 26
23 Slope estimation in TSF . 26
24 Margin formula in TSF . 27
25 Label prediction in Rotation Forest . 27
26 Convolution function in CNN . 28
27 Assign similarity values in spectral clustering . 30
28 Similarity calculation in spectral clustering . 31
29 K-means within-cluster variation . 32
30 K-means cost function . 33
31 Shift of time series sequence . 34
32 Cross correlation of sequences . 34
33 Shape-based distance metric . 34
34 Responsibility computation in affinity propagation 36
35 Availability computation in affinity propagation 36
36 Similarity computation in SOM . 37
37 SOM winning node formula . 38
38 SOM weight update . 38
39 SOM neighborhood computation . 38

List of Formulas VI

40 Binary co-occurrence matrix representation . 39
41 Co-association matrix calculation . 39
42 Rand Index summary statistics . 43
43 Rand Index . 44
44 Adjusted Rand Index . 44

List of figures VII

List of figures
1 Outlier vs Anomaly . 3
2 Different types of anomalies . 4
3 Different types of anomaly detection methods . 5
4 Comparision of time series alignment . 13
5 Collection of isolation trees . 14
6 Isolation tree data point partition . 15
7 Autoencoder Architecture . 17
8 OC-SVM Classifier . 20
9 Convolutional Neural Network Architecture . 29
10 KNN classifier . 29
11 Anomaly detection Architecture . 45
12 Industry machine for automated screw-tightening . 48
13 Base component . 48
14 Torque vs time line plot . 50
15 Error categories bar plot . 52
16 Duplicate values histogram plot . 53
17 Count of duplicate values in each error category . 53
18 Missing values histogram plot . 54
19 Missing values in each phase bar plot . 55
20 Count of missing values in each error category . 55
21 Linear interpolation to fill missing values . 56
22 QQ-plots for sub-categories of OK sequences . 58
23 QQ-plots for baseline vs surface related error categories 60
24 AUC ROC curve for Autoencoder model (without baseline-extra) 66
25 AUC ROC curve for Autoencoder model (with baseline-extra) 68
26 Stacked bar chart (with baseline-extra) . 69
27 Stacked bar chart (without baseline-extra) . 69
28 KNN DTW classification report . 73
29 Time Series Forest classification report . 74
30 ROCKET classification report . 75
31 Catch22 classification report . 76
32 Shapelet transform classification report . 77
33 CNN classification report . 78
34 Bar plot for Macro avg F1 scores of different (supervised) models 79
35 Stacked bar chart for precision scores of each error category (supervised models) 80
36 Stacked bar chart for recall scores of each error category (supervised models) 80
37 ARI scores lineplot for differnt clustering methods . 95
38 Accuracy scores multi-bar chart for differnt clustering methods 96
39 Streamlit web page . 99

List of figures VIII

40 Streamlit prediction for OK data . 99
41 Streamlit prediction for anomaly data . 100
42 K-shape model results for anomaly screw run prediction 100

List of tables IX

List of tables
1 Confusion Matrix . 41
2 Variables in the dataset . 49
3 Error categories time series sequence lengths . 57
4 Baseline sub-categories sequence lengths . 57
5 Mann Whitney test results for baseline sub-categories 59
6 Mann Whitney test results for baseline vs surface error categories 60
7 Isolation forest hyperparameters. 61
8 Isolation forest classification report (without baseline-extra). 62
9 Isolation forest misclassification of anomaly sequences (without baseline-extra). . 62
10 Isolation forest misclassification of normal sequences (without baseline-extra). . . 62
11 Isolation forest classification report (with baseline-extra). 63
12 Isolation forest misclassification of anomaly sequences (with baseline-extra). . . . 63
13 Isolation forest misclassification of normal sequences (with baseline-extra). 63
14 One-class SVM hyperparameters. 63
15 One-class SVM classification report (without baseline-extra). 64
16 One-class SVM misclassification of anomaly sequences (without baseline-extra). . 64
17 One-class SVM misclassification of normal sequences (without baseline-extra). . . 64
18 One-class SVM classification report (with baseline-extra). 65
19 One-class SVM misclassification of anomaly sequences (with baseline-extra). . . . 65
20 One-class SVM misclassification of normal sequences (with baseline-extra). . . . 65
21 Autoencoder hyperparameters. 66
22 Autoencoder classification report (without baseline-extra). 66
23 Autoencoder misclassification of anomaly sequences (without baseline-extra). . . 67
24 Autoencoder misclassification of normal sequences (without baseline-extra). . . . 67
25 Autoencoder classification report (with baseline-extra). 68
26 Autoencoder misclassification of anomaly sequences (with baseline-extra). 68
27 Autoencoder misclassification of normal sequences (with baseline-extra). 68
28 Color categories . 70
29 Weighted ensemble classification report on Green category. 71
30 Weighted ensemble classification report on Orange category. 71
31 Weighted ensemble classification report on Red category. 72
32 Weighted ensemble classification report on entire dataset. 72
33 TSF hyperparameters. 74
34 Shaplet transform hyperparameters. 77
35 CNN hyperparameters. 78
36 Error category to cluster mappings for green category (K-means clustering) . . . 82
37 Error category to cluster mappings for orange category (K-means clustering) . . 83
38 Error category to cluster mappings for Red category (K-means clustering) 83
39 Error category to cluster mappings for Black category (K-means clustering) . . . 84

List of tables X

40 Error category to cluster mappings for green category (K-shape clustering) . . . 85
41 Error category to cluster mappings for orange category (K-shape clustering) . . . 85
42 Error category to cluster mappings for Red category (K-shape clustering) 86
43 Error category to cluster mappings for Black category (K-shape clustering) . . . 87
44 Error category to cluster mappings for green category (Spectral clustering) . . . 88
45 Error category to cluster mappings for orange category (Spectral clustering) . . . 88
46 Error category to cluster mappings for Red category (Spectral clustering) 88
47 Error category to cluster mappings for Black category (Spectral clustering) . . . 89
48 SOM hyperparameters. 90
49 Error category to cluster mappings for green category (SOM) 90
50 Error category to cluster mappings for orange category (SOM) 90
51 Error category to cluster mappings for Red category (SOM) 91
52 Error category to cluster mappings for Black category (SOM) 91
53 Error category to cluster mappings for green category (Affinity propagation) . . . 92
54 Error category to cluster mappings for orange category (Affinity propagation) . . 93
55 Error category to cluster mappings for red category (Affinity propagation) 93
56 Error category to cluster mappings for Black category - I (Affinity propagation) . 94
57 Error category to cluster mappings for Black category - II (Affinity propagation) 95
58 Error category to cluster mappings for Co-association matrix cluster ensemble

method . 97
59 Error category to cluster mappings for Relabel and maximum voting cluster en-

semble method . 98
60 Catch22 Features and descriptions - I . 108
61 Catch22 Features and descriptions - II . 109

1 Introduction 1

1 Introduction

In today’s manufacturing industry, generating and storing vast amounts of data have become
integral to all operations. With advancements in data collection technologies, such as sensors
and IoT devices, industrial processes now produce extensive datasets that capture various pa-
rameters at different stages of production. As a result, manual validation and analysis are no
longer feasible and become more complicated in the case of single or multivariable analysis.
Hence, automated analysis and the use of industry-standard methods for data analysis offer
deep insights into manufacturing processes, leading to improvements in efficiency, quality, and
cost-effectiveness.

Detecting anomalies in the manufacturing industry is essential. Spotting deviations from stan-
dard operations guarantees the reliability and safety of products, avoids expensive downtimes,
and preserves the integrity of the production process.

In the case of the automated screw-tightening process, screws create connections between two
components. The quality of these connections depends on both the strength of the screws and
the efficiency of the tightening process. Improperly tightened screws can result in damaged
products and various issues when incorporated into the final product. Therefore, anomaly
detection in automated screw tightening is essential to improve the reliability and safety of the
end products. Sensors record the screw-tightening process as univariate or multivariate time
series, and machine learning methods can accurately detect anomalies using this data.

Training supervised models requires a large amount of labeled data, which is generally not avail-
able in most of the industrial use cases. This thesis focuses on investigating and implementing
semi-supervised and unsupervised approaches for anomaly detection.

1.1 Objective of the thesis

The primary objective of this thesis is to research and implement unsupervised approaches
to cluster different anomalies in the screw-tightening process and map the clusters to specific
anomaly categories in a labeled dataset. Additionally, it aims to build a general machine-learning
prediction pipeline to determine if the process is anomalous by analyzing the torque sequence of
the screw-tightening run. If an anomaly is detected, the system will inform the user of the type
of anomaly and the probability that the anomaly belongs to that type through a web interface.

To achieve this, a univariate time series (torque data) is utilized. First, a semi-supervised
approach is used to predict whether a screw-tightening run is anomalous or not. Given that most
industrial data is unlabeled, this thesis explores the effectiveness of unsupervised approaches
in identifying different types of anomalies. Finally, the results are compared with supervised
approaches to highlight the advantages and limitations of unsupervised methods.

2 Fundamentals 2

1.2 Structure of thesis

This thesis report aims to explain the research and analysis performed on anomaly detection
in the screw-tightening process in detail. Including the introduction, this report consists of 8
sections in total. In section 2, the fundamental concepts related to time series, anomaly, and
their detection methods are explained in detail. In addition, this section also provides a good
overview of the need for anomaly detection methods in the manufacturing industry and the
screw tightening process. The existing literature and research performed in the screw-tightening
anomaly detection process are stated in section 3. This provides a foundation for further research
performed in this thesis.

Section 4 consists of all the statistical models used for anomaly detection in this thesis. They are
explained elaborately with formulas, pseudo-code, and hyperparameters. Moreover, evaluation
metrics used to check the performance of models are also described in detail. In section 5,
the anomaly detection architecture used in this thesis is explained using a flow chart diagram.
Next, it provides an overview of the dataset used and explains different errors that are dealt
with. Additionally, preliminary hypotheses are created based on the data analysis and explained
using graphs.

In section 6, all the statistical methods explained in section 4 are applied to the screw-tightening
data, and the findings are interpreted using appropriate visualizations. The study of this thesis
is concluded in section 7 by summarizing all the key findings. This section details the advantages
and constraints of the methods in unsupervised anomaly detection of time series. Moreover, it
also provides some insights that can be carried out for future work. Finally, section 8 consists
of a list of references for the articles and books used for research during this thesis.

2 Fundamentals

In this section, some fundamental concepts related to anomalies, time series, and the manufac-
turing industry are discussed. These concepts are essential for understanding the topic of the
thesis and the motivation behind the need for anomaly detection in the manufacturing industry.
The section begins by explaining the different types of anomalies in time series data and details
the various anomaly detection methods available. Subsection 2.5 covers industrial applications
of anomaly detection with examples. Additionally, the general procedure for anomaly detection
is outlined, and the phases or steps in the screw-tightening process are explained.

2.1 Time series data

A sequence of data points measured at regular intervals of time is called time series data. It
is chronologically ordered data recorded at discrete time stamps. Examples of time series data
include temperature recorded every day, sensor measurements recorded every second of the

2 Fundamentals 3

manufacturing process, etc. If only a single variable value is recorded at each time stamp, then
it is called univariate time series, and if multiple variable values are recorded, then it is called
multivariate (Haben et al., 2023, p. 55-66).

2.2 Outlier vs Anomaly

Outlier

Data points that deviate from normal data points and raise suspicion that they may follow a
different distribution or may be generated by a different mechanism are called outliers (Olteanu
et al., 2023). It can also be defined as a data point that is far away from the mean or median
values of the dataset.

Anomaly

A data point that significantly deviates from normal data points can be defined as an anomaly.
In the field of time series, an anomaly can be defined as a point or group of points that show a
different pattern or behavior when compared to the data points from previous time stamps and
are considered to be rare.

The line plots in figure 1 explain the difference between an outlier and an anomaly in time series
data. Each plot consists of amplitude values (univariate time series) plotted in gray against
time. The normal range of amplitude values falls within the blue-shaded region. In the left
plot, the green point deviates from the normal data points but remains within the valid range of
amplitude values. Therefore, it creates a suspicion of being an anomaly point but is considered
an outlier. In the right plot, the red data point significantly deviates from the normal amplitude
value range, following a different data distribution. Hence, it is considered an anomaly or point
anomaly in time series (Choi et al., 2021).

Figure 1: Outlier vs Anomaly.

2.3 Types of anomalies

In the time series domain, anomalies can be classified into 3 categories based on the different
kinds of abnormality in the data.

2 Fundamentals 4

Point anomaly: A data point that abruptly deviates from the normal data sequence or the
norm can be termed a point anomaly. They appear in the form of temporal noise in the dataset.

Contextual anomaly: A short sequence of data points that has a different shape or pattern
when compared to a normal sequence is termed a contextual anomaly. They are similar to the
point anomaly but in this case, a short sequence of values doesn’t deviate from the regular
interval of time series. As a result, they are difficult to identify.

Collective anomaly: A collection of data points that show different patterns when compared to
normal sequences over a period of time is called collective anomaly. These points are considered
non-anomalous when looked at one specific time point but it is considered as an anomaly when
looked at as a whole series or collection of points.

Figure 2: Different types of anomalies (Yan et al., 2023).

Figure 2 consists of 3 graphs, each graph is a line plot of amplitude values over time. In the left
line plot, the green dotted lines on the top and bottom represent the range for normal amplitude
values. It can be noticed that a single red point is significantly different from all the other points
and it is outside of the amplitude range. This is an example of a point anomaly. The line plot in
the middle is an example of contextual anomaly. A short sequence in blue color is significantly
different from the normal pattern and it is in the same range.

Moreover, the line plot on the right is an example of collective anomaly. A red sequence can be
observed in the graph which deviates from the normal sequence for a longer period (Choi et al.,
2021).

To explain the definitions formally, let X = {x1, x2, . . . , xn} with xi ∈ Rd, i ∈ {1, 2, . . . , n}.
The variable n denotes the number of observations in the dataset, and d denotes the number
of dimensions in the dataset. Point x ∈ X or a subset of points Xsub ⊂ X that are different
from other data points in X are called anomalies. The methods used to detect Xsub from X are
called anomaly detection methods (Huang, 2018, p. 1-2).

2 Fundamentals 5

2.4 Types of anomaly detection methods

Machine learning for anomaly detection offers 3 different techniques, namely, supervised, semi-
supervised, and unsupervised approaches. Each of these methods has its advantages and disad-
vantages. They can be noticed in figure 3 and also explained in detail below:

Figure 3: Different types of anomaly detection methods (Goldstein and Uchida, 2016).

Supervised anomaly detection: Supervised methods assume that the dataset is labeled. The
dataset is split into training and test sets. Using the training set, general classification models
like decision trees, multi-layer perceptron, etc are built to understand the patterns in the normal
and anomaly data sequences. As the anomaly sequences are labeled, the classifiers can capture
the anomaly patterns easily. Hence, models perform well on the test data. However, as the
anomaly sequences are rare events, all the real-world datasets will have a high data imbalance
between the classes. This can impact the performance of the classification models and hence
supervised approaches are not very feasible for the anomaly detection process. Also, in most
cases, the labels are not available in the real world and it can be too expensive or impossible to
create the labeled datasets.

Semi-supervised anomaly detection: Similar to supervised methods, semi-supervised meth-
ods also contain training and test datasets, but, in this process, only normal instances of data
are used for training the models. The basic idea of this approach is to learn the distribution of
normal sequences and hence when using the test data set, the observations that deviate from
the normal sequences are classified as anomalies. It can also be called a one-class classification
approach. One-class SVM and autoenoders are some examples of this approach.

Unsupervised anomaly detection: In general, the most feasible solution for anomaly detec-
tion is using unsupervised approaches because it doesn’t require any labels for the dataset. As
a result, the training and test datasets are also not required. Several clustering approaches are

2 Fundamentals 6

used to learn the distributions of the data or dissimilarities between the data points. However,
as the prior information about the anomalies are unknown, modeling requires more effort and
the results are less accurate when compared to the supervised methods.

In this thesis, semi-supervised and unsupervised methods are explored in detail to detect the
anomalies and cluster different kinds of anomalies. Also, supervised models are used to compare
the results from the unsupervised models (Goldstein and Uchida, 2016).

2.5 Industry applications of anomaly detection

Anomaly detection is used in different fields to find errors, spot unusual trends that could
lead to other potential problems, and enhance current methods. The important advantages of
identifying anomalies early include reduced costs associated with failures by preventing them be-
forehand, increased operational efficiency, and safety. Some examples of domains using anomaly
detection are mentioned below.

Financial Sector

Finding anomalies is essential to exposing fraudulent activity in the financial sector. Credit
card issuers and banks monitor the spending patterns of their customers to spot anomalies like
irregular transactions or sudden spikes. These anomalies are flagged for further investigation to
safeguard against fraud and protect the financial assets of the customers.

Cybersecurity

Anomaly detection is essential for network traffic monitoring and detecting possible incursions
that might indicate cyber-attacks or other risks in the field of cybersecurity. It helps detect
illegal access to systems or databases, and hence immediate action can be taken to prevent data
breaches or the loss of sensitive information. Furthermore, constant network monitoring lowers
downtime and aids in error detection, enhancing overall network security.

Healthcare

In the healthcare sector, anomaly detection is used to monitor patient health data for early
signs of problems. By examining data from medical devices, healthcare professionals can spot
irregular heartbeats or sudden drops in oxygen levels and respond swiftly. This proactive method
improves patient care and safety by ensuring timely medical interventions when necessary.

Manufacturing Industry

In the manufacturing industry, sensors fitted to equipment collect data at regular intervals.
Analyzing this data using anomaly detection techniques helps predict machine failures in ad-
vance and prevent the production of defective products. It also indicates when maintenance is
needed, preventing device breakdowns and avoiding significant costs. Overall, anomaly detection
improves the manufacturing process and ensures product quality (Blessing and Klaus, 2023).

2 Fundamentals 7

This thesis focuses on anomaly detection in the manufacturing industry, specifically detecting
anomalies in the automatic screw-tightening process. Since thousands of screws might be fixed
automatically, identifying faulty screw runs is crucial to avoid errors during testing and save
potential costs and additional work. By employing anomaly detection, manufacturers can ensure
the reliability and efficiency of the screw-tightening process.

2.6 Need for anomaly detection in Manufacturing
industry

Machines in the manufacturing industry run throughout the day to produce/fix different compo-
nents. Over time, these machines need a maintenance check to ensure that they are functioning
well. Inadequate maintenance checks can affect the overall productivity of the machines, and
research shows that manufacturing industry organizations have to pay significant costs every
year for unplanned halts or defects that lead to machine downtime. The different maintenance
procedures that have evolved over time are explained below:

• Reactive maintenance – In this process, the machine is repaired after the failure has
occurred.

• Preventative maintenance – In this process, regular maintenance is carried out to avoid
failures. However, in regular maintenance, components are replaced periodically even if it
is not actually needed at that time.

• Rule-based predictive maintenance – In this process, maintenance is carried out based
on the alerts sent from hard coded threshold rules. Every time a measurement crosses the
threshold, maintenance is carried out.

• Machine Learning (ML) based predictive maintenance – In this process, data
analysis and machine learning are used to predict when the next maintenance is needed
for the equipment. It can also be used to analyze the data from each fitting/manufacturing
process and identify if the process is good or bad.

Hence, using ML-based methods for predictive maintenance can avoid unplanned downtime,
increase productivity, optimize resources, and also increase customer satisfaction.

As the internet of things has increased significantly over recent years, it is used to enable
communication between machines through the internet in real-time. Also, with the availability
of sensors and data storage at cheaper costs, all devices in the manufacturing industry can be
equipped with sensors to collect data periodically. This data can be used for ML based predictive
maintenance (Kamat and Sugandhi, 2020). Hence, anomaly detection methods are important
to overcome these problems in the manufacturing industry.

2 Fundamentals 8

2.6.1 General anomaly detection procedure

In this section, the general steps taken for the anomaly detection process in the manufacturing
industry are explained. The process consists of seven steps, detailed below:

• Data gathering – Relevant data from sensors and other devices are collected based on
the task and stored in a database.

• Data cleaning – As raw data from multiple sources may contain noise and have different
structures, it should be pre-processed into a consistent format. This step also handles
missing and duplicate values and also outliers. Finally, the data is normalized to a single
scale.

• Feature extraction – Depending on the methods to be applied, identify and extract fea-
tures useful for spotting anomalies. If the dataset contains many features, dimensionality
reduction methods may also be applied.

• Model selection – Based on the data, choose from a variety of anomaly detection methods
from different families. This approach helps experiment with multiple models, avoiding
bias and random selection of a specific model.

• Model training and evaluation – Train the models using the pre-processed data and
record the evaluation metrics of each model. Select the best model by comparing the
relevant metrics to determine which one outperforms the others.

• Deployment – Deploy the best model selected in step 5 to detect anomalies in the man-
ufacturing process in real-time.

• Monitoring and maintenance – Regularly monitor the model to assess its performance
and ensure the results are accurate. If there are any irregularities or data drifts, retrain
and redeploy the model as needed.

(Srivastava and Bhambhu, 2023).

2.7 Different steps in screw tightening process

Different articles mention different processes in the screw-tightening. This subsection explains
one such general process involved in screw tightening. This process is divided into three phases:
screw seating, clamping, and screw stripping.

In Phase I (screw seating), the screw is inserted into its base component by progressively
increasing the screw-driving torque to overcome friction. The screw is considered properly seated
when it reaches the set value of the seating torque.

In phase II (clamping), the torque is sharply increased to tighten the screw. It is increased
until it reaches the set value of the stripping torque.

3 Related work 9

In phase III (screw stripping), the torque values are gradually reduced after reaching the
stripping torque value. In this phase, the screw-driver is detached from the screw head, and the
screw is properly fixed into the base component (Tor et al., 2020).

In this thesis, the screw-tightening process is considered to have 4 phases and these phases are
explained in detail in sub-section 5.3.

3 Related work

Over the years, advancements in the manufacturing industry have led to the investigation and
use of anomaly detection methods. The following literature provides a good overview of existing
methods for anomaly detection in the automated screw-tightening process.

Ribeiro et al. (2021) compares various methods to identify abnormal screw-tightening processes
by using angle-torque pairs. The research uses Local Outlier Factor (LOF), Isolation Forest, and
deep learning autoencoder models from the unsupervised domain, as well as the Random Forest
(RF) model from the supervised domain, to determine whether the screw-tightening process is
anomalous or not. A threshold is used to separate the anomalies when using Isolation Forest
and autoencoder models.

Yuki et al. (2023) proposed a method to detect screw-tightening defects in real-time. This
approach uses position, velocity, and torque data from the R and Z axes as the dataset. A
feature extraction method is used to train the Isolation Forest model using normal instances.

Cao et al. (2019) proposed a method based on an Long Short-Term Memory (LSTM) network
that can automatically analyze the quality of screw-tightening. First, the dataset is labeled into
four categories by identifying different patterns in the angle-torque curve. Then, the LSTM
model is trained to learn patterns from each class. This process follows a supervised approach,
and the results are compared with machine learning algorithms such as Support Vector Machine
(SVM) and Random Forest.

West et al. (2023) used K-means algorithm to distinguish screw-tightening anomalies from nor-
mal ones. This paper addresses the anomaly detection issue using unsupervised methods, even
though true labels are available. As a result, it avoids the manual effort required to generate
labels and is useful for detecting errors that have never been seen before. The clusters created
are assigned to normal or abnormal classes based on a set of rules.

West and Deuse (2024) also performs a comparative study of machine learning approaches
for anomaly detection in screw-tightening. In this research, several machine learning algo-
rithms from both supervised and unsupervised families are applied to identify anomalous screw-
tightening runs. By comparing the results from both families, it is shown that unsupervised
approaches can effectively detect both known and unknown anomalies.

Leporowski et al. (2021) proposed an application of time series classification models for anomaly
detection in automatic screw driving. In this research, the machine learning algorithms Temporal

4 Methods 10

Attention-Augmented Bilinear Network (TABL) and Residual Neural Network (ResNet) are
used on publicly available screw-tightening datasets. The dataset contains four different kinds
of labeled anomalies. Experiments include both binary and multi-class classification.

In above mentioned research methods, anomaly detection in the screw-tightening process is
addressed as a binary classification problem (anomaly/not an anomaly). Many methods from
supervised, semi-supervised, and unsupervised domains are proposed and are in use. In the case
of multi-class classification, or distinguishing between different anomalies, research has been con-
ducted to a certain extent using supervised approaches but not using unsupervised approaches.
As mentioned, most real-world data doesn’t contain labels, so an efficient unsupervised method
is required for anomaly detection in the automated screw-tightening process. This thesis focuses
further on binary classification (anomaly/not an anomaly) and, for distinguishing different kinds
of anomalies, an in-depth study in the unsupervised domain specifically using clustering methods
are carried out.

4 Methods

In this section, all the statistical models and their evaluation metrics used in this thesis are
explained in detail along with their mathematical notations. The data analysis and modeling
code is written in Python language, software version 3.10.0 (Python Core Team, 2024).

4.1 Mann Whitney U-test

Mann Whitney U-test is a non-parametric test that aims to determine whether the data from
two samples have a significant difference in their distributions. Unlike parametric tests like the
t-test, it doesn’t assume the data to follow a normal distribution. Hence, it is mainly used to
compare two groups of non-normal distributions. If the two samples are of different sizes then
Mann Whitney test is used to compare their median values.

The null hypothesis (H0) assumes that there is no significant difference between the samples of
the two distributions, and the alternative hypothesis (Ha) assumes that there is a significant
difference between the samples of the two distributions.

Let X = X1, X2, . . . , Xn be a sample from one distribution and Y = Y1, Y2, . . . , Ym be a sample
from another distribution. N denotes the total number of observations from both samples. The
formula to calculate Mann Whitney U-test statistic can be stated as follows:

U = mn+ n(n+ 1)
2 − T, (1)

Where:

• U – represents the Mann Whitney test statistic.

4 Methods 11

• n – denotes the size of the first sample.

• m – denotes the size of the second sample.

• T - denotes the sum of ranks from the first sample (X).

This test statistic U computes the total number of times that an Xi precedes a Yj in the
classification in increasing order of the (n+m) observations. For a test statistic, a corresponding
p-value can be obtained from the table and if the p-value is less than the significance level (α =
0.05) then the null hypothesis is rejected indicating the samples of 2 distributions are different
(Dodge, 2008, p. 327-329).

4.2 Min-max normalization

A method used to transform the values of several features in a dataset to a common fixed
scale is called min-max normalization. Using the transformed values for modeling or distance
calculation ensures that each feature contributes equally. This linear transformation scales the
data to the range [0, 1]. Additionally, min-max normalization preserves the relationships among
the original values. The formula below is used for min-max transformation.

xsclaed = x− xmin

xmax − xmin
, (2)

Where:

• xscaled – represents the transformed value of the original data point x.

• xmin – denotes the minimum value of a feature in the dataset.

• xmax – denotes the maximum values of a feature in the dataset.

(Ciaburro et al., 2018).

4.3 Linear interpolation

A method used to fill missing values between any two data points is called interpolation. In
the case of linear interpolation, it uses a straight line to find the missing values by connecting
two known data points. The missing values are estimated from the straight line created. This
is well-suited for handling missing values in linear time series data. In the case of non-linear
time series, it breaks the seasonal patterns. To estimate the missing values in a uni-variate time
series sequence x1, . . . , xn using linear interpolation, the following formula can be used.

xi = xi−1 + (xi+1 − xi−1)
(ti+1 − ti−1) · (t− ti), (3)

Where:

4 Methods 12

• xi - denotes the interpolated value at time ti.

• xi−1 and xi+1 - denotes the known values before and after the missing value.

• ti - denotes the timestamp of the missing value at index i.

• ti−1 and ti+1 - denotes the timestamp of known values before and after the missing value.

(Chapra and Canale, 2002, p. 491).

