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Chapter 1

Introduction

1.0.1 Example (Prestressed concrete beam)
Uo to now, there are eleven experiments at prestressed concrete beams which different stress
levels (TR01 with ∆σp = 200 MPa, TR02 with ∆σp = 455 MPa, TR03 with ∆σp = 200 MPa,
TR04 with ∆σp = 150 MPa, TR05 with ∆σp = 98 MPa, SB01 with ∆σp = 200 MPa, SB02 with
∆σp = 100 MPa, SB03 with ∆σp = 60 MPa, SB04 with ∆σp = 80 MPa, SB05 with ∆σp = 80
MPa, SB06 with ∆σp = 50 MPa). During the experiment the widening of an initial crack was
observed. The left hand side of Figure 1.1 shows the growth curves of the crack width for TR01
and TR02. The jumps which can be seen in the growth curve are caused by the breakening of
the tension wires, see the left hand side of Figure 1.1. There are 5 strands each with 7 wires in
each beam so that at most 35 jumps could be observed. However much less jumps are observed
before the failure of the beam. The data set failure_times_tension_wires.RData contains
the times, given by the variable t_jm, between these jumps and the corresponding stress levels,
given by the variable s. For the meaning of the third variable stress, see Section 6.3.
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Figure 1.1: Left: crack growth curves for TR01 (black) and TR02 (blue), right: and broken
tension wires

1.0.2 Example (Hudak crack grwoth data)
The data of Hudak et al. (1978) concern 21 steel specimen exposed to the same stress given by
cyclic load. These data are contained in the file Hudak_data.asc which can be read with the
R function source and was obtained from the R package dhglm. The observation of the crack
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growth at each specimen started at an initial crack of 0.9 inches and the crack length of the
crack was measured after specific numbers of load cycles. These load cycles are given in the data
set Hudak_data.asc by the variable cycle. The crack length is given by the variable crack0,
however it is the crack length at the predecessor time point. Figure 1.2 provides the crack growth
curves for the untransformed data and the data with a logarithmic transformation of the crack
length. The logarithmic transformation leads to an almost linear growth while this is clearly not
the cause for the untransformed data.
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Figure 1.2: Crack growth curves for the Hudak data, left with untransformed crack lengths, right
with the logarithm of the crack lengths

1.0.3 Example (Virkler data)
The data of Virkler et al. (1979) given by the data set BasicVirklerdata.xls and Virkler_

data.asc concern 68 steel specimen. For each specimen, the time was measured when an initial
crack of 9mm in the specimen reaches a given length value, i.e. the length is here the explanatory
variable and the time the dependent variable. The measurements are taken at 164 length values
which are the same for all specimens. The particular aim is to predict the time of a given length
value in a new specimen as seen in Figure 1.3.

1.0.4 Example (Crack growth from photos)
To study the crack growth behavior of micro cracks in a steel specimen exposed to cyclic load,
cracks were detected in photos of the steel surface by the crack detection package crackrec given
by Gunkel et al. (2012) and the 112 longest cracks at the end were traced back. The resulting
112 crack growth values are given in the data set top112.length.P10.Rdata and the six longest
cracks at the end are shown in Figure 1.4. The data set top112.length.P10.Rdata does not
contain the time points of the photos. Hence it is important to know that these photos were
done at the beginning (time 0), and in steps of thousand load cycles up to 20 000 load cycles and
then at 25 000, 30 000, 35 000, 37 000, 39 000, 40 000, 42 000, 44 000 load cycles so that 29 time
points are available. Figure 1.4 shows that there is no strict increasing growth. This is due to
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Figure 1.3: Crack growth curves for the Virkler data with a series (red) for which a future time
shall be predicted

the varying quality of the photos. There is also a strange crack growth curve starting not near
zero. This is caused by a contamination of the steel surface resulting in a big pit so that the
automatic program detected this falsely as a crack.
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Figure 1.4: Growth curves of the six largest micro cracks obtained from photos by back tracing
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1.0.5 Example (Experiments with isolated tension wires)
Figure 1.5 shows the life times in load cycles until the failure of 32 tension wires, given by the data
set alter_Spannstahl.txt. There are 4 censored data since some tension wire did not break up
to 107 load cycles so that the experiment was stopped before the failure could be observed.
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Figure 1.5: Lifetimes of tension wires