4.4 Ensemble learning

The process of creating multiple base learners and combining the predictions of these individual
learners to create one final prediction is called ensemble learning. The underlying idea of this
method is to overcome the limitations of individual models and improve the overall performance
of the model. Bagging (bootstrapping) is a method of ensemble learning that combines the
predictions of multiple learners. In this case, each base learner is trained using a subset of the
training data, and their predictions are combined using strategies such as voting or averaging. It
is widely used in solving problems of classification, regression, clustering, and anomaly detection
(Jo, 2023, p. 83-109).

4.4.1 Weighted ensemble learning

In this ensemble learning strategy, each base learner or model prediction is multiplied by a
specific weight and then added together to make the final prediction. The idea behind this
approach is that it is valid to give higher importance to the models that have more predictive
power. The final output or class label can be calculated using the following formula:

H(x) = carg
j

max

T∑
i=1

wih
j
i (x), (4)

Where:

• H(x) - represents the final class label obtained from weighted ensemble.

• hi - denotes the model or base learner i.

• wi - denotes the weight assigned for classifier h(x).

The weights are normalized such that each model contributes to assigning the final class label
(wj >= 0), and they are constrained by the ∑T

i=1wi = 1. The predictions obtained using this
strategy are better compared to the predictions of the best individual classifier and the majority
voting method (Zhou, 2012, p. 74-75).

4 Methods 13

4.5 Dynamic Time Warping (DTW)

Figure 4: Comparing alignments using Euclidean and DTW. (a) Euclidean alignment and (b)
DTW alignment.(Zhang et al., 2023).

One of the methods used to compute the similarity between two sequences is Dynamic Time
Warping (DTW). Let x = [x1, x2, ..., xn] and y = [y1, y2, ..., yn] be two sequences. The problem
with using general methods like Euclidean distance to compute the similarity between them is
that it uses a one-to-one matching of points between the time series. This approach fails if the
two sequences are not linearly aligned. DTW, on the other hand, uses a dynamic programming
approach to compute the smallest cost between two sequences, aligning them in the best possible
way. It can also be used to compare sequences of variable lengths (Lei and Sun, 2007).

The figure 4 shows the difference between sequence alignment using Euclidean distance and
DTW. Euclidean distance only computes the distance between pairs of points that are aligned
equally, using the formula L2(x, y) =

√
(∑n

i=1(xi − yi)2). In contrast, DTW compares the
sequences by non-linearly warping one onto the other, addressing problems that arise with time
offsets (Zhang et al., 2023).

To determine the DTW distance between x and y, a cost matrix is first initialized using an
m × n matrix. Each cell in the cost matrix represents the difference between two points. The
optimal path between the two sequences is then computed using the formula below:

D(i, j) = cost(xi, yj) + min

Dl(i− 1, j)

Dl(i− 1, j − 1)

Dl(i, j − 1)

, (5)

Here cost(xi, yj) denotes the cost or difference between 2 points and can be computed using
∥xi − yi∥2 (Lei and Sun, 2007).

4 Methods 14

4.6 Semi-supervised models

4.6.1 Isolation Forest

In general, all the anomaly detection algorithms try to capture the information from the normal
data and classify the new unseen data as an anomaly if their profile doesn’t match with the
normal data. Isolation forest follows a different approach where it tries to isolate (separate
the point from other data points) anomalies, rather than focusing explicitly on normal data.
It uses an ensemble approach to create multiple isolation trees for the provided dataset. Let
X = {x1,, xn} be a sample data set of n data points. Each isolation tree uses a random
attribute q and a split value p to partition the data.

This method uses the known fact that anomalous points are rare and will have different char-
acteristics when compared to the normal data. Each isolation tree repeatedly splits the data
until every data point has been isolated. Since anomalies are rare, fewer partitions can be used
to isolate them. As a result, these points will be close to the root of the tree and have shorter
paths.

Figure 5: Collection of isolation trees (Regaya et al., 2021).

In Figure 5 the recursive partitioning is represented in the tree structure. The path length can
be determined as the number of partitions required to separate a point and it is the path from
root to the leaf node of a tree. Normal data points will have higher average path length when
compared to anomaly points.

Figure 6 shows an example of normal and anomalous data points. In Figure 6(a) xi is a normal
point in the dataset, and the algorithm took many splits to isolate the point xi, whereas, in
Figure 6(b) the anomalous point xa was isolated in fewer splits.

The anomaly score of a point can be calculated using the formula:

s(x, n) = 2− E(h(x))
c(n) , (6)

where:

4 Methods 15

(a) Isolating xi (b) Isolating xa

Figure 6: Isolation tree data point partition. (a) Normal data point (Galante and Banisch, 2019)
and (b) Anomaly data point (Liu et al., 2023).

• s - denotes the anomaly score.

• x - denotes an observation in dataset.

• n - total number of observations in the dataset.

• h(x) - represents the path length.

• c(n) - denotes average h(x) given n. Since iTrees have equivalent structure to BST (Binary
Search Trees), the average path length of unsuccessful search in BST is: c(n) = 2H(n −
1)− (2(n− 1)/n), where H(i) is the harmonic number which can be estimated by ln(i) +
0.5772156649.

• E(h(x)) - represents the average path length h(x) from collection of isolation trees. In
Equation (6),

– when E(h(x))→ c(n), s→ 0.5;

– when E(h(x))→ 0, s→ 1;

– and when E(h(x))→ n− 1, s→ 0.

If the anomaly score for a particular data point is very close to 1, it is highly likely to be an
anomaly. Conversely, if the score is much smaller than 0.5, the data point is considered normal.
Moreover, if the anomaly scores for all points in the dataset are close to 0.5, it indicates that
the dataset does not have distinct anomalies.

Steps to build the Isolation Forest model:

• Inputs: X – input data, t - number of trees, ψ - sub-sampling size. Based on the sub-
sampling size, the height of the tree is estimated.

4 Methods 16

• The algorithm starts by selecting a random subset of features from the dataset for each
isolation tree. At each step of recursive partitioning, a random feature with a split value
is used to isolate the data points.

• Calculate the path length for each data point from different isolation trees. Anomaly
points are expected to be shorter in length.

• Calculate the anomaly score of each data point. The anomaly scores of all isolated trees
are averaged to create the final anomaly score.

• Sort the anomaly scores in descending order to find the top m anomalies in the data or
threshold can be used to separate the anomaly points from normal points (Liu et al., 2009,
p. 413-422).

The scikit-learn implementation of isolation forest provides multiple hyperparameters that can
be experimented with different values and customized to provide the best performance for a
specific dataset. n_estimators denotes the number of decision trees used in building the isolation
forest model. The default value is set to 100. max_samples denotes the number of observations
to be taken from the dataset to train each base learner. If the value is set to default then
max_samples is taken as max_samples = min(256, n_samples). Here, n_samples is the number
of observations in the dataset. The contamination parameter is the proportion of anomalies
present in the dataset. The value can be assigned in the range (0, 0.5] or it can be assigned auto
providing flexibility to the model in determining the proportion of anomalies (Adari and Alla,
2024, p. 149-155).

4.6.2 Autoencoder

In the case of ordinary neural networks, the architecture consists of an input layer, an output
layer, and one or more hidden layers. The neural network calculates the output as a weighted
combination of inputs and activation functions. Backpropagation is used to adjust the weights
such that the loss between the actual and predicted values is reduced. An autoencoder is a
type of neural network designed to reconstruct the original data. By learning the underlying
distribution of normal data, it can detect anomalies, which are data points that deviate from
the normal data distribution.

Figure 7 shows the architecture of the Autoencoder. It consists of 3 components, namely,
encoder, latent space, and decoder. The encoder part takes the input values and passes through
hidden layers to down-sample and create the lower dimensional representation of the data. This
representation exists in the form of encoded data in a latent space. The decoder part works in
the reverse process by applying up-sampling to the encoded data in hidden layers to re-create
the original data. If the architecture of the autoencoder is good, then it reconstructs the normal
data accurately (Adari and Alla, 2024, p. 262-263).

4 Methods 17

Figure 7: Autoencoder Architecture (Wang et al., 2021).

Consider an input vector, X with dimensions (dx, 1) where dx is the number of features in X.
In the encoder block, the input vector is passed through the sequence of hidden layers to create
a latent representation Z of dimensions (dz, 1), where dz is the number of features in latent
space. In the decoder block, the latent representation (Z) is passed through another sequence of
hidden layers to create the output vector X ′ with the help of the decoder function. The difference
between the X and X ′ is known as reconstruction error (L). It works as a loss function and can
be used to optimize the weights of the network. The loss function can be represented using the
formula:

min
θ
JAE(θ) = min

θ

n∑
i=1

l(xi, x
′
i) = min

θ

n∑
i=1

l(xi, gθ(fθ(xi))), (7)

Where:

• θ - denotes the weights in the hidden layers.

• JAE(θ) - represents the objective function to reduce the loss.

• xi - denotes the value of ith dimension in the input data.

• x′
i - denotes the value of ith dimension in the output data.

• l - represents the loss function.

• fθ - represents the encoder function.

• gθ - represents the decoder function.

• n - denotes the number of observations in the dataset.

For the input vector X, the encoder and decoder parts can be represented in the matrix notation
using the below formulas:

Z = fθ(X) = s(WX + b),

X ′ = gθ(Z) = s(W ′Z + b′),
(8)

4 Methods 18

Where:

• b, b′ - denotes the bias vectors.

• W,W ′ - denotes the weight matrices, with dimensions (dz, dx) and (dx, dz) respectively.

• s - denotes the non-linear activation function like ReLU or sigmoid.

In equation 7 the loss l denotes reconstruction error of the vector X. It can be calculated using
the formula represented in matrix notation below:

L(X,X ′) =
n∑

i=1
∥Xi −X ′

i∥2, (9)

Autoencoders have a wide range of hyperparameters and these values impact the performance
of the model. Some parameters are fixed before the training process and others can be changed
to improve the model performance. Relevant hyperparameters are explained below:

• Hidden layers – The layers between the input layer and the output layer are termed
hidden layers, and it also determines the depth of the neural network. In each hidden
layer, the input is combined with different weights and bias terms to transform the data
into a latent representation. As the number of hidden layers increases, the model will
capture the more complex relations in the data but also it will be difficult to train and
optimize the model. Also, there is a possibility of overfitting. Hence, it is important to fix
the optimal number of hidden layers before training the model.

• Number of neurons in each layer – The number of neurons can differ for different
hidden layers. In the case of the encoder part, each successive hidden layer will have a
decreasing number of neurons and is useful to capture data representation. In the decoder
part, each successive hidden layer will have an increasing number of neurons as the model
tries to reconstruct the data. More number of neurons can be useful for learning the input
data better but it also increases the chances of overfitting.

• Size of Latent space - It determines the number of neurons in the latent representation
layer to which the input data is compressed. A smaller size of latent space captures only
limited information from the data, whereas, a larger size of latent space captures unwanted
information (noise).

• Activation function - It is used to calculate the output of each neuron, and it introduces
non-linearity into the neural network. The activation functions help learn different patterns
in the data and can be chosen for each layer before the training. Some of the common
activation functions used when training the neural networks are sigmoid, tanh, and ReLU.
The sigmoid function transforms the output values in range 0 and 1. The ReLU activation
function assigns negative values to 0 and positive values remain unchanged. Tanh function
converts the values in the range from -1 to +1.

4 Methods 19

• Learning rate - It determines the proportion of weights and bias values to be updated
in the backpropagation and also the speed of convergence of the objective function. The
learning rate is assigned a default value for each optimization algorithm and they can be
modified during the training to achieve a quicker or better convergence. The lower values
of learning rate make the convergence process slower and the objective function to settle
at local minima, whereas, the higher learning rate might overshoot and may never find the
optimal solution.

• Number of Epochs - Passing the entire dataset through the network completes one
epoch and hence, the number of epochs decides how many times the model processes and
learns from the same dataset. In each epoch, the model tries to capture more information
from the data and tries to reduce the error by updating the weights and bias terms. As
the number of epochs increases, the model might overfit for the specific dataset. This can
be controlled using the early stopping method. The size of the dataset and the task’s
complexity determines the number of epochs.

• batch size - The batch size refers to the number of observations from the dataset used
for one forward and backward pass. It determines the count of samples processed by the
model before updating the weights and bias terms. Smaller batch sizes save memory and
increase speed, but may result in noisy gradient values. On the other hand, if the batch
size is large, it might be slow and require more memory, but it leads to more stable gradient
values.

(Berahmand et al., 2024, p. 11-15)

4.6.3 One-Class Support Vector Machine (OC-SVM)

The general support vector machine algorithm is a classification model that tries to separate
the classes with the help of support vectors and a hyperplane. It belongs to the supervised
learning method. OC-SVM is a modified version of SVM, which is a semi-supervised method for
identifying anomalies in data. The model is trained only on the normal data points and it tries
to create a hyperplane or optimal boundary, which has maximum data points only on one side
of the hyperplane. Points that fall on the other side or outside the hyperplane are considered
outliers. (Adari and Alla, 2024, p. 159-168)

Consider a dataset with input vector X. OC-SVM maps the data into feature space using a
kernel function. If the dataset is completely pure (doesn’t contain any anomalies), then OC-
SVM creates a hyperplane with a maximum margin where the data is far from the origin.

From figure 8, we can notice two regions, the region marked with +1 are considered as normal
data and are located far from the origin. The data points that are outside of this region are
treated as anomalies. In general, these anomalous points are near to the origin as shown in the
figure and assigned label -1.

4 Methods 20

Figure 8: OC-SVM Classifier (Glavin, 2009).

The objective function to determine the optimal hyperplane can be represented as follows:

min 1
2∥w∥

2 − ρ,

subject to: w · ϕ(xi) ≥ ρ, ∀xi ∈ X,
(10)

Where:

• ϕ - represents the nonlinear mapping from input space to feature space (X → F).

• w - denotes the weight vector of the feature space.

• ρ - denotes the offset of hyperplane.

• xi - denotes the feature vector of ith observation in the dataset.

If the dataset doesn’t contain any anomalies, then the maximum margin hyperplane will satisfy
the condition (w · ϕ(xi) = ρ) and the distance between the origin and hyperplane can be
calculated as ρ

∥w∥ .

To classify the data points as normal by the model, the mapping function combined with weights
should be greater than ρ. As there is a possibility of outliers in the data set, to make the
model more robust to them, the smaller values of (w · ϕ(xi)) should be penalized. This can be
achieved by using the slack variable. Hence, the new objective function with constraints can be
represented as follows:

min 1
2∥w∥

2 − ρ+ 1
νn

n∑
i=1

ξi,

subject to: w · ϕ(xi) ≥ ρ− ξi, ξi ≥ 0, ∀xi ∈ X,
(11)

Where:

• ξi - denotes the slack variable.

• ν - represents the trade-off between errors and the maximum margin (ν ∈ (0, 1]).

To solve the above constrained objective function, a lagrangian function is introduced as follows:

4 Methods 21

L =1
2∥w∥

2 − ρ+ 1
νn

n∑
i=1

ξi −
n∑

i=1
αi[(w · ϕ(xi))− ρ+ ξi]−

n∑
i=1

βiξi, (12)

Here, αi and βi are called lagrange multipliers, and their values should be greater than or equal
to 0. The above equation is maximized with respect to α and β and minimized with respect to
w, ξi and ρ for the given values of α and β.

Using the Karush-Kuhn-Tucker conditions, the variables w, ξi, ρ, and βi can be dropped, so the
Lagrangian equations can be written in Wolfe dual form. The Wolfe dual form is expressed as a
quadratic function of α′

is. To avoid high dimensional feature space F , a feature space is chosen
where the dot product can be computed directly using kernel K in the input space. The The
Wolfe dual problem can be expressed as the following equation:

min 1
2

n∑
i,j=1

αiαjK(xi,xj),

subject to: 0 ≤ αi ≤
1
νn
,

n∑
i=1

αi = 1,
(13)

Once the above-constrained optimization problem is solved, the decision function for any data
point can be calculated using the formula below:

f(x) = sgn(w · ϕ(x)− ρ) = sgn
(

n∑
i=1

αiK(xi,x)−
n∑

i=1
αiK(xi,xj)

)
, (14)

While training the model many kernel functions (K) can be used. Some of the common kernel
functions are sigmoid, polynomial, and radial basis kernel (Liu et al., 2007, p. 516-518).

nu and gamma are 2 other hyperparameters that can be adjusted during the training of OC-
SVM using scikit-learn. nu parameter is used to set the lower bound for the number of support
vectors and the upper bound for the proportion of training errors. The value of nu is in the
range (0, 1] and it is used to set the trade-off between the number of support vectors and the
number of training errors. The smaller value of nu makes the model strict as it allows only a
few training errors and support vectors, whereas, the larger value of nu makes the model a bit
lenient as the model uses more support vectors and allows more training errors. This value of
this parameter can significantly affect the results of the model and needs to be chosen carefully.
It is recommended to retune the parameter again when the size of the training data changes.

The gamma parameter is specifically associated with the Radial Basis Kernel (RBF) function.
It determines the amount of influence one training sample has on another. The smaller value
of gamma indicates less influence and points are far from each other. This can result in a
smoother decision boundary, but it may not capture all the information from the data to separate
anomalies. A larger value of gamma indicates a higher influence between the points and can
lead to a wiggly decision boundary. In this case, the model captures the complex patterns in

4 Methods 22

data along with the noise, which leads to overfitting (Adari and Alla, 2024, p. 175). Scikit-learn
provides 3 choices for this parameter:

• scale - this is the default option, which uses the formula 1
n_features×X.var() to calculate the

value of gamma.

• auto - the gamma value is calculated as 1
n_features .

• nu - floating point values greater than 0 can be manually assigned before training.

4.7 Supervised models

4.7.1 ROCKET classifier

RandOm Convolutional KErnel Transform (ROCKET) is designed using a huge number of ran-
dom convolutional kernels with weights, bias, dilation, and padding to extract relevant features.
These features are used to train a linear classifier to achieve state-of-art accuracy in time series
classification.

Kernel

The kernel contains random weights in a vector. As the weights are sampled from a normal
distribution (w ∼ N (0, 1)), most of the weights are small. The kernel size used (chosen randomly
from the numbers 7, 9, and 11) is smaller than input size of the time series but has the same
dimensions (uni-variate or multi-variate time series) as the input. The difference between the
random convolution and normal convolution is that in the random convolution kernel, the weights
are not typically learned. Each random convolutional kernel is combined with input time series
using the dot product to extract features and identify different patterns in time series and added
to the bias term. The bias term is sampled from a uniform distribution (b ∼ U(−1, 1)).

Dilation (d) refers to the gaps between the time series when convolved with the kernel. In the
case of dilation one, all data point in the time series is convolved with the kernel whereas in
the case of dilation two, every second data point is used for convolution operation. The dilation
value is sampled using an exponential scale (d = ⌊2x⌋, x ∼ U(0, A)), where A = log2

(
linput−1
lkernel−1

)
.

Here l denotes the length.

The formula below is used to represent the convolutional operation applied to the time series:

Xi ∗ ω =

lkernel−1∑
j=0

Xi+(j×d) × ωj

+ b, (15)

Where:

• Xi - denotes a uni-variate time series at a particular point i.

• ω - denotes the weights in the kernel.

4 Methods 23

• lkernel - represents the length of the kernel.

• b - denotes the bias term.

• × - represents the dot product operation.

The padding technique is used to append zeros at the start and end to ensure that the length
of the convolutional output is the same as the input. The value of stride is always set to 1.
Moreover, no non-linearity functions are applied to the results of the convolutions.

Feature extraction

From each feature map obtained from the convolutions, the ROCKET classifier calculates 2
features, namely, the maximum value and proportion of positive values (ppv). The maximum
value is nothing but the global max pooling and is used to get the maximum feature value from
the feature map.

The (ppv) is used to determine the proportion of input time series that matches the positive
proportion of the output of convolutional operation (given pattern). The bias term acts as a
threshold for calculating the ppv feature. The positive value of the bias term is highly relevant
for the ppv. If the bias value is positive, even the weak matches between the input and the given
pattern are captured by ppv, whereas, if the bias value is negative, only the strong matches
between the input and the given pattern are captured. The ppv feature has more weightage in
improving the accuracy of the classifier when compared to other features.

The formula to calculate the ppv can be represented as follows:

ppv(Z) = 1
n

n−1∑
i=0

[zi > 0], (16)

Where:

• Z - represents the output of the convolutional operation.

• zi - denotes the ith element in the output of convolutional operation.

• n - denotes the number of time series.

The features extracted are used to train any classifier but linear classifiers like logistic regression
or ridge regression classifier are preferred in general. The logistic regression is suitable for very
large datasets and the ridge regression classifier can be used on any dataset. In the case of the
ridge regression classifier, the model is trained on each class using the one vs rest approach.

Even though ROCKET uses convolutional kernels as a neural network, it is different from them
as it doesn’t use hidden layers and the features extracted from each kernel are independent from
each other. The ROCKET classifier implementation in sktime provides some hyperparameters:
num_kernels are used to set the number of convolutional kernels to be used while training the
classifier. The library has a default value of 10,000 kernels. max_dilations_per_kernel is used
to set the maximum number of dilations per kernel (Dempster et al., 2019, p. 1-9).

4 Methods 24

4.7.2 Catch22 Features

The process aims to select the best 22 features out of 4791 features of the highly comparative
time series analysis (hctsa) library based on their performance in 93 time series classification
tasks. The selection procedure consists of 3 steps, namely, statistical prefiltering, performance
filtering, and redundancy minimization. In the statistical prefiltering step, the features are
evaluated based on consistent performance on a set of classification tasks. For the classification
tasks, null accuracy distributions are generated using a permutation-based procedure. Next,
the classification is performed on randomly shuffled class labels, and the p-value is estimated.
In the second step, a subset of features is selected from the good-performing features in the
first step by assigning ranks based on combined normalized accuracy. The third step aims to
reduce the redundancy of features. In this step, a hierarchical clustering is performed using
the Pearson correlation distance, and a single feature is selected to represent each cluster. The
catch22 features are listed in the tables 60 and 61 in the appendix (Lubba et al., 2019).

4.7.3 Random Forest Classifier

The random forest algorithm is also an ensemble learning method that uses a bagging approach
to train multiple decision trees. A random subset of features is selected to construct each decision
tree. At each node, the best feature is selected to split the data into the child nodes. To build
a random forest model for the training set (D), the parameters required are the number of base
learners to construct (M), and the number of features to consider for each node (Vens, 2013, p.
1812-1813).

Algorithm 1 Random Forest algorithm
for k = 1 to the number of base learners (M) do

Select a random subset of data (Dk) from the training set (D) using bootstrapping
Build a base learner (hk) using random feature selection (Dk, F)

end for
return final prediction by aggregating the predictions of the base learners (∪ hk).

As the number of trees increase the predictive performance of the model and hence, there
might not be a possibility of overfitting to the training dataset. The random forest algorithm
also provides a list of attributes ranked according to their importance in predicting the target
variable.

4.7.4 Shape based classifier

A subsequence that captures the local patterns or shapes in the time series data is termed a
shaplet. The idea behind the process is that each class of time series will have a unique shape
that distinguishes it from the other classes and this can be used as features for the classification

4 Methods 25

algorithm. The Shaplet discovery process consists of 3 steps, namely, candidate generation,
shaplet distance calculation, and shaplet assessment.

In the first step, (m− l)+1 subsequences are generated for each time series in the minimum and
maximum value of the intervals. Here, m denotes the length of time series and l denotes the
length of shaplets. These subsequences are normalized and termed as candidates. In the second
step, Euclidean distance is used to calculate the distance between 2 subsequences of length l.
The minimum distance between a subsequence and all the subsequences of a particular time
series (Xi) is defined as the distance between the time series and a subsequence. It can be
calculated using the formula below.

dS,i = min
R∈Wi,l

dist(S,R), (17)

Where:

• S - denotes the subsequence of length l.

• Wi,l - set of normalised sequences of length l for series Xi.

• R - denotes the subsequence of length l from the set Wi,l.

• dist(S,R) - denotes the euclidean distance between S and R.

• dS,i - represents the minimum distance between the S and R in the set Wi,l.

Using the above procedure, n number of distances are generated between the shaplet S and all
the time series in the dataset. In the third step, the shaplet quality is assessed using how well
each class can be separated by a set of distances (Ds =< dS,1, dS,2, ..., dS,n >). The list DS is
sorted, and split points (sp) are defined as the average of any two consecutive distances in the
sorted list. In other words, if the distances in DS are sorted as dS,1 ≤ dS,2 ≤ ... ≤ dS,n, then
each sp is calculated as:

sp = dS,i + dS,i+1
2 , for i = 1, 2, ..., n− 1, (18)

The information gain metric is used to evaluate the quality of shaplets. Information gain is
calculated for each split point in the sorted list of DS using the formula:

IG(DS , sp) = H(DS)−
(|AS |
|DS |

H(AS) + |BS |
|DS |

H(BS)
)
, (19)

Where:

• AS - denotes the elements with (DS < sp).

• BS - denotes the elements with (DS > sp).

• H(DS), H(AS), H(BS) - represents the entropy of DS , AS and BS respectively.

• |DS |, |AS |, |BS | - denotes the cardinality of DS , AS and BS respectively.

4 Methods 26

• IG(DS , sp) - represents the information gain from a particular split point sp.

The final information gain of shaplet S is calculated using the formula:

IGS = max
sp∈DS

IG(DS , sp), (20)

(Hills et al., 2013).

4.7.5 Time Series Forest (TSF) classifier

The TSF algorithm uses a tree ensemble approach similar to the random forest algorithm but it
is specifically designed for time series classification. It uses a combination of entropy gain and
distance measure (Entrance) to perform the splitting process.

Let {fn
k (t1, t2), n ∈ 1, 2, ..., N} denote the set of features for each node of a tree. The algorithm

starts by calculating the features mean, standard deviation, and slope for a random set of
intervals in the time series. The above-mentioned features can be calculated using the formulas
below:

f1(t1, t2) =
∑t2

i=t1
vi

t2 − t1 + 1 , (21)

f2(t1, t2) =

√∑t2

i=t1
(vi−f1(t1,t2))2

t2−t1
if t2 > t1

0 if t2 = t1

, (22)

f3(t1, t2) =

β̂ if t2 > t1

0 if t2 = t1
, (23)

In the above formulas, t1 and t2 represent the start and end points of the intervals. f1, f2, and f3

denote the function to calculate the mean, standard deviation, and slope between the intervals
t1 and t2. β̂ is the slope. vi represents the value of the time series at point i.

Each node in the tree checks the condition (fk(t1, t2) ≤ τ) and it is used to split the node. Here,
t represents the threshold value. The best threshold value for a feature fk is obtained from
the candidate threshold values range

[
minN

n=1 (fn
k (t1, t2)) ,maxN

n=1 (fn
k (t1, t2))

]
. The interval

between the candidates is equally spaced and the number of candidates for the threshold is fixed
and denoted by k.

The feature values that are less than or equal to the best threshold are placed in the left child
node of a tree and the values greater than the best threshold are placed in the right child node
of the tree.

In general, entropy is used to determine the best split, but in the time series data there is a
possibility of having a large number of candidate splits, and most of the candidate splits might

4 Methods 27

have the same entropy. Hence, an additional measure is required to determine the best split.
TSF uses Margin (it is the distance between the candidate threshold and the nearest feature
value). The Margin value for the particular feature split (fk(t1, t2) ≤ τ) is calculated using the
below formula:

Margin = min
n=1,2,...,N

|fn
k (t1, t2)− τ | , (24)

In the above equation, n denotes the nth instance of the node. Hence, the new splitting criteria
is a combination of entropy gain ∆Entropy and Margin. It can be termed as Entrance gain
(E = ∆Entropy + α ·Margin).

Here, ∆E is the entropy gain and the α value is used to break ties in the case of equal entropy
gain values. Hence, the maximum value of E is used to split the node. Based on this approach,
multiple decision trees are trained using the training data. The predictions from each decision
tree are used to make the final prediction for the time series using the max voting strategy (Deng
et al., 2013).

4.7.6 Rotation Forest

Rotation forest is an ensemble learning method, as a first step it splits the features into K
subsets and applies principal component analysis (PCA) to extract features. Consider a dataset
X with N observations and n number of features. Let Y denote the class label vector with
shape N × 1. The parameter K is selected before the training phase, and each feature subset
contains M = n/K features. Finally, L denotes the number of base learners in the ensemble
algorithm and F denotes the complete feature set. The features extracted from PCA are placed
in the rotation matrix.

The dataset X is multiplied with Ra
i and each base learner takes the input (XRa

i , Y) in the
training phase. During the testing phase, each base learner (Di) gives probability scores for an
observation belonging to multiple classes {ω1, . . . , ωc}. The final prediction is calculated using
the formula below:

µj(x) = 1
L

L∑
i=1

di,j(xRa
i), j = 1, . . . , c, (25)

Where:

• a - coefficients of principal components a(1)
i,j , . . . , a

(Mj)
i,j , each of size M × 1.

• Ra
i - rearranged rotation matrix of size (N × n).

• µj(x) - denotes the class label predicted for x.

• di,j(xRa
i) - denotes the probability predicted by the base learner Di given x, to test the

hypothesis that x comes from class ωj .

4 Methods 28

Algorithm 2 Algorithm for creating Rotation matrix in Rotation Forest
for i = 1 to the number of base learners (L) do

Create K feature subsets Fi,j (j = 1 . . . K)
for j = 1 to the number of feature subsets (K) do

Select a random subset (Xi,j) from the data set X and features Fi,j

Remove a random subset of classes from Xi,j

Select 75 % of observations from the subset Xi,j using bootstrapping and denote it by
variable X ′

i,j

Apply Principal component analysis store feature coefficients in Ci,j

end for
Create a Rotation matrix (Ri) from Ci,j of all the K feature subsets
Create Ra

i by rearranging the columns of the rotation matrix (Ri) such that the features
match the order of the original feature set
end for

(Rodríguez et al., 2006).

4.7.7 Convolutional Neural Network (CNN)

A convolutional neural network (CNN) consists of neurons, weights, and biases similar to dense
layers in a neural network, but they are not fully connected. Each CNN layer contains kernels
with a length smaller than the input. These kernels capture temporal features in the time series
by sliding over the input, calculating the dot product, and then applying activation functions
like ReLU, sigmoid, or hyperbolic tangent. After activation, the output undergoes a pooling
operation like max pooling or average pooling. The equation for calculating the dot product is
as follows:

s(t, h) = (wh × x)(t) =
∞∑

n=−∞
x(n)wh(t− n), (26)

Where:

• wh – denotes the weights of the kernel h.

• x – represents a time series of length N .

• T – denotes a point in time series and ranges from 1 to N .

4 Methods 29

Figure 9: Convolutional Neural Network Architecture (Doniec et al., 2023).

Figure 9 shows the convolution operation performed on a time series data. It has two convolution
layers each combined with a pooling layer. The output of the convolutional layers is flattened and
passed through fully connected dense layers. Finally, the output layer uses the softmax function
to classify the time series into a particular class (Arratia and Sepúlveda, 2020, p. 60-69).

4.7.8 KNN classifier

KNN is a non-parametric, simple algorithm used to predict the class of unknown data points
using the nearest neighbor approach. To predict the class label for an observation in the test
set, the algorithm computes the distance between the observation and all the observations in
the training set. It then filters out the top k observations with the minimum distance to the test
observation. The class label is assigned based on the class labels of these k nearest neighbors.
For the KNN algorithm, it is assumed that the training data is labeled. The choice of the k value
and the distance function plays an important role in the performance of the KNN classifier. The
distance function must be selected so that the probability of k-nearest neighbors belonging to
the same class is high. Generally, Minkowski, Manhattan, and Euclidean distances are used as
distance functions.

Figure 10: KNN classifier (Tarawneh, 2021).

The importance of the k-value is illustrated using the above figure. In figure 10, square and
rectangle points belong to class 1 and class 2, respectively, of a training set. After computing

4 Methods 30

distances between all the points, if k = 1, then class 1 is assigned to the new observation, and if
k = 3, class 2 is assigned. If the k value is too small, it is considered weak classification because
there are only a few neighbors, and more instances of the training set are not considered for
prediction. If the k-value is too large and most of the training instances belong to the same
class, the prediction might be biased. Hence, the optimal value of k is chosen based on the
results from the validation set (Mucherino et al., 2009, p. 83-84).

Algorithm 3 KNN algorithm
for i = 1 to the number of samples in test set (test) do

for j = 1 to the number of samples in training set (training) do
Calculate the distance between training(i) and test(j)

end for
Select the k samples from training(i) with smallest distance.
Assign label to test(j) based on the majority labels of k nearest neighbors from training(i).

end for

4.8 Unsupervised models

4.8.1 Spectral Clustering

In general, simple clustering algorithms like K-means perform poorly when data points are
not linearly separable. Spectral clustering is based on graph theory and uses linear algebra
methods to separate data into clusters more efficiently. The steps in spectral clustering include
constructing a similarity matrix, computing the graph Laplacian, and finding the eigenvectors.
These eigenvectors represent the decomposed representation of the original data and are used
as input for the final clustering algorithm.

Similarity matrix

Let x1, . . . , xn be a set of data points and the similarity between two points xi and xj be sij . The
idea behind spectral clustering is to partition the data into multiple groups using the similarity
information between the data. Similar data points are expected to be in the same group whereas
dissimilar data points will be in different groups and hence the similarity sij is always greater
than or equal to 0.

In spectral clustering graph G = (V,E) is used to represent the similarity between the data
points. V denotes a set of vertices. In this case, vertices vi and vj are data points xi and xj .
The edges represent the connection between vertices and are weights of the edges wij represent
the similarity (sij) between the data points xi and xj . The edges of the nodes within the group
will have higher weights because of the higher similarity between them and the edges between
different groups will have lower weights. As the graph is undirected, wij = wji.

In the case of a fully connected graph, the weighted adjacency matrix (W) contains the similarity
information and can be calculated using the formula below:

4 Methods 31

Wij =

s(xi, xj) if i ̸= j

0 if i = j
, (27)

The similarity s(xi, xj) can be computed using the Gaussian or radial basis function (RBF) and
it can be represented using the formula:

s(xi, xj) = exp
(
−∥xi − xj∥2

2σ2

)
, (28)

Where ∥xi − xj∥2 represents the Euclidean distance between the points xi and xj . σ represents
the ϵ neighborhood graph. It is used to connect the data points with pairwise distances less
than ϵ.

The degree (di) of the vertex vi ∈ V can be calculated using the formula di = ∑n
j=1wij . The

degree matrix D is used to represent the degree of all vertices and it is a diagonal matrix.

Graph laplacian and eigen vectors

The graph Laplacian matrix can be defined as L = D −W . To be a graph Laplacian matrix,
the matrix L should satisfy the conditions below:

• For an arbitrary eigenvector, f ∈ Rn, it should satisfy the condition fTLf = 1
2
∑n

i,j=1wij(fi−
fj)2.

• L is a positive semi-definite matrix and symmetric.

• The smallest possible eigenvalue of L is 0 and its corresponding eigenvector should have
all the values assigned to 1.

• The matrix L contains real values and non-negative eigenvalues satisfying the condition
(0 = λ1 ≤ λ2 ≤ . . . ≤ λn).

For a small eigenvalue λ the Laplacian graph matrix is associated with an eigenvector f . For a
pair of data points xi and xj , if the similarity between them is high then (fi− fj) is very small.
Now, for the first k(k ≤ n) eigenvectors of the k smallest eigenvalues are selected as an input for
the simple clustering algorithms like k-means clustering. Also, k value can be used to specify
the number of clusters in k-means algorithm (Luxburg, 2007, p. 1573-1375).

4 Methods 32

Algorithm 4 Spectral clustering algorithm
Require: Input: set of data points {x1, . . . , xn}, similarity function s(xi, xj), number of clusters

(k)
1: Create a similarity graph G from {x1, . . . , xn} and s(xi, xj)
2: Create weighted adjacency matrix (W) and degree matrix (D) from G

3: Calculate graph Laplacian matrix L = D −W
4: Compute first k eigenvectors f1, . . . , fk from L and let U ∈ Rn×k represent the matrix of k

eigenvectors
5: For i = 1, . . . , n let zi ∈ Rn represent the ith row in U

6: Fit k-means algorithm to zi and assign the clusters from C1, . . . , Ck

7: return Cluster assignments

4.8.2 K-means clustering

K-means is a simple clustering algorithm that divides the entire dataset into a set of K non-
overlapping clusters. The value of K determines the number of clusters and it should be specified
before the start of the algorithm. In the first step, depending on the number of clusters, K
random cluster centers are initialized and each observation is assigned to its closest cluster
center. Let C1, . . . , CK denote cluster variables of K clusters, and n denote the total number of
observations in the dataset then the following 2 properties are valid:

• C1 ∪ C2 ∪ . . . ∪ CK = n. This says that the union of all the observations from K clusters
is equal to the total observations in the dataset and it also denotes that each observation
belongs to at least 1 cluster.

• Ck ∩Ck′ = ∅ for all k ̸= k′. This says that there are no common observations between any
2 clusters.

The amount of deviation of a data point to all other data points within the cluster can be defined
as the within-cluster variation of a cluster. For cluster CK , it can be denoted using W (Ck). For
a good clustering result obtained from the K-means algorithm, the within-cluster variation
will be as small as possible. Common distance functions like squared Euclidean distance, and
Manhattan distance can be used to calculate the within-cluster variance of the data points. In
the case of time series data, dynamic time warping is used as a distance metric. The formula to
calculate within-cluster variation using squared Euclidean distance can be represented as follows:

W (Ck) = 1
|Ck|

∑
i,i′∈Ck

p∑
j=1

(xij − xi′j)2, (29)

Where:

• |Ck| - denotes the total number of observations in clusters Ck.

• i, i′ – denote the data points of the cluster Ck.

4 Methods 33

• p - denotes the number of features or parameters in the dataset.

At each iteration, the algorithm calculates W (Ck) and updates the cluster centers by computing
the mean of all the observations within the cluster. The process is repeated until it reaches the
specified number of iterations or until convergence. Hence, the goal is to reduce the within-
cluster variation of all the clusters. This can be considered as an optimization problem and can
be denoted using the formula below:

min
C1,...,CK

K∑

k=1

1
|Ck|

∑
i,i′∈Ck

p∑
j=1

(xij − xi′j)2

 , (30)

The convergence of the algorithm depends on the initialization of cluster centers, and the al-
gorithm may converge at the local optimum. To handle this problem, the K-means algorithm
is run multiple times with different initializations. In the end, the model with the smallest
within-cluster variance is selected as the best model (James et al., 2021, p. 521-525).

Algorithm 5 K-means clustering algorithm
Input: number of clusters (K), dataset D with n observations
Initialize K random points as cluster centers
repeat
for each observation i in the dataset D do

Assign observation i to its nearest cluster center
end for
update cluster centers by calculating the mean of all observations in the cluster
Until maximum iteration number or convergence
return Cluster results

(Jin and Han, 2017, p. 695-697)

4.8.3 K-shape clustering

The K-shape clustering algorithm is used to partition the data into K clusters using a shape-
based distance metric. It is similar to the K-means algorithm as it uses an iterative approach to
minimize the sum of squared distances to create well-separated clusters. The uniqueness of the
K-Shape algorithm lies in formulating the distance measure and centroid computation, which
captures and preserves the shape of the time series. Also, the K-Shape algorithm scales linearly
with the increase in the number of time series sequences. K-shape is specifically designed to
efficiently cluster time series data, and it is invariant to scaling and translation in the time series.

Distance Measure

To capture shape-based information, distance measures should be robust to changes in the
amplitude and phase of the time series sequences. DTW (Dynamic Time Warping) is one

4 Methods 34

of the best distance metrics for handling these changes, but it is computationally expensive.
Therefore, the k-shape algorithm uses a normalized version of the cross-correlation measure to
capture shape-based similarity. Consider two sequences x⃗ = (x1, . . . , xm) and y⃗ = (y1, . . . , ym).
To determine the similarity between x⃗ and y⃗, the cross-correlation measure keeps the sequence
y⃗ static and slides sequence x⃗ over y⃗ to compute the inner product of y⃗ with each shift s in x⃗.
This helps capture the similarity even if one sequence is shifted relative to the other. The shift
(s) in sequence x⃗ can be denoted using the formula below:

x⃗(s) =

(

|s|︷ ︸︸ ︷
0, . . . , 0, x1, x2, . . . , xm−s), s ≥ 0

(x1−s, . . . , xm−1, xm, 0, . . . , 0︸ ︷︷ ︸
|s|

), s < 0
, (31)

In the above formula, m denotes the number of points in a sequence. If s ≥ 0, then it denotes
the shift is positive. The sequence x⃗ is shifted to the right by placing s 0’s in the front of
the sequence and removing s points at the end of the sequence. If s < 0, it denotes that the
shift is negative. The sequence x⃗ is shifted left by removing the first s 0 points of the sequence
and simultaneously s points are added at the end of the sequence. If all possible shifts are
considered, then s belongs to [−m,+m]. The cross-correlation of sequences x⃗ and y⃗ is defined
using CCw(x⃗, y⃗) = Rw−m(x⃗, y⃗), where w ∈ [1, 2, . . . , 2m − 1]. Here, the index w represents
different shifts of the sequence x⃗. This can be calculated using the formula below

Rk(x⃗, y⃗) =

m−k∑
l=1

xl+k · yl, k ≥ 0

R−k(y⃗, x⃗), k < 0
, (32)

In the above formula, k = w −m, k can have both positive and negative values which denote
the shift of the sequence to the right and left. Based on the k value, the above formula is used
to compute the inner product of y with shifted sequence x. The goal is to find the index w at
which CCw(x⃗, y⃗) is maximum. Based on the value of w, the optimal shift value s of sequence x⃗
with respect to y⃗ can be calculated as s = w −m.

Moreover, based on the field of application, a specific normalization method has to be applied
to the values CCw(x⃗, y⃗). In this case, coefficient normalization (NCCc)is used. The coefficient
normalization divides the cross-correlation measure with the geometric mean of autocorrelations
of individual sequences.

Shape-based distance (SBD): A cross-correlation measure with coefficient normalization is
used to create the shape-based distance metric. The values of NCCc(x⃗, y⃗) range from -1 to +1.
Finally, the shape-based distance metric can be represented using the formula below:

SBD(x⃗, y⃗) = 1−max
w

(
CCw(x⃗, y⃗)√

R0(x⃗, x⃗) ·R0(y⃗, y⃗)

)
, (33)

4 Methods 35

In the above equation, R0(x⃗, x⃗) and R0(y⃗, y⃗) denotes the geometric mean of autocorrelation of x⃗
and y⃗ respectively. The values of SBD range from 0 to 2, where 0 indicates a perfect similarity
between the sequences.

Shape extraction

In general, an average time series is used to make observations on a set of time series sequences.
In clustering, this average can be denoted as a centroid. However, for time series, the computed
average doesn’t efficiently capture the underlying class characteristics. To address this, the
centroid computation in k-shape clustering is treated as an optimization task where the goal
is to minimize the sum of squared distances to all other sequences. Since cross-correlation
measures the similarity of time series rather than dissimilarity, the objective function is changed
to maximize the sum of squared similarities to all other sequences. As the clustering algorithm
is iterative, the centroids from the previous iteration are used to reassign the sequences to the
nearest centroid.

In the first step, the algorithm randomly assigns a cluster number from 1 to K to all the time
series. In the second step, the cluster centers are computed using the shape extraction method.
After computing the centroids, the cluster memberships are refined using the shape-based dis-
tance measure. Next, the algorithm iteratively performs two steps, namely, the assignment step
and the refinement step. In the assignment phase, each time series is compared with all the
computed cluster centroids, and cluster membership is reassigned to the closest centroid. In
the refinement phase, as the cluster membership has changed for the data, the cluster centroids
are computed and updated. These two steps are repeated until there are no changes in the
cluster membership (the algorithm has reached convergence) or until the maximum number of
iterations specified. The output of the algorithm contains final cluster assignments for each time
series and the centroid values of each cluster (Paparrizos and Gravano, 2016).

4.8.4 Affinity propagation

The affinity propagation algorithm belongs to a family of message passing algorithms. Here,
each point in the dataset is considered a node and messages are passed through the edges in the
network until a good set of clusters are created. The cluster centers are called exemplars and are
chosen in such a way that they represent the characteristics of other data points in the cluster.
The algorithm works very differently compared to normal clustering algorithms. In the initial
phase, each point in the dataset is considered an exemplar and the algorithm automatically
determines the number of clusters for the provided dataset.

As the algorithm uses the graph structure, it expects the input as a similarity matrix. Let i and
k be two data points. The similarity s(i, k) denotes how well the data point at index k is suited
to be an exemplar for the data point i. In general, negative squared Euclidean distance is used
as a metric to compute the similarity between the points and it is calculated using the equation
s(i, k) = −∥xi − xk∥2.

4 Methods 36

For each data point, s(k, k) computes the self-similarity. This is important because the data
points with larger self-similarity values are most likely to be chosen as exemplars. The self-
similarity values are called preferences and are also used to determine the number of clusters.
If all the points in the dataset are equally suitable to be an exemplar, the preferences are set to
a common value like the median. Two kinds of messages are passed between the data points,
namely, responsibility and availability.

Responsibility

The responsibility message is passed from the data point i to the potential exemplar candidate k.
This message provides evidence to show how well suited the point k is to serve as an exemplar for
point i when compared to other candidate exemplars for i. The responsibility can be computed
using the formula below:

r(i, k)← s(i, k)−max
k′ ̸=k

{
a(i, k′) + s(i, k′)

}
, (34)

Where:

• r(i, k) – denotes the responsibility computation between the point i and exemplar k.

• s(i, k) – denotes the similarity between point i and exemplar k.

• s(i, k′) – denotes the similarity between the point i and other exemplars k′.

• a(i, k′) – denotes the availability computation between the point i and other exemplars k′.

In the first iteration, the responsibility and availability matrices are initialized to 0. Then,
the responsibility is calculated using the above formula. As the availability matrix is 0 for the
first iteration, the responsibility is computed by subtracting the maximum value of the similarity
between the point i and other candidate exemplars k′ from s(i, k). The self-responsibility s(k, k)
is computed by subtracting s(i, k′) from s(k, k). The self-responsibility shows evidence of how
ill-suited it is to assign an exemplar k to another exemplar.

Availability

The availability message is passed from the potential exemplar k to the data point i. This
message provides evidence to show how appropriate it is to choose the point k as an exemplar
for point i by considering the support from all other points that have chosen k as its exemplar.
The availability can be computed using the formula below:

a(i, k)← min

0, r(k, k) +
∑

i′ ̸∈{i,k}
max

{
0, r(i′, k)

} , (35)

Where:

• a(i, k) – denotes availability computation between the point i and k.

• r(k, k) – denotes self-responsibility of the candidate exemplar k.

4 Methods 37

• R(i′, k) – denotes responsibility of the other points i′ to the exemplar k.

At each iteration, the responsibility and availability matrices are updated based on the current
similarity and availability values. To identify the exemplars, the availability and responsibility
values are combined. For a point i, the maximum value of a(i, k) + r(i, k) either denotes an
exemplar k if k = i or finds an exemplar point of the data point i. The algorithm stops when
the message passing falls below a certain threshold, when there are no changes in the exemplars
of the data points for a certain period of time, or when the specified number of iterations is
reached (Frey and Dueck, 2007).

4.8.5 Self Organizing Maps (SOM)

Self-organizing maps (SOM) are a special type of artificial neural network primarily used for
tasks like dimensionality reduction and clustering. The goal of SOM is to transform high-
dimensional data into lower dimensions, typically 2D, without losing the relationships between
the input data. The main advantages of SOMs are that they do not assume variables in the
dataset follow a certain distribution or that variables are independent. They perform well on
non-linear datasets and are easy to implement. It is an unsupervised approach and they are also
called Kohonen maps.

The architecture of a SOM network consists of just an input layer and an output layer. The
input layer is directly connected to the output layer without any hidden layers. Consider a data
set X with m features. Each row in the dataset can be represented as an m dimensional input
vector x(t) = (x1(t), x2(t), . . . , xm(t))′ at iteration t, and hence, the number of neurons in the
input layer is equal to the number of features in the dataset (m). The number of neurons in the
output layer is equal to the number of clusters specified by the user. This is a fully connected
network, and weights are initialized randomly. Let w(t) = (wi1(t), wi2(t), . . . , wim(t)) where
i = 1, 2, . . . , n denotes the number of nodes in the output layer. The SOM model is trained
based on three characteristic processes: competition, cooperation, and adoption.

Competition: In this process, all the output neurons compete with each other to learn and
represent the input data in the best possible way. The neuron with the best representation is
declared the winner. Representations of each output neuron are compared with input neuron
using functions like Euclidean distance, and the neuron with the weight vector closest to the
input vector is determined as the best matching unit.

The Euclidean distance to calculate the similarity between the input vector and each output
node is represented using the formula below:

di(t) = ∥x(t)− wi(t)∥ =

√√√√ m∑
j=1

(xtj − wij(t))2, i = 1, 2, . . . , n, j = 1, 2, . . . ,m, (36)

Where:

4 Methods 38

• t denotes the iteration number.

• x(t) represents the input vector at iteration at t.

• wi(t) represents the weight vector of the ith output node at iteration t.

• j denotes a specific feature from the dataset.

• xj(t) and wij(t) are the j-th components of the input vector and the weight vector of the
i-th output neuron at iteration t, respectively.

Finally, the formula for winning node c can be represented as follows:

c(t) = arg min
i
{∥x(t)− wi(t)∥}, (37)

Cooperation: SOM output neurons are topologically structured so that neurons capturing
similar properties from input data are located near each other. This is achieved by using
neighborhood information. Here, the winner node determines the neighborhood of the similar
or cooperating nodes.

Adaptation: The winner node and its neighboring nodes weight vectors are adjusted to be-
come more similar to the input sample. As a result, the node that captures a particular input
information precisely will also capture data similar to this input. The weights are updated based
on the hyperparameters learning rate (α) and neighborhood size.

The learning rate is inversely proportional to the number of iterations (t), i.e., as the number
of iterations increases, the learning is decreased linearly. Let wi(t) be the weight vector of the
winner node in iteration t. Then, the weight vector is updated at iteration t + 1 using the
formula below:

wi(t+ 1) = wi(t) + α(t)[x(t)− wi(t)], (38)

As the algorithm uses neighborhood information to preserve the topological information of the
input data, the neighborhood in iteration t is calculated using the formula below:

hci(t) = exp
(
− d2

ci

2σ2(t)

)
, (39)

Where:

• hci(t) - represents the neighborhood function.

• d2
ci - represents the distance between winning neuron c and excited neuron i.

• σ(t) - denotes the effective radius of neighborhood in iteration t.

(Asan and Ercan, 2012)

4 Methods 39

4.9 Cluster ensemble methods

The process of applying multiple clustering algorithms to the same dataset and combining
the results to create final clusters is called cluster ensemble. Just as ensemble models have
proven successful in improving the results of supervised classifiers, the same idea is used to
enhance overall clustering results. Cluster ensemble methods consist of two steps: generation
and consensus function. In the generation step, several clustering algorithms are applied to the
same dataset, and the labels from each method are stored. In the consensus function step, the
partitions obtained from different clustering algorithms are combined to create new cluster labels
or partitions. The new clusters obtained may or may not be better, as there is no ground truth
for comparison. It is based on the assumption that combining labels from different algorithms
could reduce the errors made by using only a single algorithm, making the results more reliable.
In this thesis, co-association matrix methods and relabel and maximum voting methods are used
for cluster ensemble in the consensus step (Vega-Pons and Ruiz-Shulcloper, 2011).

4.9.1 Co-association matrix method

In the consensus step of the co-association matrix method, first, a binary co-occurrence matrix
is created for each clustering algorithm in the generation step. Let X = {x1, x2, . . . , xn} be
a dataset with n observations, and Cin = {C1, C2, . . . , Cm} be a set of m clustering algorithms
applied on X. For each clustering algorithm, the binary co-occurrence matrix is n × n matrix,
which indicates whether two observations xi and xj belong to the same cluster. The values of
the binary co-occurrence matrix for algorithm Ck can be represented using the method below:

Ck(i, j) =

1, if xi and xj are clustered together

0, otherwise
, (40)

The co-association matrix of size n × n is created by taking the average of all the binary co-
occurrence matrices. The formula for this is as follows:

M(i, j) = 1
m

m∑
k=1

Ck(i, j), 1 ≤ i ≤ n, 1 ≤ j ≤ n, (41)

In the above formula, M(i, j) denotes the co-association matrix of m clustering algorithms. In
the co-association matrix, the observations that belong to the same cluster will have values close
to 1, while the observations that belong to different clusters will have values close to 0. This
method is simple and avoids relabelling problems when combining labels from different algo-
rithms. This co-association matrix serves as a similarity matrix for final clustering algorithms
like hierarchical clustering or spectral clustering (Hu et al., 2018, p. 599-613).

4 Methods 40

4.9.2 Relabel and maximum voting method

The consensus step of the relabel and voting method consists of two steps: relabeling the cluster
assignments and the voting step. Since the cluster labels generated by different clustering
algorithms have no relation between them, it is crucial to relabel them for use in the voting
method. This relabeling task can be seen as a label correspondence problem and is particularly
challenging in unsupervised domains. In this thesis, the Hungarian algorithm is used to address
this label correspondence problem through a maximum likelihood approach. The goal of the
Hungarian algorithm is to minimize disagreements between pairwise mappings of cluster labels
or maximize total agreements between them. For efficient implementation of this approach, it
is essential that different clustering algorithms yield the same number of clusters. The results
of the Hungarian algorithm are meaningful only when there exists a relationship between the
labels assigned by different clustering algorithms (Vega-Pons and Ruiz-Shulcloper, 2011).

Consider two sets A and B each containing n elements. A cost matrix C is created such the
rows contain the elements from set A and the columns contain elements from set B. An element
in the cost matrix Cij denotes the cost of assigning the ith element in A to the jth element in
B. This matrix is used to find the assignment that minimizes the total cost.

Steps in the Hungarian Algorithm:

• In the cost matrix C, find the minimum value in each row and subtract it from all the
elements in the row. Similarly, find the minimum value in each column and subtract it
from all the elements in the column. As a result, some values in the cost matrix are
assigned to value 0.

• Determine the minimum number of lines for both rows and columns such that all the zeros
are covered.

• If the number of lines is less than n, find the minimum of values that are not covered by
the lines. Subtract the minimum value from the uncovered elements and add the minimum
value to the intersection elements. The elements that contain a row line and a column
line are considered as an intersection element. Repeat the above steps until the number
of lines is equal to n.

• If the number of lines is equal to n, then the algorithm has reached the optimum solution
for the assignment between the sets A and B.

The Hungarian algorithm is suitable only for medium-scale assignment problems because of its
time complexity (Gil-Aluja, 1998, p. 148-158).

Once the optimal mappings are obtained from the Hungarian algorithm, the cluster labels from
individual clustering algorithms are relabeled accordingly. Subsequently, the voting method
is applied to determine the final cluster assignment for each data point. Each data point is
assigned to the cluster that receives the most votes. This voting mechanism resolves conflicts in

4 Methods 41

assignments from different algorithms and ensures that each data point is assigned to a single
cluster (Vega-Pons and Ruiz-Shulcloper, 2011).