1.0.6 Example (Lifetimes of diamonds in a drilling tool)
Figure 1.6 shows the diamonds on the surface of a segment of a drilling tool after two and
three minutes of drilling. Two diamonds are breaking out between the second and third minute
(red cycles) and two diamonds appear during this time (blue cycles). The appearance of new
diamonds is caused by the fact that hidden diamonds are contained in the steel matrix which
appear only when some steel has been removed. In this experiment the drilling tool was used for
25 minutes and after every minute the diamonds which are visible are reported. The data set
Diamonds_B28_Matrix.xlsx contains for each diamond when it is visible. Some diamonds which
are visible in the beginning are still visible after 25 minutes when the experiment was stopped.
Here we have censored observations.
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Figure 1.6: Visible diamonds after two minutes (left) and visible diamonds after three minutes
(right)

1.0.7 Example (Failures of throttles)
The data set throttle.csv provides the distances in km to failure of 50 throttles of load-
carrying vehicles. Some of them are shown in Table 1.1. In some cases, denoted by 1, no failure
was observed up to the observed distance. Such observations are called censored observations
and 1 stands for censoring while 0 denotes no censoring.

Censored Failure

1 0 478

2 1 484

3 0 583

4 1 626

5 0 753

6 0 753
...

...
...

47 0 11019

48 0 12986

49 1 13103

50 1 23245

Table 1.1: Distance in km to failure of 50 trottles from Jiang, and Murthy (1995), see also
Blischke and Murthy (2000). The column "‘Censored"’ denotes whether a failure was observed
(0) or the observation was stopped before failure (1).
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1.0.8 Example (Lifetimes of electric lamps)
Table 1.2 provides the lifetime of 300 electric lamps given by the data set LAMPS.DAT.

Life time (in hours) Absolute frequency

950-1000 2

1000-1050 2

1050-1100 3

1100-1150 6

1150-1200 7

1200-1250 12

1250-1300 16

1300-1350 20

1350-1400 24

1400-1450 27

1450-1500 29

1500-1550 29

1550-1600 28

1600-1650 25

1650-1700 21

1700-1750 16

1750-1800 12

1800-1850 8

1850-1900 6

1900-1950 3

1950-2000 2

2000-2050 1

2050-2100 1

Table 1.2: Lifetimes of 300 electric lamps from Gupta (1952) given in Hand et al. (1994), p. 108
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Chapter 2

Experiments with one stress level

2.1 Lifetime distributions

Let be t1, . . . , tN observed lifetimes at the same stress level. Such observations are realizations of
independent and identically distributed (i.i.d.) random variables T1, . . . , TN . Let be T : Ω → R

a random variable with the same distribution as that of T1, . . . , TN , where (Ω,A, P ) is the
underlying probability space. Important quantities of lifetime distributions are the cumulative
distribution function, the reliability or survival function, the hazard function and the cumulative
hazard function.

2.1.1 Definition (Cumulative distribution function, reliability or survival function)
a) The cumulative distribution function F = FT : R → [0, 1] is defined by

F (t) := P (T ≤ t).

b) The reliability function or survival function F := S : R → [0, 1] is defined by

F (t) := S(t) := P (T > t) = 1− F (t).

2.1.2 Theorem
If T has continuous distribution with cumulative distribution function F and reliability function
F = S then F (T ) ∼ U(0, 1) and S(T ) ∼ U(0, 1) where U(0, 1) is the uniform distribution on
(0, 1).

Proof. For any a ∈ (0, 1), we have

P (F (T ) ≤ a) = P (F (T ) < a) + P (F (T ) = a)

= P (T < F−1(a)) + P (T ∈ [F−1(a), sup{t; F (t) ≤ a}]) = P (T ≤ F−1(a)) = F (F−1(a)) = a

which is the distribution function of the uniform distribution on (0, 1). Note that we do not
assume that F is strictly increasing. With F (T ) also S(T ) = 1−F (T ) has a uniform distribution
on (0, 1). �
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2.1 Lifetime distributions

2.1.3 Definition (Hazard function for continous distributions)
The hazard function (hazard rate) h : R+ → R for continuous distributions is defined by

h(t) := lim
∆t→0

P (t ≤ T < t+∆t|T ≥ t)

∆t
.