4.10 Evaluation Metrics

4.10.1 Confusion matrix

A matrix used to evaluate the predictions obtained from the classification model is termed a
confusion matrix. It consists of N rows and N columns, with the rows representing the actual
classes and the columns representing the predicted classes. Here, N denotes the number of
classes in the dataset. For N = 2 classes, the confusion matrix can be represented using the
table below:

Predicted Positive Predicted Negative
Actual Positive TP FN
Actual Negative FP TN

Table 1: Confusion Matrix

From table 1, the definitions of the elements TP, TN, FP, and FN are as follows:

True Positive (TP): count of positive values predicted by the model, and the ground truth is
also positive.

True Negative (TN): count of negative values predicted by the model, and their ground truth is
also negative.

False Positive (FP): count of positive values predicted by the model, and their ground truth is
negative.

False Negative (FN): count of negative values predicted by the model, and their ground truth
is positive (Dalianis, 2018, p. 46-53).

4.10.2 Classification report

Performance metrics like recall, precision, F1 score, and accuracy can be calculated using the
elements of confusion matrix. These metrics provide different information about the classification
model, and their collective can be termed as a classification report.

Accuracy: The count of correct predictions divided by the total number of predictions made
by the model is termed accuracy. It is calculated using the formula:

Accuracy = TP + TN

TP + TN + FP + FN
,

Precision: The count of true positive predictions divided by the total number of positive
predictions made by the model is termed precision. It can be calculated using the formula:

4 Methods 42

Precision = TP

TP + FP
,

Recall: The count of true positive predictions divided by the total number of actual positive
values is termed as the recall of the model. It is also called sensitivity or true positive rate. It
can be calculated using the formula:

Recall = TP

TP + FN
,

Specificity: The count of true negative predictions divided by the total number of actual
negative values can be termed as specificity or True Negative Rate (TNR). It can be calculated
using the formula:

Specificity = TN

TN + FP
,

F1-score: The harmonic mean between the precision and recall values can be termed F1-score.
It can be calculated using the formula:

F1− score = 2 ∗ Precision ∗Recall
Precision+Recall

,

(Dalianis, 2018, p. 46-53).

4.10.3 Hyperparameter tuning

In general, the variables learned during model training are called parameters. For example,
weights in a neural network. Hyperparameters are different from normal parameters because
these values are assigned by the user before training starts. Every machine learning model
comes with some hyperparameters, and it is important to experiment and identify the best
hyperparameters as they can improve the model’s performance.

Grid search is one approach to hyperparameter tuning, where multiple values are provided
for each hyperparameter in grid form, and the model is trained on each possible combination of
hyperparameters. The advantage of this approach is that it extensively searches all combinations
to find the best hyperparameters that improve the model’s performance. As a result, we get the
best model, but the disadvantage is that as the number of values for hyperparameters increases,
the time taken for computation increases exponentially (Ippolito, 2022, p. 231-251).

4.10.4 Cross-validation

In this method, the dataset is split into k folds. During each iteration, the model is trained
using k-1 folds while one fold is kept aside for validation. This procedure is iterated k times to

4 Methods 43

evaluate the model’s performance across various subsets of the dataset. To calculate the final
result, the model results from each iteration are averaged. As different subsets of data are used
to train the model in each iteration, the performance metrics help to identify the variability in
model performance and also avoid overfitting. After capturing the best hyperparameters from
the cross-validation, the final model is trained using the hyperparameters on the entire dataset
(Ippolito, 2022, p. 231-251).

4.10.5 AUC-ROC curve

The Receiver Operating Characteristic (ROC) curve is used to visualize the performance of the
classifier for different thresholds. The x-axis of the ROC curve represents the False positive rate
(1-specificity) and the y-axis represents the True positive rate (sensitivity). The empirical ROC
curve is generated by connecting the data points obtained for each threshold. A better ROC
curve will have the values closer to the top-left corner of the graph. This shows that the model
has high TPR and low FPR. The ROC curve provides the trade-off between the sensitivity and
specificity (Zhou et al., 2011, p. 24).

The area under the ROC curve is used to quantify the performance of the classification model.
AUC can take the values from 0 to 1. AUC value 1 indicates the classifier is perfect with 0 false
positive rate, whereas the AUC value 0 indicates that all positive observations in the dataset
are classified as negative and all negative observations are classified as positive. In real-world
datasets, both AUC = 0 and 1 are highly unlikely and hence, AUC values range from 0.5 to
1. If the AUC value is 0.5, then, the ROC curve is a diagonal line indicating the model has no
predictive power and is similar to random guessing. Therefore, a higher AUC value indicates
the higher predictive power of the classifier (Zhou et al., 2011, p. 28).

4.10.6 Adjusted Rand Index (ARI)

The Rand Index is an external cluster evaluation metric used when true labels of the dataset
are available. It measures the similarity between cluster assignments and true class labels using
pairwise comparisons. Consider a dataset X with n observations. Let C and D be two clustering
results with r and s clusters, respectively. A contingency matrix of shape r × s is used to
determine the relationship between the two cluster sets. The element in the ith row and the
jth column of the contingency matrix represents the cardinality of Ci ∩Dj. The Rand Index is
calculated from the summary of four statistics computed from the contingency table.

a: Number of pairs of elements that are the same sets in both C and D.

b: Number of pairs of elements that are in the same set in C but are in different sets in D.

c: Number of pairs of elements that are in different sets in C but are in the same set in D.

d: Number of pairs of elements that are in different sets in both C and D.

All the described summary statistics are computed using the formulas below:

5 Project workflow 44

a =
(∑r

i=1
∑s

j=1 n
2
ij)− n

2 ,

b =
∑r

i=1 n
2
i+ −

∑r
i=1

∑s
j=1 n

2
ij

2 ,

c =
∑s

j=1 n
2
+j −

∑r
i=1

∑s
j=1 n

2
ij

2 ,

d =
(∑r

i=1
∑s

j=1 n
2
ij) + n2 −

∑r
i=1 n

2
i+ −

∑s
j=1 n

2
+j

2 ,

(42)

Here, ni+ = ∑s
j=1 nij denote the row wise totals (n1+, . . . , nr+) and n+j = ∑r

j=1 nij denote the
column wise totals (n+1, . . . , n+s). Finally, the rand index can be computed using the variables
in summary statistics as follows:

RI = a+ d

a+ b+ c+ d
, (43)

Moreover, if N = a+ b+ c+ d, then the Rand Index can be represented as a+ d/N . The values
of the Rand Index range from 0 to 1, where 0 indicates random labeling and 1 indicates a perfect
agreement between the clusters. One drawback of using the Rand Index is that as the number
of clusters increases, it provides a high score for random cluster assignments. Therefore, the
Rand Index is not useful for evaluating clusters accurately. The Adjusted Rand Index (ARI) is
used to correct this by normalizing the Rand Index score. The formula used to calculate the
Adjusted Rand Index is represented as follows:

ARI = RI − E[RI]
max(RI)− E[RI] , (44)

Where:

• RI – denotes the rand index.

• E[RI] – represents the expected value of the rand index in case of random cluster assign-
ments.

• max(RI) – denotes the maximum value of the rand index, i.e., 1.

(Chacón and Rastrojo, 2023, 125-133).

5 Project workflow

This section of the thesis report provides a brief overview of the entire workflow and the tasks
performed on the screw-tightening dataset. In sub-section 5.1, the architecture of the project
is described in detail using a flowchart. Sub-section 5.2 provides an overview of the dataset
and describes all the screw errors in a table. Sub-section 5.3 explains the pre-processing steps
performed to standardize the dataset and make it suitable for modeling. Furthermore, based

5 Project workflow 45

on analysis and statistical tests, some hypotheses are formulated to be verified using modeling
techniques in the next section.

5.1 Screw tightening Anomaly detection Architecture

Figure 11 illustrates the proposed architecture for detecting anomalies in screw-tightening pro-
cesses in the manufacturing industry using unsupervised approaches. This flowchart diagram
includes various components. Both model training and prediction on new test data follow a
similar procedure, as shown in the figure below. In this subsection, each component of the
architecture is explained in detail in general terms.

Figure 11: Anomaly detection Architecture.

5.1.1 Training pipeline

The training pipeline consists of components such as data, pre-processing, semi-supervised
anomaly classification, cluster assignment for different error categories using clustering, and
mapping the clusters to error categories in the dataset.

Data component: It is a database component and also acts as input component. It contains
the raw data used for subsequent tasks in the pipeline. In the context of a screw-tightening

5 Project workflow 46

process, this component includes data from sensor measurements of angle values, torque values,
and gradient values collected from each screw-tightening process at regular intervals of time.

pre-processing: This step involves preparing raw data for analysis and modeling. Generally,
this step can include processes like cleaning and handling missing values in the data, normalizing
or standardizing the data, and other techniques to ensure the data is suitable for modeling. In
this thesis, this component is used to perform tasks specifically like removing duplicates and han-
dling missing values in each screw-tightening process, cutting/padding the time series sequences
to have a constant sequence length in all sequences, and applying min-max normalization to
normalize torque sequences.

Semi-supervised model: This component in the flow chart represents a point where a decision
needs to be made. It typically has two or more branches coming out of it, representing the
different possible outcomes of the decision. The decision box usually contains a question or
condition, and the branches are labeled with possible answers, such as ’Yes’ or ’No’. Based on
the answer, the flowchart will follow a different path, directing the process to the appropriate
next step. This helps to visualize how different choices or conditions affect the flow of the
process.

In this thesis, this component applies several semi-supervised models such as One-class SVM,
Isolation Forest, and Autoencoders to predict whether the screw-tightening process is anomalous
or not. A weighted ensemble learning method combines the predictions of these three models
to make a final decision (Anomaly / Not an anomaly). Therefore, this step branches into two
paths based on the decision made.

OK: This is an output/terminal component. Depending on the decision made in the previous
step, the process halts if it follows this path. In this thesis, the process reaches this stage if the
prediction indicates that a specific screw-tightening process is not an anomaly. This confirms
there are no errors in the process and the process stops here.

NOK: This is also an output component. The process reaches this stage if the prediction
indicates that this specific screw-tightening process is an anomaly. Further tasks are then
performed to identify the type of anomaly.

Unsupervised models: This process component is executed if the decision from the previous
step is NOK. Here, several unsupervised models are applied to the dataset to identify patterns
or group similar points into clusters without any prior knowledge of the classes. In this thesis,
if the screw-tightening process is identified as an anomaly, clustering methods such as Spectral
Clustering, Affinity Propagation, K-means, K-shape, Self-Organizing Maps (SOM), and cluster
ensemble methods are utilized to cluster similar error sequences in this step.

Cluster assignment: This component also involves decision-making. Based on the outcomes
from multiple unsupervised models, the time series sequences are assigned to N clusters based
on their similarities. Each cluster represents a group of similar anomalies. In this thesis, a com-

5 Project workflow 47

bination of predictions from multiple algorithms using cluster ensemble methods or predictions
form the best-performing cluster algorithm can be used in this decision-making process.

Error class 1, . . . ,N: Each of the blocks 1 to N in the flowchart represents an output component
of the cluster assignment. These clusters represent the errors identified by unsupervised models,
with each cluster corresponding to a specific type of anomaly in the screw-tightening process.

Finally, the line or arrow from cluster blocks 1 to N to the data component represents the
mapping of each cluster obtained in the unsupervised process to a specific error category in the
labeled dataset. This mapping helps identify the types of anomalies or specific error categories
present in each cluster. It is useful for improving data pre-processing techniques, as well as
the semi-supervised and unsupervised models used in the training pipeline. Overall, the results
or accuracy scores obtained from this mapping can be used to improve the anomaly detection
process as needed. This training pipeline is not only applicable to the field of screw-tightening
but also to any anomaly detection process in the manufacturing industry that utilizes semi-
supervised and unsupervised models.

5.1.2 Prediction pipeline

The prediction/testing pipeline is similar to the training pipeline described in the previous
subsection. During the testing phase, a single JSON file containing recorded sensor data from
the screw-tightening process serves as the test data. The file undergoes specified pre-processing
steps, and a prediction from a weighted ensemble learning model determines whether the screw-
tightening test run is anomalous. If the process is not anomalous, it concludes here. If it is
anomalous, the process proceeds to predict the type of anomaly. The predict method from the
best-performing cluster model is then used to predict the cluster for the new test data. After
obtaining the cluster, the probabilities of the test data belonging to each error category are
specified.

The web application created using Streamlit is used to display the results appropriately. First,
a Plotly graph (time vs torque line plot) is shown to visualize the input test data. Subsequently,
the results from the semi-supervised models are displayed (Anomaly / Not anomaly). In cases
where the process is flagged as anomalous, the K-shape algorithm predicts the cluster for the
anomaly. Since clusters may contain sequences from multiple error categories due to their
similar patterns, the prediction displays the probability of the test sequence belonging to each
error category within the specific cluster. These probabilities are crucial as they quantify the
likelihood of belonging to different error categories in cases where it is not definitively possible
to determine a single error category.

5 Project workflow 48

(a) Screw-tightening machine (b) Screw-fixing component

Figure 12: Industry machine for automated screw-tightening

5.2 Screw-tightening machine

Figure 13: Base component.

The images in figure 12 show the machine and screw-fixing component used for screw-tightening
in the industry. Figure 12(a) displays the complete machine, where a base component will be
placed on the left side before the machine is turned on. When the machine starts running, the
base component moves inside the machine. Simultaneously, a screw is automatically inserted
into the fixing component shown in Figure 12(b) through a tube. When the base component
reaches the correct position inside the machine, the fixing component places the screw in the
base component and tightens it by applying torque.

Figure 13 shows the base component, which contains two holes in the center. These are the exact
spots where screws are tightened by the screw-fixing component. Once the screws are tightened
into the respective holes, the base component is sent out on the right side of the machine. The

5 Project workflow 49

entire process, including inserting the base component into the machine and retrieving it, takes
about 30 seconds. The actual screw-tightening takes only 2-3 seconds.

5.3 Description of the dataset

The time series data for each screw-tightening process is recorded using sensors and provided
in the form of JSON files. All necessary variable information is extracted from each JSON file,
and a CSV file is created, which includes data from all screw runs. In each screw-tightening
procedure, the sensors record the timestamp (in milliseconds), angle value, torque value, and
gradient value every 12 milliseconds. This CSV file is used as the dataset for all the analysis
and modeling techniques carried out in this thesis. A brief description of each feature in the
CSV file is stated in table 2. A total of 1342 time series sequences (screw-tightening runs) are
used for analysis and modeling in this thesis.

Variable name Description
Angle value It denotes the rotation angle of the screw being tightened. It is used

to determine how much the screw has been turned from its original
position.

Torque value It is the rotational force applied to the screw during the tightening
process. It is measured in Newton-meters (Nm) and shows how much
force was applied to turn the screw.

Gradient value It refers to the rate of change of torque with respect to the angle
during the tightening process.

Timestamp It denotes the timestamp at which the observations are recorded.
Error_category It is a categorical variable and denotes the specific error category in

the screw-tightening process.

Table 2: Variables in the dataset

From all the features extracted, only the torque values from the screw-tightening process are
used for all the analysis and modeling procedures.

5.3.1 Different phases in the screw-tightening procedure

Each normal screw-tightening process takes about 0.6 to 0.9 seconds to complete. In the case of
some faulty runs, the tightening process may run for a longer period, so a maximum time limit
of 1.5 seconds is specified. After this time, the process is automatically stopped. Figure 14 is a
line plot showing the torque vs time values recorded for a specific screw-tightening process in OK
category. In each screw-tightening process, the screw undergoes four different phases: finding,
thread forming, pre-tightening, and tightening 1.4. These phases mentioned can be noticed in
the figure 14 and are also explained in detail below.

Finding: The phase in which the tightening machine looks for a screw in the storage place and
attaches itself to the head of the screw is called the finding phase. This phase usually takes 0.1
to 0.12 seconds of the entire tightening process. This is the first phase of the process.

5 Project workflow 50

Thread forming: This is the second phase of the process. In this phase, the machine tries to
place the screw into a base component and rotates the screw such that the threads of the screw
are moved into the component. This phase usually takes place between 0.1 to 0.5 seconds of the
tightening process. During this phase, the torque increases steadily.

pre-tightening: In the third phase, the machine tries to tighten the entire screw into the base
component. This phase usually occurs in the time range of 0.5 – 0.7 seconds of the tightening
process and the screw is perfectly fixed into the component.

Tightening 1.4: This is the final phase of the tightening process and in this phase, the machine
all of a sudden tries to detach itself from the screw head. During this process, the torque values
decrease gradually until they reach 0. This phase is carried out usually in the time range of 0.7
– 0.9 seconds of the entire tightening process.

Figure 14: Torque vs time line plot.

5.3.2 Different errors in screw-tightening

The dataset used in this thesis consists of 15 different error categories (NOK categories) and
one category denoting the perfect screw-tightening process (baseline/OK category). Each error
category contains 50 - 100 screw-tightening runs, all of which are manually labeled. Each error
category is created by manipulating the screw or base component or screw tightening device in
certain way and they are explained below:

• Adhesive-thread - A metal adhesive (foreign material) is applied in the center part of
the screw. This material blocks the screw connection with the base component.

5 Project workflow 51

• Deformed-thread - A tool is used to deform 3 to 4 threads in the center of the screw.
As a result, some material is removed from the screw and also some parts of the screw are
misshapen.

• M3-half-washer-in-upper-part - A half M3 polyamide washer is attached in the upper
part of the screw. As a result, the screw distance is shortened when fastened using machine.

• M3-washer-in-upper-part - A M3 polyamide washer is attached in the upper part of
screw. As a result, the screw distance is shortened when fastened using machine.

• M4-washer-in-upper-part - A M4 polyamide washer is attached in the upper part of
screw. As a result, the screw distance is shortened when fastened using machine.

• Material-in-lower-part - A plastic adhesive is applied to the lower part of the screw
connector device. It gives more resistance in the core screw hole.

• Material-in-screw-head - A plastic adhesive material is applied on the top of the screw
(specifically in the cross-shaped part of screw head). As a result, the connector slips when
tries to make contact with screw head.

• Offset-of-screw-hole - A ployamide washer is used to create a horizontal offset of screw-
driver to the joining part. The washer reduces the hole size and hence the screwdriver first
hits the washer instead of lower part.

• Offset-of-work-piece - A foreign material between the component and tool carrier is
used to create offset between the screw axis and the screw in tube. As a result, an inclined
screw connection is created.

• Shortening-the-screw - A saw is used to remove 2 threads at the end of the screw. As
a result, the screw is shortened.

• Surface-lubricant - An oil based lubricant is used to reduce the friction in the upper
part.

• Surface-sanded-40 - A sandpaper with 40 grit roughness is used in the upper part to
increase surface friction.

• surface-sanded-400 - A sandpaper with 400 grit roughness is used in the upper part to
increase surface friction.

• Surface-used - An upper part that had already been bolted 25 times was used during
assembly and the lower part was completely new, so the defect occurs due to surface effects.

• Tearing-off-screw - A saw is used to completely cut the screw exactly under the screw
head. This will result a complete failure during assembly.

For the OK category, the data is recorded in four different experimental settings, resulting in
four sub-categories. No error characteristics were introduced in these four sub-categories. Each
sub-category contains 100 - 200 screw-tightening runs, all of which are manually labeled. The
experimental setting used to create each sub-category of baseline are explained below:

5 Project workflow 52

• Baseline - Observations recorded during the generation of the defects without any ma-
nipulations.

• Baseline-abrasion - Observations recorded during the investigation of influence of abra-
sion caused by thread cutting. No error characteristics are introduced.

• Baseline-friction - Observations recorded during the investigation of influence of friction
in the head support. No error characteristics are introduced.

• Baseline-extra - Observations without errors are generated for additional reference.

Figure 15 shows the bar plot for the number of time series recorded in the OK and NOK
categories. It can be noted that in the OK category, only the baseline-abrasion sub-category
has 200 time series sequences, while all other sub-categories have 100 sequences recorded. In
the NOK categories, only the deformed-thread and surface-used categories have 100 time series
sequences. Most of the other categories have 50 sequences, with two categories having fewer
than 50 sequences. Specifically, shortening-the-screw category has 47 sequences recorded, and
the tearing-off-screw category has only 45 sequences.

Figure 15: Error categories bar plot.

5.4 Data pre-processing

In this sub-section, data pre-processing methods such as handling duplicate and missing values,
cutting/padding of time series sequences, and min-max normalization are applied to the raw
time series sequences. The insights from these processes are explained in detail using appropriate
visualizations.

5 Project workflow 53

5.4.1 Handling duplicate values

If multiple torque, angle, and gradient values are recorded at the same timestamp, these times-
tamps are said to have duplicate values. Figure 16 shows the histogram of duplicate values with
respect to timestamps, plotted from 1342 screw-tightening processes.

Figure 16: Duplicate values histogram plot.

It can be observed that most duplicate values are recorded around the timestamps 0.1 and 0.5, as
the histogram bars peak with a maximum value close to 1400. The timestamp 0.1 is considered
the starting point of the thread-forming phase, while timestamp 0.5 marks the beginning of the
pre-tightening phase. Overall, 6447 duplicate values are recorded from 1342 sequences. Although
this is not an excessively high number of duplicate values, it is still significant. Moreover, a higher
proportion of the duplicate values are recorded in the pre-tightening and tightening 1.4 phases.
The possible reason for this could be that as the torque is very high and increases quickly, the
sensors might capture multiple observations at the same timestamp.

Figure 17: Count of duplicate values in each error category.

5 Project workflow 54

Figure 17 shows a bar plot where each bar represents the number of duplicate values observed
in each error category. Since the number of sequences in each error category is not the same,
all duplicate values from each category have been normalized to 50 sequences. The count of
duplicate values ranges from 149 to 258 across all error categories. It can be observed that the
error category material-in-lower-part has the highest number of duplicate values (258), while
shortening-the-screw has the least number of duplicate values (149). Moreover, most error
categories have an almost equal number of duplicate values in their time series sequences. Only
the error categories M3-washer-in-upper-part, tearing-off-screw, and shortening-the-screw have
fewer duplicate values compared to other categories. Additionally, it can be seen that the sub-
categories of OK data have almost the same number of duplicate values (ranging from 246 to
253).

To handle the duplicate values, if multiple observations are recorded at the same timestamp,
only the first recorded observation is considered for analysis. All other observations from the
same timestamp are discarded.

5.4.2 Handling missing values

The screw-tightening process records an observation every 12 milliseconds. If the gap between
any two consecutive timestamps is greater than 12 milliseconds, it indicates missing data be-
tween these timestamps. Figure 18 shows the histogram plot for missing data with respect to
timestamps, plotted from 1342 screw-tightening processes.

Figure 18: Missing values histogram plot.

From the histogram, it can be observed that almost all the missing values occur either at
the beginning or at the end of the screw-tightening process, as indicated by the high bin size
at timestamp 0 and the two bell-shaped curves between the time ranges 0.6 to 1 and 1.3 to
1.5. Since most screw-tightening runs end in the range of 0.7 to 0.9, the first bell curve clearly
denotes that the missing values are at the end of the process. Additionally, some screw-tightening

5 Project workflow 55

processes are designed with defects, causing them to last longer than usual, which explains the
second bell curve (1.3 to 1.5), indicating missing values at the end. Overall, 48,732 missing
values are recorded from 1342 sequences. Although this is a significant number, since most
missing values occur at the end of the process when the tightening device is trying to detach
itself from the screw, it can be concluded that there is no substantial loss of information, and
this can be handled using simple techniques. The bar plot in figure 19 shows the count of missing
values recorded in each phase of screw-tightening process and it clearly evident that most of the
missing values occur at the end of the process (tightening 1.4).

Figure 19: Missing values in each phase bar plot.

Figure 20: Count of missing values in each error category.

Additionally, in the histogram plot (figure 18), a small bell-shaped curve can be noticed between
the time range of 0.3 to 0.5 seconds. Upon closer inspection, it is observed that almost all of
the observations in this range belong to the error category shortening-the-screw. Due to the

5 Project workflow 56

manipulation in the process, some tightening experiments end during the thread-forming phase,
contributing to the missing values in this part of the histogram.

Figure 20 shows a bar plot where each bar represents the number of missing values observed in
each error category. Since the number of sequences in each error category is not the same, all
missing values from each category have been normalized to 50 sequences for better comparison.
The error category tearing-off-screw has the highest number of missing values, with a count
of 3488, while the error category M3-washer-in-upper-part has the lowest number of missing
values, with a count of 1467. Additionally, the error category material-in-screw-head has a high
number of missing values (3206), similar to tearing-off-screw. All other error categories have a
similar count of missing values, ranging from 1600 to 1700. All sub-categories of OK data also
fall within this range.

Figure 21: Linear interpolation to fill missing values

As the observations are recorded at very short time intervals (12 milliseconds) and the time
series is linear, the linear interpolation method is used to fill the gaps or missing values in the
dataset. The line plots in figure 21 show the torque values against time before and after applying
the linear interpolation method. Figure 21(a) shows the time series with missing values, and it
can be noticed that gaps occur only at the end of the process or in the tightening 1.4 phase.
Figure 21(b) shows the time series after filling in the missing values.

5.4.3 Cutting/padding time series sequences

As each screw-tightening process does not follow a perfectly constant time to fit the screw into
the base component, and due to manipulations made to create errors, each screw-fitting process
takes different amounts of time to complete. The table 4 below shows the minimum, maximum,
and median values for the recorded time series in each error category. It can be noted from
the table that the longest time series sequence contains 1,286 data points recorded during the
tightening process, while the shortest time series sequence contains about 299 data points. The
longest sequence is recorded in the offset-of-screw-hole error category, and the shortest sequence
is recorded in the shortening-the-screw error category.

5 Project workflow 57

Error category Minimum Maximum Median
Adhesive-thread 634 1212 706
Deformed-thread 600 821 684.5

M3-half-washer-in-upper-part 474 1213 709.5
M3-washer-in-upper-part 1143 1174 1157
M4-washer-in-upper-part 467 1214 686

Material-in-lower-part 773 1141 935.5
Material-in-screw-head 601 1220 1201

Offset-of-screw-hole 1145 1286 1160
Offset-of-work-piece 586 859 742
Shortening-the-screw 299 1212 376

Surface-lubricant 697 864 771.5
Surface-sanded-40 640 1202 730
Surface-sanded-400 576 1213 719

Surface-used 581 1211 712
Tearing-off-screw 347 1215 1212

Table 3: Error categories time series sequence lengths

From table 3, we can also notice that in the error categories shortening-the-screw and tearing-
off-screw, the range of time series sequence lengths is higher compared to other categories. Some
time series sequences are very short with 300 observations, while others are very long with 1,215
observations. Moreover, in the error categories M3-washer-in-upper-part and offset-of-screw-
hole, all the time series are longer compared to other error categories, with sequences ranging
from 1,143 to 1,286.

baseline sub-category Minimum Maximum Median
Baseline 557 814 670

Baseline-abrasion 547 775 661
Baseline-friction 613 852 672
Baseline-extra 663 958 820

Table 4: Baseline sub-categories sequence lengths

The table 4 contains information about the minimum, maximum, and median values of the sub-
categories of OK data. In the case of baseline sub-categories, the time series sequences range
from 547 to 958. Additionally, the sub-categories baseline-extra and baseline-friction generally
have longer sequence lengths compared to sub-categories baseline and baseline-abrasion.

For modeling time series data, it is preferred to have all the time series sequences at the same
length. Hence, a cutting/padding technique is used to trim or add extra observations to each time
series. Based on the analysis, a value of 1,200 is decided upon as the constant time series length.
By setting this constant length, not much information is lost from the longer sequences, which
is useful for distinguishing the error categories in clustering approaches. Therefore, sequences
longer than 1,200 are cut at the end, and sequences shorter than 1,200 have a constant value of
0 added at the beginning. Adding 0 at the beginning does not change the time series but simply
shifts it slightly to the right compared to other sequences. Distance metrics such as DTW are

5 Project workflow 58

used in the modeling approach to effectively handle time-varying series and group them into
similar error categories.

5.4.4 Torque normalization

The torque sequences used for modeling are normalized using min-max normalization. The
minimum and maximum values are determined based on all the time series sequences used in
the process, establishing global minimum and maximum values for normalization. The minimum
torque value is set to 0, as the torque begins to increase from 0 when the process starts. The
maximum torque value is determined to be 1.574 from all the time series sequences. This
normalization helps improve model performance, prevents issues like vanishing gradients during
neural network training, and facilitates faster convergence.

5.5 Data analysis and hypothesis

In this section, time series from different categories are compared with other categories to deter-
mine whether their data distributions are similar. Specifically, QQ plots and the Mann-Whitney
U test are used to compare the time series sequences, and the results are interpreted in detail.
Moreover, hypotheses are formulated to verify using the results of various semi-supervised and
unsupervised models in the next section.

5.5.1 Comparison between baseline sub-categories

Figure 22: QQ-plots for sub-categories of OK sequences

5 Project workflow 59

Figure 22 consists of multiple QQ plots. Each QQ plot represents the comparison between pairs
of sub-categories in the OK sequences. For example, in the top left plot, the x-axis contains the
average values of time series from the baseline sub-category, and the y-axis contains the average
values of time series from the baseline-abrasion sub-category. If the time series data from both
distributions follow the same distribution, the blue line will overlap with the diagonal red line.
If they don’t follow the same distribution, the blue line will deviate from the diagonal line.

The QQ plots in the first row show that the pairs of sub-categories — baseline, baseline-abrasion,
and baseline-friction are generated from the same distribution and are similar. In the second
row, the baseline-extra sub-category is compared with the other three sub-categories of OK data.
We can see that the blue line significantly deviates from the diagonal line, indicating that the
data distribution of baseline-extra is different from the other sub-categories of OK data.

To verify these observations, a Mann-Whitney U test is also performed. In the case of the
Mann-Whitney U test, if the p-value is less than 0.05, there is enough evidence to say that the
data distributions of the two groups are different, and the null hypothesis is rejected.

sub-category 1 sub-category 2 MW U-test statistic P-value
Baseline Baseline-abrasion 516445.5 2.008587e-01
Baseline Baseline-friction 492989.0 5.863207e-01

Baseline-abrasion Baseline-friction 475947.5 6.166942e-02
Baseline-extra Baseline 620158.0 1.254169e-20
Baseline-extra Baseline-abrasion 634188.0 2.379743e-25
Baseline-extra Baseline-friction 615914.5 2.701107e-19

Table 5: Mann Whitney test results for baseline sub-categories

Table 5 presents the results of the Mann-Whitney U test performed on all possible pairs of
sub-categories of OK data. It can be observed that the p-values for the first three rows are
greater than 0.05, indicating that the data from the sub-categories baseline, baseline-abrasion,
and baseline-friction follow the same distribution. Moreover, in the last three rows, a very low
p-value (< 0.05) is observed, indicating that the data distribution of baseline-extra is completely
different from the other sub-categories of OK data.

From the above observations, we can hypothesize that if baseline-extra is used as OK data for
training semi-supervised models, the model might not capture the patterns from OK sequences
efficiently. As there are two different distributions of OK sequences, a significant number of mis-
classifications might occur during the testing phase, with some proportion of anomaly sequences
being classified as OK sequences.

5.5.2 OK category vs multiple surface error categories

Here, OK time series data is compared with several surface-related error categories, namely
surface-sanded-40, surface-sanded-400, surface-lubricant, and surface-used. In the case of OK
sub-categories, baseline-extra has been observed to have a different data distribution and is,

5 Project workflow 60

therefore, eliminated from this part of the analysis. In this context, the term baseline denotes
the average value of all time series sequences from baseline, baseline-abrasion, and baseline-
friction.

Figure 23: QQ-plots for baseline vs surface error categories

Figure 23 shows four QQ plots, where each surface-related error category is compared against
the baseline to check if they follow the same distribution. In the first row, the baseline category
is compared with surface-sanded-40 and surface-sanded-400, showing that they follow a nearly
similar distribution from the start to the middle of the time series sequence. However, the
distribution differs later on. In the QQ plot of baseline vs. surface-used, a perfect overlap of
the blue line with the diagonal line is noticed, indicating that the two distributions are similar.
Finally, the QQ plot between the baseline and surface-lubricant shows that they are entirely
different distributions with very small similarities in the middle of the sequence.

Ok category Error category MW U-test statistic P-value
Baseline Surface-sanded-40 422465.0 1.907281e-09
Baseline Surface-sanded-400 437486.0 1.284930e-06
Baseline Surface-used 449111.5 8.093488e-05
Baseline Surface-lubricant 440943.0 4.651647e-06

Table 6: Mann Whitney test results for baseline vs surface error categories

From table 6, we can see that the p-values for all comparisons are less than 0.05, indicating that
surface-related error categories have different distributions compared to the baseline. This can
be observed from the QQ plots as well. However, in the case of baseline vs. surface-used, even
though the test indicates they are different, the QQ plots clearly show they are similar.

From the above observations, we can hypothesize that semi-supervised models might struggle
a bit in detecting surface-sanded-40 and surface-sanded-400 time series as anomalies. We can

6 Validation and Results 61

also expect a lot of misclassifications in the case of surface-used, where a significant proportion
of surface-used sequences might be classified as OK sequences.

6 Validation and Results

In this subsection, various supervised, semi-supervised, and unsupervised methods are applied
to the screw-tightening dataset described above. The results are visualized with appropriate
graphs and tables and are interpreted in detail.

6.1 Binary classification (Semi-supervised methods)

In this part, the results of the semi-supervised models, namely, Isolation Forest, One-Class
SVM, and Autoencoder, are explained in detail. All the models are trained twice: once including
baseline-extra in the OK sequence data, and once without baseline-extra. In addition, the results
of the weighted ensemble model are presented and compared with the results of the individual
models.

6.1.1 Isolation forest results

In the training phase of the Isolation Forest, the model is trained with the OK screw-tightening
sequences to learn the data distribution. To find the best hyperparameters for the model, a grid
search CV is used with the set of values for each hyperparameter mentioned in table 7.

Hyperparameter values
n_estimators [80, 100, 200]
max_samples [’auto’, 0.5, 0.7]
contamination [’auto’]

bootstrap [True, False]
n_jobs [None,1,2,3,4]

random_state [None,10,42]
warm_start [True,False]

Table 7: Isolation forest hyperparameters.

After evaluating all possible combinations, the best parameters identified for the Isolation For-
est model were: bootstrap set to True, contamination set to auto, max_samples set to auto,
n_estimators set to 80, n_jobs set to None, random_state set to None, and warm_start set to
True. These parameters were found to provide the optimal performance for anomaly detection
on the screw-tightening dataset.

Without baseline-extra

Table 8 below shows the classification report of the Isolation Forest model trained without the
baseline-extra sub-category. The overall accuracy and macro average F1 score of the model

6 Validation and Results 62

Precision Recall F1-score Support
Error class 0.92 0.77 0.84 842

Normal class 0.64 0.85 0.73 400

Accuracy 0.80 1242
Macro avg 0.78 0.81 0.78 1242

Weighted avg 0.83 0.80 0.80 1242

Table 8: Isolation forest classification report (without baseline-extra).

are 0.80 and 0.78, respectively. For the error class, the precision is very high (0.92) and the
recall is also good (0.77). For the normal class, the recall score is high (0.85) but the precision is
comparatively low (0.64). A significant proportion of anomalies are classified as normal, affecting
the precision for this class.

Table 9 shows the error categories and their counts that are classified as normal even though
they are anomalies. As expected, nearly half of the sequences from each surface-related error
category (except surface-lubricant) are misclassified. A large proportion of the deformed-thread
error category is also classified as normal.

Error Category Count
Deformed-thread 47

Surface-used 46
Surface-sanded-40 23
Surface-sanded-400 22

M3-half-washer-in-upper-part 17
Offset-of-work-piece 17

Material-in-screw-head 13
M4-washer-in-upper-part 7

Adhesive-thread 2

Table 9: Isolation forest misclassification
of anomaly sequences (without
baseline-extra).

Error Category Count
Baseline-abrasion 24
Baseline-friction 19

Baseline 16

Table 10: Isolation forest misclassification
of normal sequences (without
baseline-extra).

Table 10 shows the count of normal sequences classified as anomalies. Even though the model is
trained using these sequences, because of the contamination rate and slight differences between
the sequences, they are classified as anomalies. The count does not seem very high, as only 23%
of all OK sequences are classified as anomalies.

With baseline-extra

To determine if the results of the models are affected by including baseline-extra in the dataset,
the Isolation Forest model is trained with the same parameters again, and the results are provided
below. Table 11 shows the classification report of the Isolation Forest model trained with all
the time series sequences including baseline-extra. From the accuracy score, it is evident that
including baseline-extra negatively impacts the overall results of the model, as the accuracy
scores dropped from 80% to 67%. A significant drop in the recall score of the error class and
the precision score of the normal class can also be observed.

6 Validation and Results 63

Precision Recall F1-score Support
Error class 0.85 0.57 0.68 842

Normal class 0.54 0.83 0.65 500

Accuracy 0.67 1342
Macro avg 0.69 0.70 0.67 1342

Weighted avg 0.73 0.67 0.67 1342

Table 11: Isolation forest classification report (with baseline-extra).

Error Category Count
Surface-used 81

Deformed-thread 80
Surface-sanded-40 40
Surface-sanded-400 38
Offset-of-work-piece 35

M3-half-washer-in-upper-part 26
Material-in-screw-head 18

Surface-lubricant 18
M4-washer-in-upper-part 12

Adhesive-thread 7
Material-in-lower-part 4

Table 12: Isolation forest misclassification
of anomaly sequences (with
baseline-extra).

Error Category Count
Baseline-extra 66

Baseline-abrasion 10
Baseline 6

Baseline-friction 4

Table 13: Isolation forest misclassifica-
tion of normal sequences (with
baseline-extra).

Moreover, from table 13, we can see that 66 out of 100 sequences of baseline-extra are classified
as anomalies, and the misclassifications in other sub-categories are reduced compared to the
previous model results. However, in the case of error categories, the misclassifications increased
significantly. This can be observed from the values in table 12. 80% of time series sequences
from surface-used, surface-sanded-40, and deformed-thread anomalies are classified as normal.
Additionally, 65-70% of surface-sanded-400 and offset-of-work-piece sequences are classified as
normal. The number of misclassifications in other error categories also increased.

6.1.2 One-class SVM results

Hyperparameter values
kernel [’rbf’, ’poly’, ’sigmoid’]
gamma [’auto’, ’scale’]

nu [0.1, 0.2, 0.5]
degree [2, 3, 4, 5]

shrinking [True, False]

Table 14: One-class SVM hyperparameters.

Similar to the Isolation Forest, the One-Class SVM model is also trained on the OK samples.
During the testing phase, both OK and anomalous samples are used as input to the model to

6 Validation and Results 64

obtain the final results. To find the best hyperparameters for accurately classifying the anomaly
and OK sequences, a list of values mentioned in table 14 was used in the grid search CV. After
evaluating all possible combinations with 5-fold cross-validation, the best hyperparameter values
identified are as follows: degree set to 2, gamma set to auto, kernel set to rbf, nu set to 0.1, and
shrinking set to True. Using these optimal hyperparameters, a final One-Class SVM model was
trained on the training data.

Without baseline-extra

Precision Recall F1-score Support
Error class 0.94 0.67 0.78 842

Normal class 0.57 0.91 0.70 400

Accuracy 0.75 1242
Macro avg 0.75 0.79 0.74 1242

Weighted avg 0.82 0.75 0.76 1242

Table 15: One-class SVM classification report (without baseline-extra).

The classification report in table 15 shows the results of the One-Class SVM model trained on
OK samples without baseline-extra. The overall accuracy of the model is 0.75, indicating the
model correctly predicts 3 out of 4 times. The model shows a high precision score (0.94) in the
error class, denoting strong confidence in identifying anomalous sequences. However, the recall
score is low (0.67), indicating it misses identifying some anomalies in the dataset. Conversely,
for the normal class, the model shows a high recall (0.91) and low precision (0.57). This shows
that while it correctly identifies most normal sequences, it also incorrectly predicts a significant
proportion of anomalies as normal.

Error Category Count
Deformed-thread 67

Surface-used 65
Offset-of-work-piece 30

M3-half-washer-in-upper-part 26
Surface-sanded-400 24
Surface-sanded-40 22

Material-in-screw-head 18
Surface-lubricant 9
Adhesive-thread 8

M4-washer-in-upper-part 5
Material-in-lower-part 2

Table 16: One-class SVM misclassification
of anomaly sequences (without
baseline-extra).

Error Category Count
Baseline-abrasion 22
Baseline-friction 8

Baseline 8

Table 17: One-class SVM misclassification
of normal sequences (without
baseline-extra).

Tables 16 and 17 show the misclassifications, making it easier to see which error categories
the model struggles with most. Compared to the Isolation Forest model, the overall count of
misclassifications is higher for the One-Class SVM. The model struggles significantly to identify

6 Validation and Results 65

anomalies in the categories of deformed-thread, surface-used, offset-of-work-piece, and M3-half-
washer-in-upper-part. In contrast, fewer misclassifications are observed for M4-washer-in-upper-
part (5) and material-in-lower-part (2). Misclassifications in the OK samples are very low overall,
with very few errors in the baseline-friction (8) and baseline sub-categories (8).

With baseline-extra

Precision Recall F1-score Support
Error class 0.87 0.38 0.53 842

Normal class 0.46 0.90 0.61 500

Accuracy 0.58 1342
Macro avg 0.66 0.64 0.57 1342

Weighted avg 0.72 0.58 0.56 1342

Table 18: One-class SVM classification report (with baseline-extra).

Table 18 shows the classification report of the One-Class SVM model trained with the same
hyperparameters but including the baseline-extra subcategory in the training sample. The overall
accuracy is 0.58, which is 17% lower than the One-Class SVM model without baseline-extra,
indicating a significant decrease in performance. The recall score for the error class is very low
(0.38), and there is a significant drop in the precision score for the normal class (0.46).

Moreover, table 20 shows that the overall misclassifications of the normal class. The values are
lower compared to the Isolation Forest model. However, the misclassifications in several error
categories (in table 19) are very high. Almost all sequences from deformed-thread, surface-used,
offset-of-work-piece, surface-sanded-400, surface-sanded-40, M3-half-washer-in-upper-part, and
surface-lubricant are misclassified, indicating very poor model performance. Fewer misclassifi-
cations are observed in the error category material-in-lower-part, with a count of 17.

Error Category Count
Deformed-thread 93

Surface-used 91
Offset-of-work-piece 48
Surface-sanded-400 46
Surface-sanded-40 45
Surface-lubricant 42

M3-half-washer-in-upper-part 41
Adhesive-thread 34

M4-washer-in-upper-part 22
M3-washer-in-upper-part 21
Material-in-screw-head 20
Material-in-lower-part 17

Table 19: One-class SVM misclassification
of anomaly sequences (with
baseline-extra).

Error Category Count
Baseline-extra 23

Baseline-abrasion 20
Baseline 5

Baseline-friction 2

Table 20: One-class SVM misclassifica-
tion of normal sequences (with
baseline-extra).

6 Validation and Results 66

6.1.3 Autoencoder results

The autoencoder uses the training data to learn the data representation by compressing it into a
latent representation and then reconstructing the data in such a way that reconstruction errors
are minimal. During the testing phase, anomalous sequences will have higher reconstruction
errors since they do not follow the normal data representation and can thus be identified as
anomalies based on a threshold value. The hyperparameters used to train the autoencoder
model are listed in table 21. After evaluation using grid search CV, the best hyperparameters
identified are: batch_size set to 32, epochs set to 100, loss set to mse, and optimizer set to
adam. Using these optimal hyperparameters, the autoencoder model was retrained on the OK
samples, and the optimal threshold value was determined based on the AUC-ROC curve.

Hyperparameter values
loss [’mse’, ’binary_crossentropy’, ’mae’]

optimizer [Adam, SGD, RMSprop]
batch_size [16, 32, 64]

epochs [50, 100]
learning_rate [0.001, 0.01]

activation [’relu’, ’tanh’, ’sigmoid’]

Table 21: Autoencoder hyperparameters.

Without baseline-extra

Figure 24: AUC ROC curve for Autoencoder model (without baseline-extra).

Precision Recall F1-score Support
Error class 0.95 0.77 0.85 842

Normal class 0.65 0.91 0.76 400

Accuracy 0.81 1242
Macro avg 0.80 0.84 0.80 1242

Weighted avg 0.85 0.81 0.82 1242

Table 22: Autoencoder classification report (without baseline-extra).

6 Validation and Results 67

Figure 24 shows the AUC-ROC curve plotted for the autoencoder model (without baseline-
extra). It can be observed that the area under the curve is 0.899, which is very good, and
based on the maximum difference between the true positive rate and false positive rate, the
best threshold is decided to separate the anomalous data from normal data. The optimal
threshold was found to be 0.022. The classification report in table 22 shows the results from
the autoencoder model trained by excluding baseline-extra from the OK samples. The overall
accuracy of the model is 0.81, which is higher compared to the Isolation Forest and One-Class
SVM models. In general, the results of the autoencoder model are similar to those of the
Isolation Forest model (without baseline-extra), but the autoencoder model outperforms the
Isolation Forest model. The precision score for the error class is the highest at 0.95, and the
recall score (0.77) also looks good for the error class. For the normal class, the recall score is very
high at 0.91, though the precision score is a bit lower at 0.65. For our use case, a model with the
highest recall for the error class is preferred because we want to identify as many anomalies as
possible in screw-tightening. As a result, we might expect more misclassifications in the normal
class.

Error Category Count
Surface-used 54

Deformed-thread 46
Offset-of-work-piece 26
Surface-sanded-40 25
Surface-sanded-400 22

Material-in-screw-head 16
Material-in-lower-part 4

M3-half-washer-in-upper-part 1

Table 23: Autoencoder misclassification
of anomaly sequences (without
baseline-extra).

Error Category Count
Baseline-abrasion 16
Baseline-friction 13

Baseline 8

Table 24: Autoencoder misclassification
of normal sequences (without
baseline-extra).

Tables 23 and 24 show the misclassification counts in the OK sequences and different error
categories. Nearly half of the time series sequences from surface-used, deformed-thread, surface-
sanded-40, and offset-of-work-piece are misclassified. Additionally, only one sequence from M3-
half-washer-in-upper-part is misclassified. In general, the number of misclassifications in the OK
samples is very low.

With baseline-extra

Figure 25 shows the AUC-ROC curve plotted for the autoencoder model (with baseline-extra).
It can be observed that the area under the curve is 0.8615, and the optimal threshold to separate
the anomalous data is found to be 0.019. Table 25 shows the results of the autoencoder model
trained by including baseline-extra in the OK samples. The results indicate that the precision,
recall, and accuracy scores are not significantly different from the autoencoder model (without
baseline-extra). Hence, it can be stated that the autoencoder model is more stable even when
including data from baseline-extra compared to other models.

6 Validation and Results 68

Figure 25: AUC ROC curve for Autoencoder model (with baseline-extra).

Precision Recall F1-score Support
Error class 0.85 0.80 0.82 842

Normal class 0.69 0.76 0.73 500

Accuracy 0.79 1342
Macro avg 0.77 0.78 0.77 1342

Weighted avg 0.79 0.79 0.79 1342

Table 25: Autoencoder classification report (with baseline-extra).

The misclassification of error categories can be observed in table 26. The error categories and
their counts are similar to those of the autoencoder model (without baseline-extra). Additionally,
the misclassifications of the OK samples are represented in table 27, and all sub-categories have
slightly more misclassifications compared to the other autoencoder model. Interestingly, 73
sequences from baseline-extra were classified as anomalies. This is a positive sign because,
given that baseline-extra has a different data distribution than the other baseline categories, the
autoencoder treats them as anomalies in general. Hence, even though it is used in training, the
autoencoder model does not regard them as normal data.

Error Category Count
Surface-used 47

Deformed-thread 45
Surface-sanded-400 23
Offset-of-work-piece 22
Surface-sanded-40 17

Material-in-screw-head 11
Material-in-lower-part 2

M3-half-washer-in-upper-part 1

Table 26: Autoencoder misclassification
of anomaly sequences (with
baseline-extra).

Error Category Count
Baseline-extra 73

Baseline-abrasion 19
Baseline-friction 18

Baseline 10

Table 27: Autoencoder misclassification of
normal sequences (with baseline-
extra).

6 Validation and Results 69

6.1.4 stacked bar charts and color categories

Figures 26 and 27 present stacked bar charts depicting the recall values for each error category
across three different semi-supervised models, trained with and without baseline-extra, respec-
tively. The recall value for each error category is obtained by testing the model with a dataset
that includes all the OK sequences and only one error category sequence at a time. This means
that for each error category, a specific test set is created, combining all the OK sequences and
sequences from only that particular error category.

Figure 26: Stacked bar chart (with baseline-extra).

In figure 26 (recall scores with baseline-extra), we observe that the error categories offset-of-
screw-hole, shortening-the-screw, and tearing-off-screw achieve a recall score of 1 across all
three semi-supervised models. For the M3-washer-in-upper-part error category, the autoen-
coder and isolation forest models both achieve a recall score of 1, whereas the one-class SVM
achieves only 0.58. The autoencoder model performs well in identifying the other errors like
M3-washer-in-upper-part, adhesive-thread, surface-lubricant, M3-half-washer-in-upper-part, and
material-in-lower-part. However, all models perform poorly in identifying error categories such as
surface-sanded-40, offset-of-work-piece, surface-sanded-400, deformed-thread, and surface-used,
as indicated by their low recall values. Among these, the one-class SVM performs the worst,
with recall values below 0.10.

Figure 27: Stacked bar chart (without baseline-extra).

6 Validation and Results 70

Figure 27 shows the recall values estimated using the same approach, but this time baseline-extra
is eliminated from the OK sequences. It is evident that the recall scores improve significantly, as
indicated by the longer bars. All three models perform exceptionally well in identifying error cat-
egories such as M3-washer-in-upper-part, offset-of-screw-hole, shortening-the-screw, tearing-off-
screw, material-in-lower-part, surface-lubricant, adhesive-thread, and M4-washer-in-upper-part,
with recall scores ranging from 0.82 to 1. However, the models still struggle to perfectly identify
error categories such as surface-sanded-40, offset-of-work-piece, surface-sanded-400, deformed-
thread, and surface-used, with recall values around 0.50 or less. Nonetheless, the scores are
better compared to those in figure 26. These results indicate that baseline-extra has a different
data distribution, affecting the overall model performance, and therefore, it is removed from the
dataset.

Green Orange Red
M3-washer-in-upper-part Adhesive-thread Offset-of-work-piece

Offset-of-screw-hole M4-washer-in-upper-part Surface-sanded-400
Shortening-the-screw M3-half-washer-in-upper-part Deformed-thread

Tearing-off-screw Material-in-screw-head Surface-used
Surface-lubricant Material-in-lower-part Surface-sanded-40

Table 28: Color categories

For an easier interpretation of the results, the error categories are classified into three color
categories: green, orange, and red. The green category includes errors that are easily identified
as anomalies, the orange category includes errors that are somewhat difficult to identify, and
the red category includes errors that are very hard to distinguish from the OK samples. The
recall scores are used to separate the errors into these color categories. From the stacked bar
chart in figure 27, if two out of three models have a recall score of 1 for an error category, it is
classified as green. If the recall score is between 0.7 and 0.99, it is classified as orange, and if
the recall value is less than 0.7, it is classified as red. The table 28 details the error categories
and their corresponding color groups.

6.1.5 Weighted ensemble learning results

Isolation Forest, one-class SVM, and Autoencoder models trained on the dataset without baseline-
extra are used for ensemble learning. To create the weighted ensemble model, we first obtain
the anomaly scores from the decision functions of Isolation Forest and one-class SVM. In these
models, more negative scores indicate a higher likelihood of being an anomaly. To bring both
decision function scores to the same scale, min-max normalization is applied to convert the
values to a range of 0 to 1.

Next, we obtain the reconstruction errors from the Autoencoder model. Since higher reconstruc-
tion errors indicate a higher likelihood of being an anomaly, which is the opposite of the decision
function scores of Isolation Forest and one-class SVM, we apply min-max normalization to these

6 Validation and Results 71

errors and then subtract the normalized values from 1. This inversion ensures that all values
are now on the same scale, where lower values indicate a higher likelihood of being an anomaly.

To find the best possible weights for each model, we experiment with all possible combina-
tions of values from 0 to 1 for the three models, selecting the combination that maximizes the
macro-average F1 score. Additionally, we determine the best threshold for classifying points as
anomalous or non-anomalous, again aiming to maximize the macro-average F1 score.

The optimal weights for each model are determined to be: one-class SVM – 0.1, Isolation Forest
– 0.1, and Autoencoder – 0.8. The best threshold obtained is 0.95. Therefore, final scores below
0.95 are considered anomalies, and scores above 0.95 are considered normal sequences.

After obtaining the optimal weights and threshold values, the models are combined using the
weighted ensemble method to test their performance in predicting anomalies. The weighted
ensemble model is evaluated using datasets created based on color categories, where each dataset
contains the OK samples and the error categories belonging to a specific color category. Finally,
the model is tested with a comprehensive dataset that includes all OK samples and all error
categories. The classification reports from these tests are displayed in the tables below.

Precision Recall F1-score Support
Error class 0.80 1.00 0.89 242

Normal class 1.00 0.84 0.92 400

Accuracy 0.90 642
Macro avg 0.90 0.92 0.90 642

Weighted avg 0.92 0.90 0.90 642

Table 29: Weighted ensemble classification report on Green category.

Table 29 shows the classification report for the green color category. The model performs
exceptionally well in identifying anomalies in this category, achieving an accuracy of 0.90. The
recall for the error class is 1, indicating that the model can classify these errors without a single
misclassification. Moreover, the precision for the normal class is 1, demonstrating the model’s
confidence in predicting sequences from the OK class. Other scores are also greater than 0.80,
further indicating strong model performance.

Precision Recall F1-score Support
Error class 0.80 0.95 0.87 250

Normal class 0.97 0.85 0.91 400

Accuracy 0.89 650
Macro avg 0.88 0.90 0.89 650

Weighted avg 0.90 0.89 0.89 650

Table 30: Weighted ensemble classification report on Orange category.

Table 30 contains the classification report for the orange color category. The overall accuracy is
0.89, just 1% less than the green category. The precision and recall values are similar but slightly

6 Validation and Results 72

lower than those for the green category. The recall scores for the error and normal classes are
0.95 and 0.85, respectively. This indicates that the model performs well in detecting anomalies
from the orange category, with only a few errors.

Precision Recall F1-score Support
Error class 0.75 0.59 0.66 350

Normal class 0.70 0.83 0.76 400

Accuracy 0.72 750
Macro avg 0.73 0.71 0.71 750

Weighted avg 0.73 0.72 0.72 750

Table 31: Weighted ensemble classification report on Red category.

Table 31 provides the classification report for the red color category. The recall score for the
error class is 0.59, slightly higher than 0.50. This suggests that the model struggles to correctly
identify anomalies in this category, as the sequences are more similar to the OK samples. The
precision for the error and normal classes are 0.75 and 0.70, respectively. The overall accuracy
is 72%, which is lower compared to the other color categories. In summary, the model performs
very well in detecting anomalies in the green and orange categories but performs poorly in the
red category.

Precision Recall F1-score Support
Error class 0.92 0.81 0.86 842

Normal class 0.68 0.86 0.76 400

Accuracy 0.83 1242
Macro avg 0.80 0.83 0.81 1242

Weighted avg 0.85 0.83 0.83 1242

Table 32: Weighted ensemble classification report on entire dataset.