2.1.4 Remark
The hazard function for a discrete distributions is defined by

h(t) := P (T = t|T ≥ t).

As a time the lifetime T has usually a continuous distribution with density f = fT which is the
derivative of F , i.e. f = F ′. Of course, the lifetime can be measured by days, weeks, years,
load cycles, and then it will be a discrete variable. However, a continuous distribution is a good
approximation in these cases as well.

2.1.5 Theorem
If T has a continuous distribution, then

h(t) =
f(t)

S(t)
=

f(t)

1− F (t)
.

Proof. Since P (T ≥ t) = P (T > t) = S(t) for continuous distributions, we obtain

h(t) = lim
∆t→0

P (t < T ≤ t+∆t|T ≥ t)

∆t
= lim

∆t→0

P (t < T ≤ t+∆t)

P (T ≥ t)∆t

=
1

S(t)
lim
∆t→0

P (t < T ≤ t+∆t)

∆t
=

1

S(t)
lim
∆t→0

F (t+∆t)− F (t)

∆t
=

1

S(t)
f(t). �

2.1.6 Definition (Cumulative hazard function for continuous distributions)
If T has a continuous distribution, then H : R+ → R given by

H(t) :=

∫ t

0
h(s) ds

is called cumulative hazard function.

2.1.7 Theorem

F (t) = 1− exp(−H(t)), S(t) = exp(−H(t)), f(t) = h(t) exp(−H(t)).

Proof. Since f(t) = −S′(t), we have with Theorem 2.1.5

h(t) = −S′(t)
S(t)

= − ∂

∂t
ln(S(t))
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so that with S(0) = 1

H(t) =

∫ t

0
h(s) ds =

∫ t

0
−S′(s)

S(s)
ds = − ln(S(s))

∣∣t
0
= − ln(S(t)) + ln(S(0)) = − ln(S(t))

follows. This provides the first assertion. Differentation leads to the second assertion. �

The simplest continuous lifetime distribution is the exponential distribution.

2.1.8 Definition (Exponential distribution)
T has an exponential distribution, shortly T ∼ E(λ), if

F (t) = 1− e−λt.

2.1.9 Theorem
If T ∼ E(λ) then

f(t) = λe−λt, S(t) = e−λt, h(t) = λ, H(t) = λ t.

The exponential distribution is the only continuous distribution with constant hazard function.
A generalization of the exponential distribution with nonconstant hazard function is the Weibull
distribution.

2.1.10 Definition (Weibull distribution)
T has a Weibull distribution, shortly T ∼ W(α, β), if

F (t) = 1− exp

[
−
(
t

α

)β
]
.

The parameters α and β are called scale and shape parameter, respectively.

The exponential distribution E(λ) is obtained from the Weibull distribution with β = 1 and
α = 1

λ .

2.1.11 Theorem
If T ∼ W(α, β) then

f(t) =
β

α

(
t

α

)β−1

exp

[
−
(
t

α

)β
]
,

S(t) = exp

[
−
(
t

α

)β
]
, h(t) =

β

α

(
t

α

)β−1

, H(t) =
1

αβ
tβ.

Another generalization of the exponential distribution is the Gamma distribution.
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2.1 Lifetime distributions

2.1.12 Definition (Gamma distribution)
T has a Gamma distribution, shortly T ∼ G(λ, β), if

F (t) =
1

Γ(β)

∫ λt

0
sβ−1 e−s ds,

where Γ denotes the Gamma function given by

Γ(x) =

∫ ∞

0
sx−1 e−s ds.

The exponential distribution E(λ) is obtained from the Gamma distribution with β = 1.