Finally, Table 32 shows the overall results of the weighted ensemble model when tested on
the entire dataset. The overall accuracy is 0.83, which is 2% higher than our best-performing
autoencoder model. Additionally, the precision for the normal class and recall for the error class
have improved, while the other scores have dropped slightly. Therefore, the weighted ensemble
model can be used as the final model for classifying screw-tightening sequences into anomalous
or non-anomalous, as it is more stable and effectively combines predictions from multiple models.

6.2 Supervised methods

In this subsection, the results of all the supervised models used for multi-class error classification
in this thesis are presented through appropriate plots and interpreted in detail. Although the
primary focus of this thesis is on evaluating different unsupervised approaches for multiple
errors or anomaly detection, a brief analysis of supervised methods is conducted to compare
these results with those of the unsupervised methods in the next subsection.

6 Validation and Results 73

Specifically, six supervised models are chosen and implemented in this thesis. These models are
selected to represent each family of supervised models. The KNN DTW model is chosen from the
distance-based methods, while the Time Series Forest (TSF) model represents the interval-based
methods. The ROCKET classifier is selected from the kernel-based methods, and the catch22
classifier is chosen from the feature-based methods. The shape transform classifier is taken
from the shapelet-based methods, and finally, the CNN classifier represents the deep learning
methods. This comparative analysis aims to provide a comprehensive understanding of how
supervised models perform in multi-class error classification on our screw-tightening dataset.

For all supervised models, the dataset is split such that 80% of the data is used for training and
20% is used for testing. To ensure that the train and test sets have the same proportion of each
error class, the stratify parameter is used in the train_test_split function.

6.2.1 KNN DTW results

In the training phase of the KNN DTW classifier, a grid search cross-validation (CV) is performed
using the following list of values for the hyperparameters: n_neighbors is experimented with
values [1, 5, 10], and weights is experimented with values [’uniform’, ’distance’]. After a 5-fold
cross-validation in grid search CV, the best hyperparameters are found to be n_neighbors: 10
and weights: distance. The classification report for multi-class error classification using this
distance-based method is shown in figure 28. The overall accuracy of the model is 0.56, which
is considered as low.

Figure 28: KNN DTW classification report.

The error categories surface-lubricant, adhesive-thread, shortening-the-screw, and M3-half-washer-
in-upper-part have higher precision and recall scores. This indicates that the model was able
to capture the patterns from these error categories more efficiently. Conversely, the error cat-
egories offset-of-work-piece, surface-sanded-400, and surface-sanded-40 have very low precision

6 Validation and Results 74

and recall scores. Additionally, the model was not able to learn anything from the error category
material-in-lower-part, as both precision and recall scores are 0. In the case of surface-used, the
precision score is low (0.57) but the recall score is high (0.85).

Overall, it can be stated that the distance-based method performs well in predicting a few error
classes but performs poorly in classifying many other error categories, with the overall macro
average F1 score being just above 50%.

6.2.2 Time Series Forest (TSF) results

Hyperparameter values
n_estimators [10, 30, 50, 100]
min_interval [3, 5, 10]

inner_series_length [10, 20, 30]
random_state [42]

Table 33: TSF hyperparameters.

During the training phase of this interval-based method, the list of values used for hyperparam-
eters in the grid search CV are mentioned in table 33. The best hyperparameter values obtained
are as follows: inner_series_length: 30, min_interval: 3, and n_estimators: 50. The model
was then trained again with this optimal set of hyperparameters, and the results are shown in
figure 29.

Figure 29: Time Series Forest classification report.

From the classification report in figure 29, it can be observed that the overall accuracy of the TSF
classifier is 0.75, which is significantly better compared to the distance-based classifier. However,
for the error categories surface-sanded-40 and surface-sanded-400, the precision and recall values
are very low compared to other categories. This indicates that similar to the distance-based

6 Validation and Results 75

classifier, the interval-based method also struggles to correctly identify these two classes. In the
case of offset-of-work-piece, the precision score is good at 0.75, but the recall value is very low at
0.3. A precision value of 1 is obtained only in one category (M4-washer-in-upper-part), whereas
the recall score of 1 is obtained in three error categories (M4-washer-in-upper-part, shortening-
the-screw, and surface-lubricant). In all other categories, the precision and recall scores are
observed to be similar.

Overall, the TSF classifier results are better, with good precision and recall scores for most
categories except for surface-sanded-40 and surface-sanded-400.

6.2.3 ROCKET classifier results

During the training phase of the kernel-based method, only the list of values for the hyper-
parameter rocket_transform is used. It is experimented with three different values: [’rocket’,
’minirocket’, ’multirocket’], and the num_kernels hyperparameter is set to 5000. After experi-
menting with different rocket_transform methods with a fixed value of num_kernels, the best
value for rocket_transform is found to be multirocket. The classification report created using
the test set is shown in figure 30. The overall accuracy of the ROCKET model is 0.81.

Figure 30: ROCKET classification report.

It can be seen that even the kernel-based methods struggle to perfectly identify the surface-
sanded-40 and surface-sanded-400 error categories, with both precision and recall values less
than 0.4. Looking into the recall values of each error category, it is observed that, apart
from the mentioned surface error categories, the recall value is low only for offset-of-screw-
hole (0.50). Moreover, in a few categories like offset-of-work-piece, shortening-the-screw, and
surface-lubricant, the recall score is 1. Similarly, the precision scores are also high for most error
categories. For the error categories material-in-lower-part, material-in-screw-head, and offset-

6 Validation and Results 76

of-screw-hole, the precision is 1. Overall, the ROCKET classifier predictions are extremely good
compared to other classifier results.

6.2.4 Catch22 results

During the training phase, the 22 features listed in Appendix tables 60 and 61 are extracted from
the time series sequences. The catch22 classifier utilizes the Random Forest classifier internally
to train the classification model. For the Random Forest classifier, the hyperparameters used
are as follows: n_estimators: 100, outlier_norm: True, and random_state: 42. The trained
model’s performance is evaluated on 20% of the dataset (test set), and the classification report
from the test set is visualized in figure 31. The overall accuracy of the model is observed to be
0.67.

Figure 31: Catch22 classification report.

This feature-based classifier struggles to accurately classify the error classes offset-of-work-piece
and surface-sanded-40, as both precision and recall values are very low. Similar challenges are
noticed in surface-sanded-400 and adhesive-thread, although the precision and recall scores are
slightly better in comparison. Apart from these error categories, all other categories exhibit high
precision and recall values. Notably, M3-washer-in-upper-part and shortening-the-screw achieve
a perfect recall score of 1. Moreover, in the tearing-off-screw error category, both the precision
and recall values are exactly 0.89.

Overall, considering the precision, recall, and accuracy scores of the feature-based classifier, we
can conclude that its performance is above average and better than that of the distance-based
classifier.

6 Validation and Results 77

6.2.5 Shaplet transform classifier results

In the training phase of the shapelet transform classifier, the rotation forest algorithm is used to
train the model. The list of values for each hyperparameter used in the grid search CV is men-
tioned in table 34. After the grid search, the best parameters are found to be: batch_size: 10, es-
timator__n_estimators: 20, max_shapelet_length: None, max_shapelets: 5, and n_shapelet_samples:
100. The shapelet transform model is then retrained with this optimal set of hyperparameters.
The test dataset is used as input for the final trained model, and the results from the classifica-
tion report are visualized in figure 32. The overall accuracy of the shapelet transform classifier
is observed to be 0.70.

Hyperparameter values
estimator__n_estimators [5, 10, 20]

n_shapelet_samples [50, 100, 150]
max_shapelets [5, 10, 20]

max_shapelet_length [None, 20, 50]
batch_size [10, 20, 50]

Table 34: Shaplet transform hyperparameters.

Figure 32: Shapelet transform classification report.

The precision for the material-in-lower-part and offset-of-screw-hole is 1, but the recall value
for offset-of-screw-hole is very low (0.5) compared to precision. Similar to other classifiers, the
precision and recall values are low for surface-sanded-40 and surface-sanded-400. Additionally,
for the error categories M3-washer-in-upper-part, shortening-the-screw, and surface-lubricant,
the recall value is exactly 1. Lower recall values are also observed in the error categories adhesive-
thread (0.5), M3-half-washer-in-upper-part (0.4), and offset-of-work-piece (0.3). For all other
error categories, the precision and recall scores are either high or above average. Overall, it can
be said that the results of the shapelet-based classifier are better than the distance-based and

6 Validation and Results 78

feature-based classifiers, and it competes with the results of the Time Series Forest (TSF) and
ROCKET classifiers, though with slightly lower precision and recall scores.

6.2.6 CNN results

The convolutional neural network is also trained using a large list of hyperparameters, and grid
search CV is used to find the best parameters. The list of hyperparameter values is specified
in table 35, and the best value for each hyperparameter is found to be as follows: activation:
tanh, batch_size: 32, epochs: 50, learning_rate: 1.0, loss: SparseCategoricalCrossentropy(),
optimizer : Adadelta. The overall accuracy of the CNN classifier is 0.56, which is the same
as the KNN DTW classifier, indicating that this classifier performs poorly compared to other
classifiers.

Hyperparameter values
epochs [50, 100]

batch_size [16, 32]
activation [’relu’, ’tanh’]

loss [SparseCategoricalCrossentropy(), CategoricalCrossentropy()]
learning_rate [0.01, 0.1, 1.0]

optimizer [Adadelta, Adam, SGD]

Table 35: CNN hyperparameters.

Figure 33: CNN classification report.

The main observation from the classification report in figure 33 is that for M3-half-washer-in-
upper-part and offset-of-work-piece, the precision and recall values are 0. This indicates that the
CNN model was not able to capture any patterns from these error classes and always misclassifies
these categories. Moreover, the precision and recall values for surface-sanded-40 are nearly 0.
Apart from these poor values, the classifier also performs better in a few error categories. The

6 Validation and Results 79

precision value is 1 in the error categories material-in-lower-part and material-in-screw-head.
Additionally, the recall value is 1 for the error categories M3-washer-in-upper-part, shortening-
the-screw, surface-lubricant, and tearing-off-screw.

Overall, it can be stated that even though the model has some good precision and recall values
for a few error categories, the overall performance of the model is poor. The CNN model is not
able to accurately capture the patterns of different error categories efficiently.

6.3 Supervised models combined results

Figure 34: Bar plot for Macro avg F1 scores of different (supervised) models.

The bar plot in figure 34 shows the macro average F1 scores of each supervised classification
model. It can be seen that out of the six classification models, the ROCKET classifier performs
the best with a macro average F1 score of 0.79. It is followed by the Time Series Forest (TSF)
classifier with a macro average F1 score of 0.74. The distance-based model (KNN DTW classifier)
and the deep learning model (CNN classifier) perform poorly compared to other classifiers, each
with a macro average F1 score of 0.52. Furthermore, the results of Shapelet Transform classifier
and catch22 classifier are above average with macro-average F1 scores ranging from 0.65 to 0.67.
Hence, it can be concluded that if different screw anomalies need to be determined using the
supervised approach, the kernel-based approach (ROCKET classifier) can be used as it performs
very well in classifying multiple errors.

6 Validation and Results 80

Figure 35: Stacked bar chart for precision scores of each error category (Supervised models).

Figure 35 shows the stacked bar chart combining the precision scores of all the classification
models. This makes it easier to compare the results of each error category across multiple models.
It can be observed that precision scores are lower for the error categories offset-of-work-piece,
surface-sanded-40, and surface-sanded-400, as the length of the bars is comparatively shorter.
For surface-lubricant, all classifiers have good precision scores except for the CNN classifier.
In general, all the models have good precision scores for the error categories shortening-the-
screw, material-in-screw-head, offset-of-screw-hole, M3-washer-in-upper-part, material-in-lower-
part, tearing-off-screw, and surface-used.

Figure 36: Stacked bar chart for recall scores of each error category (Supervised models).

Figure 36 shows a stacked bar chart of the recall scores for all classification models combined. In
general, the bar lengths for each error category in the recall values chart are shorter compared to
the precision values chart, indicating that recall scores are generally lower than precision scores.
All other observations for the recall values chart are similar to those for the precision values
chart.

6 Validation and Results 81

6.4 Unsupervised methods

In this subsection, the results of all unsupervised models used for multi-class error clustering in
this thesis are presented in tabular form and explained in detail. A variety of clustering algo-
rithms from different families are experimented and their performance is assessed. From simple
clustering methods, time series k-means (distance-based approach), and DBSCAN (density-
based method) are used.

From advanced clustering algorithms, k-shape clustering (shape-based method), spectral clus-
tering (graph-based method) is selected, and self-organizing maps and CNN autoencoder ap-
proaches are used from the deep learning family. Affinity propagation is used from the similarity-
based approach. For the probabilistic-based approach, Hidden Markov Models (HMM) and
Bayesian Gaussian mixture modeling are utilized. In the decomposition-based approach, matrix
factorization was employed.

Due to the page limit of the master thesis report, it is not possible to explain all the clustering
results. Therefore, results from k-means is detailed from the simple clustering method. From the
advanced clustering methods, the results from the best models, i.e., K-shape, spectral clustering,
affinity propagation, and self-organizing maps are explained in detail. Additionally, cluster
ensemble methods like the co-association matrix method and the relabel and maximum voting
method were used to determine if the results were better than any individual clustering method.

Since the clustering algorithms only output labels indicating which cluster each time series
belongs to, additional logic is used to map these cluster labels to the true error categories, given
that the true label for each screw-tightening process is known. The basic idea is that each
error category will have the maximum number of observations in just one cluster, with very few
observations assigned to other clusters. Therefore, each error category is mapped to the cluster
with the highest number of observations from that category.

In some cases, certain clusters might remain unassigned. These clusters are identified and
mapped to the error category that has the most observations in that cluster. Thus, each cluster
can be assigned to a particular error category. To enhance stability, accuracy and find the best
hyperparameters, 5-fold cross-validation is used. In each fold, the model was trained with 4
folds, and the last fold was used as a validation set. Adjusted Rand Index (ARI) is used as
metric to evaluate and compare the cluster results from each fold. Finally, the clusters with the
best ARI score are selected as the final clusters.

Each clustering algorithm was applied to errors in the green, orange, and red error categories
separately, including the OK samples (without baseline-extra) as an additional category. Finally,
the clustering algorithm was applied to the whole dataset (including all error categories and OK
samples without baseline-extra). For better understanding, this clustering result is referred to
as the ‘black color category’.

6 Validation and Results 82

6.4.1 K-means clustering results

K-means clustering is applied to four different color categories (green, orange, red, and black)
separately, and the results are tabulated below. For the green, orange, and red color categories,
the number of clusters is fixed at 8. This number is chosen to represent 5 error categories and
3 sub-categories in the baseline. For the black color category, the number of clusters is set to
18, representing the entire screw-tightening dataset, which includes 15 different error categories
and 3 sub-categories of the baseline. This cluster numbers are consistent across other clustering
algorithms as well. In the results, the category labeled baseline represent all the sub-categories
within the OK category (baseline, baseline-abrasion, and baseline-friction). As they are OK
categories, only one true label is assigned to all these categories in the dataset.

The TimeSeriesKMeans function from the sktime library is used to train the k-means clustering
model, which offers various hyperparameters. The init_algorithm hyperparameter, which defines
the method for initializing the clusters, is tested with both kmeans++ and random. Cross-
validation reveals that kmeans++ provides the best initialization. The other hyperparameters
are set as follows: n_init to 1, max_iter to 10, and metric to dtw. These parameters are kept
consistent across all color categories to ensure a fair comparison of the results.

Green category results

Cluster Label /
True Label 0 1 2 3 4 5 6 7

Baseline 400 0 0 0 0 0 0 0
M3-washer-in-upper-part 0 0 0 3 0 47 0 0

Offset-of-screw-hole 23 0 4 2 0 19 0 2
Shortening-the-screw 45 0 0 0 0 0 0 2

Tearing-off-screw 4 5 0 0 10 8 16 2
Surface-lubricant 50 0 0 0 0 0 0 0

Table 36: Error category to cluster mappings for green category (K-means clustering)

Table 36 presents the results for the green color category. It can be observed that most error
categories are assigned to cluster 0, indicating that the algorithm is not performing well in sep-
arating the error categories. The DTW distances among these time series are small, leading the
algorithm to consider all the time series similar and assign them to a single cluster. However,
the k-means algorithm performs well in identifying one particular error category (M3-washer-
in-upper-part) as these observations are assigned to a different cluster (cluster 5). Additionally,
the observations from the error category tearing-off-screw are split across several clusters, with
clusters 4 and 6 containing most observations from this category. The ARI score for this clus-
tering result is 0.478. The highlighted numbers in the table denote the mapping of clusters to
error categories based on the logic explained earlier. Since most error categories are mapped to
a single cluster, the accuracy metric for the mapping is very high even though the results are
not very good.

6 Validation and Results 83

Table 37 shows the k-means clustering results for the orange color category, and similar obser-
vations to the green category can be noticed. The predictions for the error category material-
in-screw-head are spread across multiple clusters and all other error categories are assigned to
cluster 0. This indicates that k-means does not effectively separate the error categories in the
orange category. The ARI for this clustering result is 0.135 which is very low.

Orange category results

Cluster Label /
True Label 0 1 2 3 4 5 6 7

Baseline 400 0 0 0 0 0 0 0
Adhesive-thread 49 1 0 0 0 0 0 0

M4-washer-in-upper-part 45 0 3 0 0 0 0 2
M3-half-washer-in-upper-part 46 0 1 0 0 0 0 3

Material-in-screw-head 23 0 5 0 12 10 0 0
Material-in-lower-part 50 0 0 0 0 0 0 0

Table 37: Error category to cluster mappings for orange category (K-means clustering)

Table 38 shows the results for the red color category. It can be noticed that the results are
significantly worse compared to the green and orange categories, as all observations from all
error categories are assigned to cluster 5. A single time series from the error categories surface-
sanded-400, surface-sanded-40, and surface-used is assigned to cluster 1, indicating these three
time series are very similar and distinct from all other time series. The Adjusted Rand Index
for this clustering result is 0.006 which is almost 0 and proves the cluster results are worse.

Red category results

Cluster Label /
True Label 0 1 2 3 4 5 6 7

Baseline 0 0 0 0 0 400 0 0
Offset-of-work-piece 0 0 0 0 0 50 0 0
Surface-sanded-400 0 1 0 0 0 49 0 0
Deformed-thread 0 0 0 0 0 100 0 0

Surface-used 0 1 0 0 0 99 0 0
Surface-sanded-40 0 1 0 0 0 49 0 0

Table 38: Error category to cluster mappings for Red category (K-means clustering)

Finally, the table 39 shows the clustering results obtained from modeling the entire dataset. The
highlighted numbers represent the good performance of the k-means clustering algorithm. The
model captures the distinct pattern in the tearing-off-screw category, as most observations are
assigned to clusters 6 and 9, which contain very few observations from other categories. A similar
observation can be made for the error category M3-washer-in-upper-part, where all observations
are assigned to clusters 1 and 10. A proportion of observations from the offset-of-screw-hole
category is also assigned to cluster 10, indicating these time series are similar to M3-washer-in-
upper-part. Additionally, a proportion of observations from material-in-screw-head is assigned
to cluster 7. All other observations from multiple error categories are assigned to cluster 0. It

6 Validation and Results 84

can be noted that clusters 5, 8 and 15 are not included in the table as none of the observations
are assigned to these clusters.

Overall, the performance of the k-means clustering is poor across all color categories, except for
capturing a few distinct time series from some error categories. The ARI score for clustering
using the entire dataset is 0.089.

Black category results

Cluster
Label /

True Label
0 1 2 3 4 6 7 9 10 11 12 13 14 16 17

Baseline 400 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Adhesive-thread 49 0 0 0 0 0 0 0 0 0 1 0 0 0 0
Deformed-thread 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0
M3-half-washer 46 0 0 0 0 0 0 0 0 0 0 1 0 0 3

M3-washer 0 7 0 0 0 0 0 0 43 0 0 0 0 0 0
M4-washer 38 0 2 0 0 0 0 0 9 0 0 0 0 0 1

Material-in-lower-part 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Material-in-screw-head 23 0 0 0 2 0 15 7 3 0 0 0 0 0 0

Offset-of-screw-hole 18 3 0 4 0 0 0 0 21 1 1 0 0 2 0
Offset-of-work-piece 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Shortening-the-screw 44 0 0 0 1 0 0 0 1 0 0 0 0 0 1
Surface-lubricant 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Surface-sanded-40 49 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Surface-sanded-400 49 0 0 0 0 0 0 0 0 0 1 0 0 0 0
Surface-used 99 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Tearing-off-screw 3 0 1 0 0 8 0 25 5 0 1 1 1 0 0

Table 39: Error category to cluster mappings for Black category (K-means clustering)

6.4.2 K-shape clustering results

The KShape function from the tslearn library is used to implement the shape-based clustering
algorithm K-shape. The library offers several hyperparameters that can be set before training.
The n_clusters parameter is set to 8 or 18, depending on the color category being clustered.
The n_init hyperparameter, which denotes the number of times the K-shape algorithm runs
with different centroid initializations, is experimented with [5, 10, 15] using cross-validation,
and it is found that the best number of initializations is 5. The init parameter, which denotes
the method for initialization, is set to random. The max_iter parameter, which denotes the
maximum number of iterations, is set to 100.

Table 40 shows the results for the green category. The observations from different error categories
are well separated into different clusters, with some misclassifications. Most of the observations
from the M3-washer-in-upper-part category are assigned to cluster 6. The observations from the
surface-lubricant category are perfectly assigned to cluster 1, which does not contain observations
from any other error categories. This shows that the surface-lubricant error has a unique shape

6 Validation and Results 85

of time series, making it easily separable. In the case of shortening-the-screw, 38 observations
are assigned to cluster 7, which is also very good. The observations from the offset-of-screw-hole
category are split into two clusters (cluster 5 and cluster 6). It can be seen that half of the
observations from this category are in the same cluster as M3-washer-in-upper-part, indicating
that some time series from offset-of-screw-hole have the same shape as M3-washer-in-upper-part.

Green category results

Cluster Label /
True Label 0 1 2 3 4 5 6 7

Baseline 209 0 0 161 30 0 0 0
M3-washer-in-upper-part 0 0 0 1 9 0 40 0

Offset-of-screw-hole 0 0 0 0 5 20 25 0
Shortening-the-screw 0 0 7 0 2 0 0 38

Tearing-off-screw 1 0 23 2 16 0 1 2
Surface-lubricant 0 50 0 0 0 0 0 0

Table 40: Error category to cluster mappings for green category (K-shape clustering)

Additionally, almost half of the observations from the tearing-off-screw belong to cluster 2.
Cluster 4 contains observations from all error categories except surface-lubricant, indicating
that some time series have similar shapes across all error categories. The baseline observations
are also well separated from multiple error categories, mostly being assigned to clusters 0 and 3.
The Adjusted Rand Index (ARI) for the K-shape clustering in the green category is 0.46. The
overall accuracy of the cluster-to-error category mapping is 93%, indicating that the K-shape
clustering performance is excellent in separating the errors in the green category.

Orange category results

Cluster Label /
True Label 0 1 2 3 4 5 6 7

Baseline 30 0 171 30 169 0 0 0
Adhesive-thread 0 44 0 0 1 1 0 4

M4-washer-in-upper-part 2 4 0 4 1 10 0 29
M3-half-washer-in-upper-part 4 12 0 2 1 5 0 26

Material-in-screw-head 11 10 7 2 11 0 5 4
Material-in-lower-part 14 1 0 0 0 35 0 0

Table 41: Error category to cluster mappings for orange category (K-shape clustering)

Table 41 represents the results from the orange color category. It can be observed that the error
category adhesive-thread is well separated into cluster 1, but also contains some misclassifications
from other error categories. Similarly, material-in-lower-part observations are mostly assigned
to cluster 5. Half of the observations from M4-washer-in-upper-part and M3-half-washer-in-
upper-part are assigned to cluster 7, indicating that these error categories have the same shapes.
Material-in-screw-head observations are spread across all the clusters, indicating the model
was not able to properly capture the shape pattern from this error category. The baseline
observations are mostly limited to clusters 2 and 4 and are well separated from errors. The ARI

6 Validation and Results 86

score for this clustering is 0.337. The overall accuracy of the cluster-to-error category mapping
is 80%, which is also very good and far better than the k-means results.

Table 42 shows the results from the red category. At a glance, it can be noticed that all the
clusters have observations from multiple error categories, as the numbers are spread across the
table. The main observations are as follows: In the case of deformed-thread, 50% of observations
are separated into cluster 6 with very few observations from other errors. Similarly, 50% of
observations from surface-sanded-40 and surface-sanded-400 are assigned to cluster 2, and these
observations overlap with each other and with a few other error categories. The offset-of-
work-piece and surface-used errors are spread across all the clusters. Moreover, the baseline
observations are also spread across all the clusters, but a majority of them belong to clusters
1, 5, and 7. The ARI score for this clustering is 0.124, which is very low compared to the
green and orange categories. This shows that multiple error categories in red have the same
shape, making it very hard to separate them into individual clusters. The overall accuracy of
the cluster-to-error category mapping is 68%.

Red category results

Cluster Label /
True Label 0 1 2 3 4 5 6 7

Baseline 13 106 30 30 29 77 1 114
Offset-of-work-piece 20 0 14 0 4 5 3 4
Surface-sanded-400 13 0 24 2 4 1 1 5
Deformed-thread 3 1 9 2 5 16 49 15

Surface-used 37 19 3 11 9 8 0 13
Surface-sanded-40 11 0 23 1 7 3 3 2

Table 42: Error category to cluster mappings for Red category (K-shape clustering)

Black category results

Table 43 shows the results from the black category obtained from K-shape clustering. The high-
lighted numbers indicate the unique patterns captured by K-shape, which are well separated into
different clusters compared to others. The numbers from the tearing-off-screw, shortening-the-
screw, and surface-lubricant categories show that these are well separated, similar to the results
from the green color category. This is valid when the model is tested with the whole dataset
as well. Additionally, the highlighted numbers from M3-half-washer-in-upper-part (20) and M4-
washer-in-upper-part (24) show that they belong to the same cluster (cluster 2) and overlap, as
observed in the orange category results. More than 60% of observations from adhesive-thread
belong to cluster 9, overlapping with the observations from deformed-thread. Also, more than
half of the observations from material-in-lower-part are assigned to cluster 1 and appear well
separated. All the other error categories have their observations spread across the clusters. In
the case of the baseline category, most observations are assigned to clusters 0, 4, and 11.

The overall accuracy of the cluster-to-error category mapping is 55%, with a 0.25 ARI score for
the clustering result. It can be stated that K-shape clustering performs very well in the green

6 Validation and Results 87

Cluster
Label /

True Label
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Baseline 72 0 0 20 72 0 25 2 0 0 3 157 9 5 0 0 0 35
Adhesive-thread 2 0 4 0 0 0 0 0 10 33 0 0 0 0 0 0 1 0
Deformed-thread 31 0 5 5 12 0 2 0 2 31 0 5 1 0 0 0 0 6
M3-half-washer 0 2 20 1 0 0 2 4 3 2 1 0 0 0 9 1 4 1

M3-washer 0 0 1 0 0 0 0 0 13 5 0 0 0 0 0 31 0 0
M4-washer 0 0 24 0 1 0 4 1 1 0 1 0 0 0 5 8 5 0

Material-in-lower-part 0 28 0 3 0 0 0 14 2 0 0 0 1 0 0 2 0 0
Material-in-screw-head 1 1 2 4 8 5 2 3 0 2 1 1 0 1 0 0 14 5

Offset-of-screw-hole 0 21 0 0 0 0 1 0 3 0 0 0 0 0 0 17 8 0
Offset-of-work-piece 5 0 2 16 4 0 0 11 0 0 4 2 0 0 0 0 0 6

Shortening-the-screw 0 0 0 0 0 45 0 0 0 0 0 0 0 0 0 0 2 0
Surface-lubricant 0 0 0 0 0 0 0 0 0 0 8 0 0 0 42 0 0 0
Surface-sanded-40 1 1 0 8 5 0 0 7 0 0 16 0 0 0 4 0 1 7

Surface-sanded-400 3 0 1 6 4 0 1 8 0 1 11 0 0 0 1 0 1 13
Surface-used 9 0 0 19 5 1 4 11 0 0 0 22 17 6 0 0 1 5

Tearing-off-screw 0 0 5 0 0 10 1 0 0 2 0 0 0 0 0 0 27 0

Table 43: Error category to cluster mappings for Black category (K-shape clustering)

and orange categories but performs poorly in the red category. The accuracy on the overall
dataset is just above 50%, which is similar to some classification models in supervised methods.

6.4.3 Spectral clustering results

The steps involved in spectral clustering, such as constructing the similarity matrix, Laplacian
transformation, and computing eigenvalues and eigenvectors, are performed using the appro-
priate libraries. The obtained eigenvectors are then used as input for the K-means clustering
algorithm from sklearn library. A CV approach is used to determine the best values for the
hyperparameters init and algorithm in the K-means clustering. The init parameter, which de-
notes the method for initializing the centroids, is experimented with [’k-means++’, ’random’].
The algorithm parameter, which denotes the type of algorithm to use for K-means clustering,
is experimented with [’lloyd’, ’elkan’]. After hyperparameter tuning, the best parameters found
are as follows: init: k-means++, algorithm: l loyd, max_iter : 300, n_init: auto.

Table 44 shows the results from the green color category. It can be observed that the error
categories surface-lubricant shortening-the-screw, and tearing-off-screw, are assigned to clusters
4, 5, and 6 respectively, and are well separated. The M3-washer-in-upper-part observations
are assigned to cluster 0, and half of the observations from offset-of-screw-hole overlap with
this error category. Additionally, only 7 observations from offset-of-screw-hole are assigned to
cluster 7, and this cluster doesn’t contain any other observations. The baseline observations are
well separated and assigned to clusters 1, 2, and 3. The overall accuracy of the cluster-to-error
category mapping is 93%, which is similar to K-shape results. However, in the case of tearing-

6 Validation and Results 88

off-screw, spectral clustering has an edge over K-shape. The ARI score for the clustering is
0.45.

Green category results

Cluster Label /
True Label 0 1 2 3 4 5 6 7

Baseline 1 213 35 150 1 0 0 0
M3-washer-in-upper-part 47 2 0 0 0 1 0 0

Offset-of-screw-hole 27 1 0 0 13 2 0 7
Shortening-the-screw 0 0 0 0 0 38 9 0

Tearing-off-screw 1 0 1 0 0 3 40 0
Surface-lubricant 0 2 8 0 40 0 0 0

Table 44: Error category to cluster mappings for green category (Spectral clustering)

Table 45 shows the results from the orange color category. It can be seen that almost all
observations from the baseline category are assigned to clusters 0, 1, and 3. Similar to the
K-shape results, the observations from M4-washer-in-upper-part and M3-half-washer-in-upper-
part overlap, which is evident from the numbers in cluster 5. Spectral clustering performs well
in identifying the error category material-in-screw-head, as more than 50% of observations are
assigned to cluster 6. Additionally, most observations from material-in-lower-part and adhesive-
thread are assigned to clusters 2 and 7, respectively, and are well separated. The overall accuracy
for the cluster-to-error category mapping is 86%, and the ARI score is 0.252.

Orange category results

Cluster Label /
True Label 0 1 2 3 4 5 6 7

Baseline 148 108 0 108 33 2 0 1
Adhesive-thread 1 1 0 0 6 1 1 40

M4-washer-in-upper-part 1 4 10 1 4 27 3 0
M3-half-washer-in-upper-part 1 0 3 4 2 32 4 4

Material-in-screw-head 11 3 0 6 2 0 27 1
Material-in-lower-part 6 0 33 8 2 0 0 1

Table 45: Error category to cluster mappings for orange category (Spectral clustering)

Red category results

Cluster Label /
True Label 0 1 2 3 4 5 6 7

Baseline 15 87 94 24 2 25 33 120
Offset-of-work-piece 15 1 8 13 3 0 5 5
Surface-sanded-400 11 0 7 16 2 2 6 6
Deformed-thread 2 7 16 8 44 1 6 16

Surface-used 23 19 12 3 0 10 14 19
Surface-sanded-40 10 0 15 18 1 1 3 2

Table 46: Error category to cluster mappings for Red category (Spectral clustering)

6 Validation and Results 89

Table 46 shows the results from the red color category. The overall accuracy for the cluster-to-
error category mapping is 63%, and the ARI score is 0.1, which is very low. It is evident from
table 46 that all observations for all categories are distributed across clusters. The observations
from the baseline category are assigned to clusters 1, 2, and 7, and all these clusters contain
some observations from other error categories as well. Additionally, the model assigns 44% of
observations from deformed-thread to cluster 4.

Table 47 shows the results from the black color category of spectral clustering. The overall
accuracy of the cluster-to-error category mapping is 62%. The important values are highlighted
in the table. Spectral clustering perfectly assigns the M3-washer-in-upper-part to a single cluster
(cluster 10), which also contains 28 observations from offset-of-screw-hole. Cluster 12 contains 32
observations from material-in-lower-part and very few observations from other error categories.
Furthermore, in the baseline category, the majority of observations are assigned to clusters 1, 3,
14, and 15. The ARI score for the spectral clustering performed on the entire dataset is 0.165.
The clustering results on the entire dataset are similar to K-shape clustering but with a higher
accuracy score and a lower ARI score.

Black category results

Cluster
Label /

True Label
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Baseline 2 68 3 92 0 25 0 0 33 0 0 17 0 0 75 58 0 27
Adhesive-thread 0 0 2 1 1 0 0 1 2 0 0 2 0 40 1 0 0 0
Deformed-thread 0 7 2 6 0 1 0 1 7 0 0 6 0 21 17 17 0 15
M3-half-washer 0 0 19 0 3 0 2 17 2 0 1 1 2 0 0 1 1 1

M3-washer 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0
M4-washer 2 0 15 0 3 0 1 8 6 0 11 2 0 0 1 1 0 0

Material-in-lower-part 0 1 0 0 0 0 0 2 2 0 0 9 32 1 1 0 0 2
Material-in-screw-head 0 1 1 1 22 1 0 0 2 0 0 3 1 0 2 7 4 5

Offset-of-screw-hole 0 0 0 0 2 0 0 1 0 6 28 0 13 0 0 0 0 0
Offset-of-work-piece 0 2 0 1 0 0 0 1 5 0 0 19 1 1 5 6 0 9

Shortening-the-screw 19 3 0 0 2 0 16 0 0 0 0 0 0 0 0 0 7 0
Surface-lubricant 0 0 16 0 0 0 0 22 8 0 0 4 0 0 0 0 0 0
Surface-sanded-40 0 0 6 0 1 0 0 8 3 0 0 16 1 0 5 5 0 5

Surface-sanded-400 0 0 5 0 1 1 0 4 6 0 0 17 0 0 2 7 0 7
Surface-used 1 14 0 22 1 9 0 0 14 0 0 5 0 0 11 9 0 14

Tearing-off-screw 1 0 0 0 19 0 1 0 0 0 2 0 0 0 0 0 22 0

Table 47: Error category to cluster mappings for Black category (Spectral clustering)

6.4.4 Self-Organizing Maps results

During the cross-validation of the SOM model, the list of hyperparameter values used for grid
search CV is mentioned in Table 48. Here, x represents the SOM kernel map width and y
represents the SOM kernel map height. The best hyperparameters found are as follows: x: 15,
y: 15, sigma: 0.5, learning_rate: 0.5, neighborhood_function: triangle, activation_distance:

6 Validation and Results 90

gaussian. These best hyperparameters are used to train SOM models for green, orange, red,
and black color categories, and the results are provided in the tables below.

Hyperparameter values
x [10, 15, 20]
y [10, 15, 20]

sigma [0.5, 1.0]
neighborhood_function [’gaussian’, ’triangle’]

activation_distance [’euclidean’, ’cosine’]

Table 48: SOM hyperparameters.

Table 49 shows the results from the green color category. The numbers from the error categories
M3-washer-in-upper-part, offset-of-screw-hole, and shortening-the-screw are similar to spectral
and K-shape clustering results. The SOM model doesn’t perform well in uniquely identifying
the error category surface-lubricant, as all the observations from this error category overlap with
the baseline category, which can be seen in clusters 1, 6, and 7. The error category tearing-
off-screw is well identified, as most of the observations are assigned to cluster 5. The baseline
observations are assigned to clusters 1, 2, 6 and 7. The overall accuracy of the cluster-to-error
category mapping is 78%, and the ARI score is 0.27, which is low compared to the results from
spectral and K-shape clustering methods in the green category.

Green category results

Cluster Label /
True Label 0 1 2 3 4 5 6 7

Baseline 0 33 123 0 0 0 151 93
M3-washer-in-upper-part 5 0 0 45 0 0 0 0

Offset-of-screw-hole 2 0 0 26 20 2 0 0
Shortening-the-screw 35 0 0 0 0 9 3 0

Tearing-off-screw 2 0 0 1 0 41 0 1
Surface-lubricant 0 8 0 0 0 0 17 25

Table 49: Error category to cluster mappings for green category (SOM)

Orange category results

Cluster Label /
True Label 0 1 2 3 4 5 6 7

Baseline 149 0 101 0 0 33 115 2
Adhesive-thread 13 0 0 1 0 6 23 7

M4-washer-in-upper-part 14 0 4 3 11 8 10 0
M3-half-washer-in-upper-part 19 0 2 4 1 2 17 5

Material-in-screw-head 11 2 2 25 0 3 7 0
Material-in-lower-part 3 0 0 0 0 1 4 42

Table 50: Error category to cluster mappings for orange category (SOM)

Table 50 shows the results from the orange color category. The SOM model performs well
in identifying the error category material-in-lower-part, as most of the observations belong to

6 Validation and Results 91

cluster 7. The results from the error categories M4-washer-in-upper-part and M3-half-washer-
in-upper-part are similar to spectral and K-shape clustering results. Clusters 0, 2, and 6 contain
most of the observations from the baseline category. Moreover, SOM assigns 50% of the ob-
servations from material-in-screw-head to cluster 3 and almost 50% of the observations from
adhesive-thread to cluster 6. The overall accuracy of the cluster-to-error category mapping is
64%, and the ARI score is 0.135, which is also low compared to spectral and K-shape clustering.

Red category results

Cluster Label /
True Label 0 1 2 3 4 5 6 7

Baseline 8 82 103 61 33 86 0 27
Offset-of-work-piece 13 1 3 8 5 20 0 0
Surface-sanded-400 12 4 0 11 5 16 1 1
Deformed-thread 18 6 5 22 7 41 0 1

Surface-used 9 11 16 9 14 30 1 10
Surface-sanded-40 10 1 1 10 1 26 1 0

Table 51: Error category to cluster mappings for Red category (SOM)

Black category results

Cluster
Label /

True Label
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Baseline 77 0 20 0 63 74 0 0 0 0 32 0 10 95 0 27 2 0
Adhesive-thread 0 0 21 1 1 0 0 0 0 0 6 0 7 2 0 0 12 0
Deformed-thread 6 0 26 0 19 2 0 0 0 0 7 0 11 18 0 1 10 0
M3-half-washer 0 0 7 4 1 0 1 0 0 0 2 0 6 13 0 0 12 4

M3-washer 0 24 0 0 0 0 0 0 0 0 0 20 0 0 6 0 0 0
M4-washer 0 8 3 3 0 0 2 0 0 0 6 1 1 11 1 0 14 0

Material-in-lower-part 0 0 3 0 0 0 17 0 0 0 1 0 7 0 0 0 0 22
Material-in-screw-head 2 0 4 19 7 1 0 8 0 0 3 0 2 3 0 1 0 0

Offset-of-screw-hole 0 22 0 2 0 0 8 0 0 7 0 2 0 0 2 0 0 7
Offset-of-work-piece 0 0 14 0 11 1 0 0 0 0 3 0 13 5 0 0 0 3

Shortening-the-screw 0 0 0 2 0 0 0 7 35 0 0 0 0 0 3 0 0 0
Surface-lubricant 0 0 25 0 0 0 0 0 0 0 8 0 10 0 0 0 7 0
Surface-sanded-40 0 0 15 1 9 0 1 0 0 0 2 0 6 11 0 0 4 1
surface-sanded-400 1 0 9 1 12 0 0 0 0 0 6 0 9 7 0 1 4 0

Surface-used 11 0 22 1 7 15 0 0 0 0 10 0 15 9 0 9 0 1
Tearing-off-screw 0 1 1 29 0 0 0 12 2 0 0 0 0 0 0 0 0 0

Table 52: Error category to cluster mappings for Black category (SOM)

Table 51 shows the results from the red color category. The results are spread across all clus-
ters, with cluster 5 containing most of the observations from multiple error categories as well
as the baseline category. Specifically, 30 observations from surface-used, 26 observations from
surface-sanded-40, and 41 observations from deformed-thread are assigned to cluster 5. Obser-
vations from the error categories, offset-of-work-piece and surface-sanded-400 are spread across

6 Validation and Results 92

all clusters, but cluster 5 contains a few more observations compared to other clusters. The
overall accuracy of the cluster-to-error category mapping is 61%, and the ARI score is 0.03.

Table 52 shows the results from the black color category. Interesting numbers are highlighted in
the table. The baseline observations are mostly assigned to clusters 0, 4, 5, and 13. Additionally,
35 observations from the shortening-the-screw error category are assigned to cluster 8, and this
cluster doesn’t contain observations from any other error category except for 2 observations from
tearing-off-screw. Most of the observations from tearing-off-screw (29) are assigned to cluster 3,
which also contains observations from multiple error categories. All other error categories are
assigned to a greater number of clusters, with no particularly interesting patterns. The overall
accuracy of the cluster-to-error category mapping is 56%, and the ARI score is 0.133.

6.4.5 Affinity propagation results

The AffinityPropagation function from the sklearn library is used to implement the affinity
propagation clustering algorithm. Unlike other clustering methods, affinity propagation auto-
matically determines the number of clusters, so fixed cluster numbers are not applicable. For
the green category, the algorithm produces 8 clusters, matching the number of clusters assigned
in other clustering algorithms. For the orange and red categories, it produces 9 clusters. In
the black category, the algorithm assigns data points to 22 clusters, which is 4 more than the
clusters assigned by other methods.

The hyperparameters used to train the affinity propagation algorithm are as follows: damping
is set to 0.5, max_iter to 100, convergence_iter to 15, and affinity is set to precomputed. The
pairwise kernels method is used to compute the similarity matrix, similar to the approach used
in spectral clustering. These hyperparameters are consistent across all color categories, and the
results are tabulated below.

Green category results

Cluster Label /
True Label 0 1 2 3 4 5 6 7

Baseline 189 151 27 33 0 0 0 0
M3-washer-in-upper-part 0 0 2 0 0 43 2 3

Offset-of-screw-hole 0 0 0 0 20 26 0 4
Shortening-the-screw 0 0 0 0 0 0 38 9

Tearing-off-screw 0 0 1 0 0 2 2 40
Surface-lubricant 25 17 0 8 0 0 0 0

Table 53: Error category to cluster mappings for green category (Affinity propagation)

Table 53 shows the results from the green category. The results are somewhat similar to those
of the SOM algorithm for this category. For instance, half of the observations from the surface-
lubricant category overlap with the baseline category and are assigned to cluster 0. Obser-
vations from the offset-of-screw-hole category are assigned to clusters 4 and 5, with cluster 5
also containing most observations from the M3-washer-in-upper-part category. Additionally, the

6 Validation and Results 93

shortening-the-screw and tearing-off-screw categories are assigned to clusters 6 and 7, respec-
tively. The ARI score for this clustering is 0.33, and the overall accuracy of cluster-to-error
category mapping is 92%. Affinity propagation performs well in separating errors in the green
category, similar to K-shape and spectral clustering methods.

Orange category results

Cluster Label /
True Label 0 1 2 3 4 5 6 7 8

Baseline 144 24 33 48 137 14 0 0 0
Adhesive-thread 0 0 4 23 2 17 1 0 3

M4-washer-in-upper-part 3 5 6 8 2 13 3 10 0
M3-half-washer-in-upper-part 2 2 1 18 1 19 4 1 2

Material-in-screw-head 3 1 2 5 10 1 27 1 0
Material-in-lower-part 0 0 1 11 0 6 0 0 32

Table 54: Error category to cluster mappings for orange category (Affinity propagation)

Table 54 shows the results from the orange category. Observations from the M4-washer-in-upper-
part and M3-half-washer-in-upper-part categories are spread across all clusters. The baseline
category is mostly assigned to clusters 0 and 4, with a few observations in clusters 1, 2, and
3. Nearly half of the observations from the adhesive-thread category are mapped to cluster 3,
and more than half of the observations from the material-in-screw-head category are mapped to
cluster 6. The overall accuracy of cluster-to-error category mapping is 0.71, and the ARI score
is 0.204. This ARI score is lower than those for spectral and K-shape clustering but higher than
for SOM clustering.

Table 55 shows the results from the red category. All error categories, as well as the baseline
category, have some observations assigned to all 9 clusters. For the baseline category, only
cluster 8 doesn’t have any observations, with most observations mapped to clusters 0 and 4.
In the offset-of-work-piece error category, all clusters except 5 and 8 have some observations
mapped to them. The ARI score for this clustering result is 0.076, and the overall accuracy
of the cluster-to-error category mapping is 0.49. This accuracy is very low compared to other
clustering results in the red category.

Red category results

Cluster Label /
True Label 0 1 2 3 4 5 6 7 8

Baseline 100 44 11 79 106 26 32 2 0
Offset-of-work-piece 2 10 15 5 4 0 5 9 0
Surface-sanded-400 0 11 9 7 5 1 6 10 1
Deformed-thread 7 25 23 16 11 1 7 10 0

Surface-used 16 10 11 20 14 9 13 6 1
Surface-sanded-40 1 9 18 8 3 0 2 8 1

Table 55: Error category to cluster mappings for red category (Affinity propagation)

6 Validation and Results 94

Tables 56 and 57 show the results from the black category. Due to the high number of clus-
ters (21), the results are split into two tables. Table 56 contains results from clusters 0 to 9,
while table 57 contains results from clusters 10 to 21. From table 56, we notice that most
baseline observations are limited to clusters 0 to 7. Additionally, 36 observations from the M3-
washer-in-upper-part category are assigned to cluster 8, and half of the observations from the
surface-lubricant category are assigned to cluster 3. All other clusters contain a small number
of observations from each error category.

Black category results

Cluster
Label /

True Label
0 1 2 3 4 5 6 7 8 9

Baseline 97 57 86 24 26 33 69 3 0 0
Adhesive-thread 0 0 0 20 0 6 2 9 0 0
Deformed-thread 4 2 22 26 1 7 16 10 0 0
M3-half-washer 0 0 1 8 0 2 10 13 0 0

M3-washer 0 0 0 0 0 0 0 0 36 3
M4-washer 0 0 0 3 0 6 8 13 1 3

Material-in-lower-part 0 0 1 7 0 1 0 0 0 0
Material-in-screw-head 1 3 7 3 1 2 4 0 1 0

Offset-of-screw-hole 0 0 0 0 0 0 0 0 5 0
Offset-of-work-piece 1 0 10 16 0 5 5 2 0 0

Shortening-the-screw 0 0 0 0 0 0 0 0 0 0
Surface-lubricant 0 0 0 25 0 8 0 8 0 0
Surface-sanded-40 0 0 8 20 0 2 7 2 0 0

Surface-sanded-400 0 0 10 10 1 6 6 4 0 0
Surface-used 18 8 14 21 9 14 7 0 0 0

Tearing-off-screw 0 0 0 1 0 0 0 0 1 0

Table 56: Error category to cluster mappings for Black category - I (Affinity propagation)

In Table 57, no significant numbers are observed, with nearly half of the values being zero. This
shows that most observations are mapped to clusters 0 to 9. The overall accuracy of cluster-to-
error category mapping is 0.58, and the ARI score is 0.134. This accuracy score is similar to
those of K-shape and SOM clustering but lower than that of spectral clustering.

6 Validation and Results 95

Cluster
Label /

True Label
10 11 12 13 14 15 16 17 18 19 20 21

Baseline 0 0 0 0 0 0 0 0 5 0 0 0
Adhesive-thread 0 1 3 0 0 0 0 0 8 0 0 1
Deformed-thread 0 0 0 0 0 0 0 0 12 0 0 0
M3-half-washer 1 3 1 0 0 0 1 0 5 0 2 3

M3-washer 0 0 0 0 0 0 0 11 0 0 0 0
M4-washer 2 0 0 0 5 2 0 0 2 2 2 1

Material-in-lower-part 0 18 16 0 0 0 0 0 7 0 0 0
Material-in-screw-head 10 0 0 0 0 0 0 0 1 0 0 17

Offset-of-screw-hole 0 7 7 6 1 5 5 12 0 0 0 2
Offset-of-work-piece 0 0 0 0 0 0 0 0 11 0 0 0

Shortening-the-screw 7 0 0 0 0 0 0 0 0 19 19 2
Surface-lubricant 0 0 0 0 0 0 0 0 9 0 0 0
Surface-sanded-40 0 0 1 0 0 0 0 0 9 0 0 1

Surface-sanded-400 0 0 0 0 0 0 0 0 12 0 0 1
Surface-used 0 1 0 0 0 0 0 0 6 0 1 1

Tearing-off-screw 31 0 0 0 0 1 0 0 0 1 1 9

Table 57: Error category to cluster mappings for Black category - II (Affinity propagation)

6.5 Unsupervised models combined results

Figure 37: ARI scores lineplot for differnt clustering methods.

Figure 37 shows the line plot of the ARI scores for different clustering methods across all color
categories. From the plot, it is evident that K-means has a very high ARI score in the green
category but drops significantly in the other categories. The ARI scores from the K-shape
algorithm consistently dominate all other clustering methods across all color categories, followed
by spectral clustering and affinity propagation. This indicates that the K-shape algorithm forms
better clusters compared to the other methods.

The clusters formed by the SOM algorithm are not as well-defined, as indicated by its lower
ARI scores compared to spectral, K-shape, and affinity propagation. In the orange category,

6 Validation and Results 96

the ARI scores of SOM and K-means are the same. From the ARI scores, we can infer that
the clusters obtained in the green and orange categories are well-separated compared to those
in the red category. The ARI scores are very low for all models in the red category, which is
expected, as the data from all error categories are very similar and cannot be easily separated
into distinct clusters. The ARI scores for the black category are still low but better than those
for the red category.

Figure 38: Accuracy scores multi-bar chart for differnt clustering methods.

Figure 38 shows a multi-bar chart for the accuracy scores obtained after mapping the clusters to
their respective error categories. The K-means accuracy results are not shown in the plot because
all the observations are mapped to the same cluster, resulting in artificially high accuracy scores
that are not comparable to the results from other algorithms.

The results confirm that clustering methods perform well in identifying screw errors in the green
and orange categories, as these categories have some unique patterns. In the green category, only
the SOM method has a lower accuracy of 78%, whereas all other methods achieve an accuracy
of 93%. In the orange category, spectral clustering dominates other algorithms with an 86%
accuracy.

As expected, poor accuracy results are observed in the red category. Affinity propagation per-
forms the worst, with an overall accuracy of 49%. Additionally, all clustering methods achieve an
accuracy of 55% to 62% on the entire dataset (black category). This indicates that unsupervised
methods can only achieve a maximum of 62% accuracy in identifying multiple error categories,
which is significantly lower compared to supervised models. The best accuracy from a supervised
model is 79%, achieved using the ROCKET classifier. This suggests that unsupervised models
struggle to identify multiple error categories in the screw-tightening process.

6 Validation and Results 97

6.6 Cluster ensemble results

The two cluster ensemble approaches explained in section 4.18 are used to combine the results
from different clustering methods. For the ensemble method, only K-shape clustering and spec-
tral clustering are used because they perform better on our screw-tightening dataset compared to
other clustering methods, as shown in the ARI and accuracy scores graphs. The cluster ensemble
approach is performed only on the black color category (entire screw-tightening dataset).

6.6.1 Co-association matrix method

First, a binary co-occurrence matrix is created separately for the K-shape and spectral clustering
methods. Then, the co-association matrix is created by averaging all binary co-occurrence
matrices. This matrix serves as the similarity matrix for our final spectral clustering algorithm.
The cluster-to-error category mapping matrix is shown in table 58.

Cluster
Label /

True Label
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Baseline 39 0 33 27 0 13 86 15 0 0 0 70 0 0 3 37 64 13
Adhesive-thread 1 0 2 0 0 2 1 0 0 40 1 1 1 1 0 0 0 0
Deformed-thread 11 0 7 1 0 3 5 10 0 20 1 28 2 0 1 6 2 3
M3-half-washer 0 0 2 2 2 1 0 0 1 0 17 0 10 4 9 1 0 1

M3-washer 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0
M4-washer 1 0 6 3 0 2 0 0 11 0 8 0 10 3 5 1 0 0

Material-in-lower-part 0 0 2 0 30 8 0 2 2 1 2 0 0 0 0 0 1 2
Material-in-screw-head 1 5 2 2 0 3 1 3 0 2 0 1 2 17 0 7 1 3

Offset-of-screw-hole 0 0 0 0 19 0 0 0 28 0 1 0 0 2 0 0 0 0
Offset-of-work-piece 3 0 5 0 1 13 1 3 0 0 1 5 0 0 0 5 2 11

Shortening-the-screw 0 42 0 0 0 0 0 0 0 0 0 0 0 2 0 0 3 0
Surface-lubricant 0 0 8 0 0 4 0 0 0 0 22 0 0 0 16 0 0 0
Surface-sanded-40 3 0 3 0 1 14 0 4 0 0 8 1 0 1 6 5 0 4
surface-sanded-400 0 0 6 1 0 16 0 5 0 0 4 3 1 1 4 6 0 3

Surface-used 2 0 14 10 0 4 21 8 0 0 0 9 0 1 0 8 12 11
Tearing-off-screw 0 10 0 1 0 0 0 0 2 2 0 0 5 25 0 0 0 0

Table 58: Error category to cluster mappings for Co-association matrix cluster ensemble method

From Table 58, we notice that even after using the cluster ensemble approach, the observations
from each error category are scattered across the clusters. For the baseline category, most
observations are in clusters 6 and 11, but some are also in clusters 15, 16, and 17. In the case
of the material-in-lower-part category, 30 out of 50 observations are mapped to cluster 4. Half
of the observations from the tearing-off-screw category are mapped to cluster 13, with about
10 observations mapped to cluster 1. Additionally, we observe that 42 observations from the
shortening-the-screw category belong to cluster 1.

On the other hand, the M3-washer-in-upper-part category is perfectly mapped to cluster 8 and,
as expected, has significant overlap with the offset-of-screw-hole error category. Finally, 80%

6 Validation and Results 98

of the observations from the adhesive-thread category are limited to cluster 9. The ARI of
the cluster mapping is 0.160, and the overall accuracy of cluster-to-error-category mapping is
57.5%. The ARI score is lower than that of the K-shape method but similar to that of spectral
clustering, whereas the mapping accuracy score is similar to K-shape but lower than spectral
clustering.

6.6.2 Relabel and maximum voting method

Table 59 shows the results from the relabel and maximum voting method of the cluster ensemble
approach. As explained, the cost matrix is calculated for the process of relabeling and aligning
the K-shape clustering results with the spectral clustering results. Next, the majority voting
approach is used to decide the final cluster mapping for each observation in the dataset.

Cluster
Label /

True Label
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Baseline 2 76 3 103 0 25 0 0 1 2 0 14 0 0 97 32 0 15
Adhesive-thread 0 0 5 1 1 0 10 1 2 0 0 0 0 30 0 0 0 0
Deformed-thread 0 8 6 6 0 1 2 1 9 0 0 4 0 26 28 5 0 4
M3-half-washer 0 0 29 0 4 2 1 8 2 0 1 0 2 0 0 1 0 0

M3-washer 0 0 1 0 0 0 13 0 0 0 36 0 0 0 0 0 0 0
M4-washer 2 0 29 0 5 2 1 2 0 0 8 0 0 0 1 0 0 0

Material-in-lower-part 0 1 0 0 0 0 2 2 3 12 2 0 28 0 0 0 0 0
Material-in-screw-head 5 1 3 1 17 2 0 0 6 2 0 2 0 2 1 6 0 2

Offset-of-screw-hole 0 0 0 0 8 1 3 1 0 6 18 0 13 0 0 0 0 0
Offset-of-work-piece 0 2 2 1 0 0 0 1 20 8 0 9 0 0 6 0 0 1

Shortening-the-screw 45 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
Surface-lubricant 0 0 16 0 0 0 0 28 2 0 0 4 0 0 0 0 0 0
Surface-sanded-40 0 0 6 0 1 0 0 8 10 2 0 13 1 0 4 2 0 3
surface-sanded-400 0 0 5 0 1 1 0 4 11 2 0 15 0 0 3 4 0 4

Surface-used 2 27 0 16 1 9 0 0 22 9 0 2 0 0 6 2 0 4
Tearing-off-screw 10 0 5 0 27 1 0 0 0 0 0 0 0 2 0 0 0 0

Table 59: Error category to cluster mappings for Relabel and maximum voting cluster ensemble
method

From Table 59, we notice that most observations from the baseline category are assigned to
clusters 1, 3, and 14. Interestingly, exactly 29 observations from both error categories (M3-
half-washer-in-upper-part and M4-washer-in-upper-part) are assigned to cluster 2. For the error
categories shortening-the-screw and tearing-off-screw, the results and mappings are similar to
those from the co-association matrix method. Moreover, 28 observations from surface-lubricant
are mapped to cluster 7, 36 observations from M3-washer-in-upper-part are assigned to cluster
10, and 28 observations from material-in-lower-part are assigned to cluster 12.

The ARI score for this cluster ensemble result is 0.191, which is lower than that of the K-shape
method but higher than that of spectral clustering. The overall accuracy of cluster-to-error-
category mapping is 47.5%, which is lower than both individual clustering methods.

6 Validation and Results 99

From these results, we can state that the cluster ensemble approaches do not improve the
mapping of error categories to individual clusters. In the case of the relabel and maximum
voting method, the accuracy is significantly lower compared to the individual accuracy of the
models.

6.7 Prediction using Streamlit

Figure 39: Streamlit web page.

The error category predicted for a new screw-tightening JSON file is displayed using a Streamlit
web application. The results for anomaly and non-anomaly data are shown in the images below.
Figure 39 displays the start page of the Streamlit app, where the user can upload the JSON file
of a specific screw-tightening run. Once the JSON file is received, a preprocessing code file is
triggered, which performs all the preprocessing steps mentioned in subsection 5.4 on the torque
data extracted from the JSON file.

Figure 40: Streamlit prediction for OK data.

6 Validation and Results 100

Next, semi-supervised models mentioned in subsection 6.1 are applied to the torque data. Figure
40 shows the output of the weighted ensemble model prediction when the screw-tightening is
not an anomaly. First, the torque values from the JSON file are displayed using a line plot
which also has different colors for each phase in screw-tightening, providing an overview of the
screw-tightening run to the user. Next, information on the file name, normalized torque, and
anomaly prediction is displayed in a table. If the screw run is not an anomaly, the prediction
will be 0, and this is also indicated below the table.

Figure 41: Streamlit prediction for anomaly data.

Figure 42: K-shape model results for anomaly screw run prediction.

7 Conclusion and Future Work 101

Figures 41 and 42 show the results displayed when the screw run is classified as an anomaly. The
K-shape clustering algorithm, is used in the prediction pipeline because of its stable result and
ease of use. Figure 41 is similar to figure 40, with the only difference being the prediction result.
If the file is classified as an anomaly, the torque sequence is passed to the K-shape algorithm to
get the cluster label for the error category. Since the predicted cluster might contain errors from
multiple categories, it is helpful for the user to see the probability of the screw run belonging to
a particular cluster.

In this case, the file belonging to the error category shortening-the-screw is given as input and
the predicted cluster label for this file is 5, as shown in the figure 42. This is followed by a
table showing the probabilities of the file belonging to particular error classes. It can be noticed
that shortening-the-screw has a higher probability (0.74) compared to all other error categories.
Finally, if the probability of the screw-tightening file belonging to different error categories is
less than 5%, these probabilities are summed up and shown in the last row as the probability of
the screw run belonging to ‘Other-categories’.

7 Conclusion and Future Work

In this thesis, a detailed investigation was conducted on unsupervised and semi-supervised ap-
proaches to detect anomalies in the screw-tightening dataset. Anomalies can occur in various
forms: point, contextual, and collective anomalies. This thesis primarily focused on collective
time series anomalies, with the aim of distinguishing whether an entire screw-tightening run
was an anomaly or not by analyzing the complete sequence. Additionally, a brief exploration of
supervised models was carried out.

The dataset provided included 15 error categories and 4 different sub-categories of baseline (OK
sequences). The provided dataset is small as there are only 1342 time series. Torque data was
used for all analysis and modeling.

In the initial phase, data pre-processing steps were performed to clean the torque data. This
included removing duplicate values and filling in missing values using linear interpolation. Since
the time series did not all have a constant length, a detailed analysis was conducted to determine
an appropriate constant length, which was set to 1200. This length was chosen to capture
patterns in the screw-tightening runs effectively without losing significant information. For
shorter time series, a padding method was applied to fill in zeros at the beginning, shifting the
series but preserving its features. Finally, min-max normalization was applied to standardize
the torque data.

In the subsequent phase, semi-supervised models were employed to classify whether the screw-
tightening sequences were anomalies or not. Models such as Isolation Forest, OC-SVM, and
Autoencoder were utilized. The results indicated that the Isolation Forest and Autoencoder
models performed similarly and were highly effective in anomaly detection. The Autoencoder
model demonstrated greater stability with changes in the dataset. The OC-SVM model also

7 Conclusion and Future Work 102

performed well, but it was not as effective as the other two models, with more frequent misclas-
sifications. Further analysis revealed that the baseline-extra sub-category of OK samples had a
different data distribution, affecting the results when included. Consequently, the baseline-extra
category was removed from the dataset.

Based on the recall scores, color categories (green, orange, and red) were defined, with green
indicating anomalies that were easy to identify and red indicating anomalies that were more
challenging to detect. A weighted ensemble approach was used to combine the results from the
three semi-supervised models. The classification report for the entire dataset showed an accuracy
of 83%, which was a slight improvement over the Autoencoder model alone. The precision and
recall scores also improved, resulting in fewer misclassifications. Thus, the task of determining
whether the screw-tightening process was an anomaly was achieved with good results.

In the third step, if the tightening process was predicted to be an anomaly, several clustering
methods were used to determine the type of anomaly or the error category to which this partic-
ular anomaly belonged. Since the industry datasets are mostly unlabelled, a detailed study of
unsupervised methods was performed to group similar anomalies into the same cluster. The re-
sults showed that the Simple K-means algorithm performed the worst across all color categories,
as all error categories were grouped into a single cluster. The Self-Organizing Maps (SOM)
clustering results were similar to K-means in terms of the Adjusted Rand Index (ARI) score but
with a slight improvement across all color categories. On the other hand, the K-shape and Spec-
tral clustering methods performed notably better compared to other algorithms. They excelled
at differentiating errors in the green and orange error categories but performed poorly with the
red color category. Since the time series data in the red category were nearly identical, it was
not possible to separate them using any clustering algorithm. For the black color category, the
highest accuracy was achieved by Spectral clustering, with an accuracy of 0.62. This indicated
that although these models were better compared to other clustering models, the overall results
were still not very high. Additionally, intermediate performance was observed with the Affinity
Propagation clustering method. A prediction pipeline was created, following the architecture
shown in figure 11 and utilizing a Streamlit app to display the results with probabilities.

A brief investigation into supervised models was conducted by applying six classification models,
each from a different family. The worst accuracy results were obtained from the KNN DTW
and CNN classifiers, both achieving an accuracy of 0.52. Conversely, the best accuracy was
achieved by the ROCKET and TSF classifiers, with accuracy ranging from 0.74 to 0.79. The
Shape Transform and Catch22 classifiers yielded average accuracy results, ranging from 0.65 to
0.67.

The highest accuracy from supervised models was 0.79, while the highest from unsupervised
models was 0.62. This demonstrated that supervised models performed significantly better
compared to unsupervised models.

The work of this thesis primarily focused on semi-supervised and unsupervised methods for
anomaly detection. Given that the small study on supervised methods indicated better per-

7 Conclusion and Future Work 103

formance, further research into supervised models can be carried out. Additionally, a hybrid
approach combining supervised and unsupervised methods can be developed for screw-tightening
anomaly detection. Increasing the dataset size can also be beneficial for training supervised mod-
els and achieving more stable results. Finally, in the initial step, errors can be categorized based
on the shape of the time series. This dataset can be used for further investigation. By exploring
these areas, a more robust anomaly detection process can be developed, which would be useful
and easily applicable for any anomaly detection use case in the manufacturing industry.

8 List of references 104

8 List of references

Adari, S. K. and Alla, S. (2024), Beginning Anomaly Detection Using Python-Based Deep Learn-
ing, 2nd edn, Apress Berkeley, CA.

Arratia, A. and Sepúlveda, E. (2020), Convolutional neural networks, image recognition and
financial time series forecasting, in V. Bitetta, I. Bordino, A. Ferretti, F. Gullo, S. Pascolutti
and G. Ponti, eds, ‘Mining Data for Financial Applications’, Springer International Publishing,
Cham, pp. 60–69.

Asan, U. and Ercan, S. (2012), An Introduction to Self-Organizing Maps, pp. 299–319.

Berahmand, K., Daneshfar, F., Salehi, E. S. and et al. (2024), ‘Autoencoders and their applica-
tions in machine learning: a survey’, Artificial Intelligence Review .

Blessing, E. and Klaus, H. (2023), ‘Anomaly detection techniques to identify outliers or anoma-
lies in datasets, which could be indicative of errors or noteworthy events.’, 3481, 18.

Cao, X., Liu, J., Meng, F. and et al. (2019), Anomaly detection for screw tightening timing
data with lstm recurrent neural network, in ‘2019 15th International Conference on Mobile
Ad-Hoc and Sensor Networks (MSN)’, pp. 348–352.

Chacón, J. E. and Rastrojo, A. I. (2023), ‘Minimum adjusted rand index for two clusterings of
a given size’, Advances in Data Analysis and Classification 17(1), 125–133.
URL: https://doi.org/10.1007/s11634-022-00491-w

Chapra, S. C. and Canale, R. P. (2002), Numerical Methods for Engineers, McGraw-Hill.

Choi, K., Yi, J., Park, C. and Yoon, S. (2021), ‘Deep learning for anomaly detection in time-
series data: Review, analysis, and guidelines’, IEEE Access PP, 1–1.

Ciaburro, G., Ayyadevara, V. K. and Perrier, A. (2018), Hands-On Machine Learning on Google
Cloud Platform, Packt Publishing.

Dalianis, H. (2018), Evaluation Metrics and Evaluation, Springer International Publishing,
Cham, pp. 45–53.
URL: https://doi.org/10.1007/978-3-319-78503-5_6

Dempster, A., Petitjean, F. and Webb, G. I. (2019), ‘ROCKET: exceptionally fast and accurate
time series classification using random convolutional kernels’, CoRR abs/1910.13051.
URL: http://arxiv.org/abs/1910.13051

Deng, H., Runger, G. C., Tuv, E. and et al. (2013), ‘A time series forest for classification and
feature extraction’, CoRR abs/1302.2277.
URL: http://arxiv.org/abs/1302.2277

8 List of references 105

Dodge, Y. (2008), The Concise Encyclopedia of Statistics, Springer New York, New York, NY,
pp. 327–329.
URL: https://doi.org/10.1007/978-0-387-32833-1_243

Doniec, R., Konior, J., Sieciński, S. and et al. (2023), ‘Sensor-based classification of primary and
secondary car driver activities using convolutional neural networks’, Sensors 23, 5551.

Frey, B. and Dueck, D. (2007), ‘Clustering by passing messages between data points’, Science
(New York, N.Y.) 315, 972–6.

Galante, L. and Banisch, R. (2019), A Comparative Evaluation of Anomaly Detection Techniques
on Multivariate Time Series Data, PhD thesis.

Gil-Aluja, J. (1998), The Hungarian assignment algorithm, Springer US, Boston, MA, pp. 148–
158.
URL: https://doi.org/10.1007/978-1-4613-3329-6_24

Glavin, F. (2009), A One-Sided Classification Toolkit with Applications in the Analysis of Spec-
troscopy Data, PhD thesis.

Goldstein, M. and Uchida, S. (2016), ‘A comparative evaluation of unsupervised anomaly de-
tection algorithms for multivariate data’, PloS one 11, e0152173.

Haben, S., Voss, M. and Holderbaum, W. (2023), Time Series Forecasting: Core Concepts and
Definitions, Springer International Publishing, Cham, pp. 55–66.
URL: https://doi.org/10.1007/978-3-031-27852-5_5

Hills, J., Lines, J., Baranauskas, E. and et al. (2013), ‘Classification of time series by shapelet
transformation’, Data Mining and Knowledge Discovery 28.

Hu, M., Deng, X. and Yao, Y. (2018), A sequential three-way approach to constructing a co-
association matrix in consensus clustering, in H. S. Nguyen, Q.-T. Ha, T. Li and M. Przybyła-
Kasperek, eds, ‘Rough Sets’, Springer International Publishing, Cham, pp. 599–613.

Huang, C. (2018), Featured Anomaly Detection Methods and Applications, PhD thesis, Univer-
sity of Exeter.

Ippolito, P. P. (2022), Hyperparameter Tuning, Springer International Publishing.
URL: https://doi.org/10.1007/978-3-030-88389-8_12

James, G., Witten, D., Hastie, T. and et al. (2021), An Introduction to Statistical Learning:
with Applications in R, Springer Texts in Statistics, 2 edn, Springer New York, NY. Springer
Texts in Statistics.
URL: https://doi.org/10.1007/978-1-0716-1418-1

Jin, X. and Han, J. (2017), K-Means Clustering, Springer US, Boston, MA, pp. 695–697.
URL: https://doi.org/10.1007/978-1-4899-7687-1_431

8 List of references 106

Jo, T. (2023), Ensemble Learning, Springer International Publishing, Cham, pp. 83–109.
URL: https://doi.org/10.1007/978-3-031-32879-4_4

Kamat, P. and Sugandhi, R. (2020), Anomaly detection for predictive maintenance in industry
4.0-a survey, Vol. 170.

Lei, H. and Sun, B. (2007), A study on the dynamic time warping in kernel machines, in
‘2007 Third International IEEE Conference on Signal-Image Technologies and Internet-Based
System’, pp. 839–845.

Leporowski, B., Tola, D., Hansen, C. and et al. (2021), ‘Detecting faults during automatic
screwdriving: A dataset and use case of anomaly detection for automatic screwdriving’.
URL: https://arxiv.org/abs/2107.01955

Liu, D., Fei, S., Hou, Z. and et al. (2007), Advances in Neural Networks - ISNN 2007, 1st edn,
Springer Berlin, Heidelberg.

Liu, F. T., Ting, K. and Zhou, Z.-H. (2009), Isolation forest, pp. 413 – 422.

Liu, S., Li, Z., Wang, G. and et al. (2023), ‘Spectral-spatial feature fusion for hyperspectral
anomaly detection’.

Lubba, C. H., Sethi, S. S., Knaute, P. and et al. (2019), ‘catch22: Canonical time-series charac-
teristics’, CoRR abs/1901.10200.
URL: http://arxiv.org/abs/1901.10200

Luxburg, U. (2007), ‘A tutorial on spectral clustering’, Statistics and Computing 17(4), 395–416.
URL: https://doi.org/10.1007/s11222-007-9033-z

Mucherino, A., Papajorgji, P. J. and Pardalos, P. M. (2009), k-Nearest Neighbor Classification,
Springer New York, New York, NY, pp. 83–106.
URL: https://doi.org/10.1007/978-0-387-88615-2_4

Olteanu, M., Rossi, F. and Yger, F. (2023), ‘Meta-survey on outlier and anomaly detection’,
Neurocomputing 555, 126634.
URL: http://dx.doi.org/10.1016/j.neucom.2023.126634

Paparrizos, J. and Gravano, L. (2016), ‘k-shape: Efficient and accurate clustering of time series’,
ACM SIGMOD Record 45, 69–76.

Python Core Team (2024), Python: A dynamic, open source programming language, Python
Software Foundation, Version: 3.10.0. (visited on 25th July 2024).
URL: https://www.python.org

Regaya, Y., Fadli, F. and Amira, A. (2021), ‘Point-denoise: Unsupervised outlier detection for
3d point clouds enhancement’, Multimedia Tools and Applications 80, 1–17.

8 List of references 107

Ribeiro, D., Matos, L. M., Cortez, P. and et al. (2021), A comparison of anomaly detection
methods for industrial screw tightening, in ‘Computational Science and Its Applications –
ICCSA 2021’, Springer International Publishing, Cham, pp. 485–500.

Rodríguez, J., Kuncheva, L. and Alonso, C. (2006), ‘Rotation forest: A new classifier ensemble
method’, IEEE transactions on pattern analysis and machine intelligence 28, 1619–30.

Srivastava, D. and Bhambhu, L. (2023), Anomaly detection and time series analysis.

Tarawneh, A. (2021), Deep Learning Applications in Computer Vision: Experimental and Com-
parative Study, PhD thesis.

Tor, O., Birinci, E., Hu, L. and et al. (2020), ‘Effects of pilot hole diameter and depth on screw
driving torques in plywood’, Bioresources 15, 8121–8132.

Vega-Pons, S. and Ruiz-Shulcloper, J. (2011), ‘A survey of clustering ensemble algorithms.’,
IJPRAI 25, 337–372.

Vens, C. (2013), Random Forest, Springer New York, New York, NY.
URL: https://doi.org/10.1007/978-1-4419-9863-7_612

Wang, Z., Li, K., Xia, S. and et al. (2021), ‘Economic recession prediction using deep neural
network’.

West, N. and Deuse, J. (2024), A comparative study of machine learning approaches for anomaly
detection in industrial screw driving data.

West, N., Schlegl, T. and Deuse, J. (2023), ‘Unsupervised anomaly detection in unbalanced time
series data from screw driving processes using k-means clustering (pre-print)’.

Yan, P., Abdulkadir, A., Rosenthal, M. and et al. (2023), ‘A comprehensive survey of deep
transfer learning for anomaly detection in industrial time series: Methods, applications, and
directions’.

Yuki, S., Yoshiyuki, N. and Masayuki, S. (2023), A case study of real-time screw tightening
anomaly detection by machine learning using real-time processable features.
URL: https://api.semanticscholar.org/CorpusID:265030666

Zhang, Q., Zhang, C., Cui, L. and et al. (2023), ‘A method for measuring similarity of time series
based on series decomposition and dynamic time warping’, Applied Intelligence 53, 6448–6463.

Zhou, X.-H., Obuchowski, N. A. and McClish, D. K. (2011), Statistical Methods in Diagnostic
Medicine, 2nd edn, John Wiley & Sons, New York.

Zhou, Z.-H. (2012), Ensemble Methods: Foundations and Algorithms, 1st edn, Chapman &
Hall/CRC.

Appendix 108

Appendix

A Additional Tables

No. Catch22 feature name Description
1 DN_HistogramMode_5 Mode value of z-score distribution

in 5 bin histogram
2 DN_HistogramMode_10 Mode value of z-score distribution

in 10 bin histogram
3 SB_BinaryStats_mean_longstretch1 Longest sequence of positive val-

ues above mean
4 DN_OutlierInclude_p_001_mdrmd Time period between consecutive

extreme events above the mean
value

5 DN_OutlierInclude_n_001_mdrmd Time period between consecutive
extreme events below the mean
value

6 CO_f1ecac The first value of 1/e exceeding
the autocorrelation function

7 CO_FirstMin_ac First minimum value of the auto-
correlation function

8 SP_Summaries_welch_rect_area_5_1 Total power value in the low-
est fifth of frequencies in Fourier
power spectrum

9 SP_Summaries_welch_rect_centroid Centroid value of Fourier power
spectrum

10 FC_LocalSimple_mean3_stderr Mean error value of a rolling 3-
sample mean forecasting

11 CO_trev_1_num Time reversibility statistic
12 CO_HistogramAMI_even_2_5 Automutual information
13 IN_AutoMutualInfoStats_40_gaussian_fmmi First minimum value of the auto-

mutual information function
14 MD_hrv_classic_pnn40 Proportion of successive differ-

ences exceeding 0.04σ
15 SB_BinaryStats_diff_longstretch0 Longest period of consecutive in-

creases and decreases
16 SB_MotifThree_quantile_hh Shannon entropy of two succes-

sive letters in equiprobable 3-
letter symbolization

17 FC_LocalSimple_mean1_tauresrat Change in correlation length after
iterative differencing

Table 60: Catch22 Features and descriptions - I

Appendix 109

No. Catch22 feature name Description
18 CO_Embed2_Dist_tau_d_expfit_meandiff Exponential fit to successive dis-

tances in 2-d embedding space
19 SC_FluctAnal_2_dfa_50_1_2_logi_prop_r1 Proportion of slower timescale

fluctuations that scale with DFA
20 SC_FluctAnal_2_rsrangefit_50_1_logi_prop_r1 Proportion of slower timescale

fluctuations that scale with lin-
early rescaled range fits

21 SB_TransitionMatrix_3ac_sumdiagcov Trace of covariance of transition
matrix between symbols in 3-
letter alphabet

22 PD_PeriodicityWang_th0_01 Periodicity measure

Table 61: Catch22 Features and descriptions - II

Bhageradhi, Naveen kumar
Name, Vorname
(surname, first name)

Bachelorarbeit
(Bachelor's thesis)

Titel
(Title)

Dortmund, 05.08.2024

Ich versichere hiermit an Eides statt, dass ich die
vorliegende Abschlussarbeit mit dem oben genannten
Titel selbstständig und ohne unzulässige fremde Hilfe
erbracht habe. lch habe keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt sowie
wörtliche und sinngemäße Zitate kenntlich gemacht.
Die Arbeit hat in gleicher oder ähnlicher Form noch
keiner Prüfungsbehörde vorgelegen.

Ort, Datum
(place, date)

Unsupervised approaches for anomaly detection in the quality management of screw connections

Belehrung:

Eidesstattliche Versicherung

(Affidavit)

Wer vorsätzlich gegen eine die Täuschung über
Prüfungsleistungen betreffende Regelung einer
Hochschulprüfungsordnung verstößt, handelt

ordnungswidrig. Die Ordnungswidrigkeit kann mit einer
Geldbuße von bis zu 50.000,00 ¬ geahndet werden.
Zuständige Verwaltungsbehörde für die Verfolgung
und Ahndung von Ordnungswidrigkeiten ist der
Kanzlerldie Kanzlerin der Technischen Universität
Dortmund. Im Falle eines mehrfachen oder sonstigen
schwerwiegenden Täuschungsversuches kann der
Prüfling zudem exmatrikuliert werden. (§ 63 Abs. 5
Hochschulgesetz - HG -).
Die Abgabe einer falschen Versicherung an Eides statt
wird miít Freiheitsstrafe bis zu 3 Jahren oder mit

Geldstrafe bestraft.

Dortmund, 05.08.2024

Die Technische Universität Dortmund wird ggf.
elektronische Vergleichswerkzeuge (wie z.B. die
Software �turnitin") zur Überprüfung von Ordnungs
widrigkeiten in Prüfungsverfahren nutzen.

Ort, Datum

Die oben stehende Belehrung habe ich zur Kenntnis
genornnen:

(place, date)

Unterschrift
(signature)

Masterarbeit
(Master's thesis)

declare in lieu of oath that I have completed the

present thesis with the above-mentioned title

independently and without any unauthorized
assistance. I have not used any other sources or aids
than the ones listed and have documented quotations
and paraphrases as such. The thesis in its current or
similar version has not been submitted to an auditing
institution before.

B Naveg

Official notification:

231678
Matrikelnummer
(student ID number)

Any person who intentionally breaches any regulation
of university examination regulations relating to
deception in examination performance is acting
improperly. This offense can be punished with a fine of
up to EUR 50,000.00. The competent administrative
authority for the pursuit and prosecution of offenses of
this type is the Chancellor of TU Dortmund University.
In the case of multiple or other serious attempts at
deception, the examinee can also be unenrolled,
Section 63 (5) North Rhine-Westphalia Higher
Education Act (Hochschulgesetz, HG).

The submission of a false affidavit will be punished
with a prison sentence of up to three years or a fine.
As may be necessary, TU Dortmund University will
make use of electronic plagiarism-prevention tools
(e.g. the "turnitin" service) in order to monitor violations
during the examination procedures.

BNavent
Unterschrift
(signature)

I have taken note of the above official notification:*

"Please be aware that solely the German version of the affidavit ("Eidesstattliche Versicherung")
for the Bachelor's/ Master's thesis is the official and legally binding version.

	Table of contents
	List of abbreviations
	List of formulas
	List of figures
	List of tables
	Introduction
	Objective of the thesis
	Structure of thesis

	Fundamentals
	Time series data
	Outlier vs Anomaly
	Types of anomalies
	Types of anomaly detection methods
	Industry applications of anomaly detection
	Need for anomaly detection in Manufacturing industry
	General anomaly detection procedure

	Different steps in screw tightening process

	Related work
	Methods
	Mann Whitney U-test
	Min-max normalization
	Linear interpolation
	Ensemble learning
	Weighted ensemble learning

	Dynamic Time Warping (DTW)
	Semi-supervised models
	Isolation Forest
	Autoencoder
	One-Class Support Vector Machine (OC-SVM)

	Supervised models
	ROCKET classifier
	Catch22 Features
	Random Forest Classifier
	Shape based classifier
	Time Series Forest (TSF) classifier
	Rotation Forest
	Convolutional Neural Network (CNN)
	KNN classifier

	Unsupervised models
	Spectral Clustering
	K-means clustering
	K-shape clustering
	Affinity propagation
	Self Organizing Maps (SOM)

	Cluster ensemble methods
	Co-association matrix method
	Relabel and maximum voting method

	Evaluation Metrics
	Confusion matrix
	Classification report
	Hyperparameter tuning
	Cross-validation
	AUC-ROC curve
	Adjusted Rand Index (ARI)

	Project workflow
	Screw tightening Anomaly detection Architecture
	Training pipeline
	Prediction pipeline

	Screw-tightening machine
	Description of the dataset
	Different phases in the screw-tightening procedure
	Different errors in screw-tightening

	Data pre-processing
	Handling duplicate values
	Handling missing values
	Cutting/padding time series sequences
	Torque normalization

	Data analysis and hypothesis
	Comparison between baseline sub-categories
	OK category vs multiple surface error categories

	Validation and Results
	Binary classification (Semi-supervised methods)
	Isolation forest results
	One-class SVM results
	Autoencoder results
	stacked bar charts and color categories
	Weighted ensemble learning results

	Supervised methods
	KNN DTW results
	Time Series Forest (TSF) results
	ROCKET classifier results
	Catch22 results
	Shaplet transform classifier results
	CNN results

	Supervised models combined results
	Unsupervised methods
	K-means clustering results
	K-shape clustering results
	Spectral clustering results
	Self-Organizing Maps results
	Affinity propagation results

	Unsupervised models combined results
	Cluster ensemble results
	Co-association matrix method
	Relabel and maximum voting method

	Prediction using Streamlit

	Conclusion and Future Work
	List of references
	Appendix