2.1.13 Theorem
If T ∼ G(λ, β) then

f(t) =
λβ tβ−1

Γ(β)
e−λt, h(t) =

λβ tβ−1

Γ(β) e−λt

1− 1
Γ(β)

∫ λt
0 sβ−1 e−s ds

=
λβ tβ−1 e−λt

∫∞
λt sβ−1 e−s ds

.

2.1.14 Definition (Erlang distribution)
A Gamma distribution with β = N ∈ IN is called an Erlang distribution.

2.1.15 Theorem
If T ∼ G(λ,N) with N ∈ IN then

f(t) =
λN tN−1

(N − 1)!
e−λt, F (t) = 1−

N−1∑

n=0

1

n!
e−λt (λ t)n.

Proof. For the form of F see https://en.wikipedia.org/wiki/Erlang distribution. �

2.1.16 Definition (Lognormal distribution)
T has a lognormal distribution, shortly T ∼ LN (µ, σ2), if ln(T ) has a normal distribution with
expectation µ and variance σ2, i.e. ln(T ) ∼ N (µ, σ2).
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2.1.17 Theorem
If T ∼ LN (µ, σ2) then

F (t) = Φ

(
ln(t)− µ

σ

)
, f(t) =

1√
2π σ t

exp

[
−(ln(t)− µ)2

2σ2

]
,

h(t) =

1√
2π σ t

exp
[
− (ln(t)−µ)2

2σ2

]

1− Φ
(
ln(t)−µ

σ

) ,

where Φ is the cumulative distribution function of the standard normal distribution, i.e.

Φ(x) =

∫ x

−∞

1√
2π

e−
s2

2 ds.

Proof. Since the logarithm function is a strictly increasing function we have

F (t) = P (T ≤ t) = P (ln(T ) ≤ ln(t)) = Φ

(
ln(t)− µ

σ

)
.

This implies

f(t) = F ′(t) = Φ′
(
ln(t)− µ

σ

)
1

t σ
=

1√
2π σ t

exp

[
−(ln(t)− µ)2

2σ2

]

since Φ′(x) = 1√
2π
e−

x2

2 . �

2.1.18 Theorem (See e.g. Kahle and Liebscher 2013, S. 36)
If T ∼ LN (µ, σ2) then

E(T ) = exp

(
µ+

σ2

2

)
, var(T ) = exp(2µ + σ2) (exp(σ2)− 1).

Proof. We obtain

E(T ) =

∫ ∞

0
t f(t) dt =

∫ ∞

0
t

1√
2π σ t

exp

[
−(ln(t)− µ)2

2σ2

]
dt

=

∫ ∞

0

1√
2π σ

exp

[
−(ln(t)− µ)2

2σ2

]
dt

(⋆)
=

∫ ∞

−∞

1√
2π σ

exp

[
−(y − µ)2

2σ2

]
ey dt

=

∫ ∞

−∞

1√
2π σ

exp

[−y2 + 2yµ − µ2 + 2σ2y

2σ2

]
dt

=

∫ ∞

−∞

1√
2π σ

exp

[−y2 + 2y(µ + σ2)− µ2 − 2µσ2 − σ4 + 2µσ2 + σ4

2σ2

]
dt

=

∫ ∞

−∞

1√
2π σ

exp

[
−(y2 − [µ+ σ2])2

2σ2

]
exp

[
µ+

σ2

2

]
dt

= exp

[
µ+

σ2

2

] ∫ ∞

−∞

1√
2π σ

exp

[
−(y2 − [µ+ σ2])2

2σ2

]
dt

(⋆⋆)
= exp

[
µ+

σ2

2

]
,
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2.1 Lifetime distributions

where (⋆⋆) follows from

∫ ∞

−∞

1√
2π σ

exp

[
−(y2 − [µ+ σ2])2

2σ2

]
dt = 1

and in (⋆) the substitution y = ln(t) ⇔ t = ey = g(y) is used so that g′(y) = ey. �



2 Experiments with one stress level

Christine Müller, Statistics of Reliability and Material Fatigue, WS 2021/22

15

2.2 Properties of the exponential distribution

The exponential distribution has several interesting properties. The first property means that
the exponential distribution is memoryless and that it is the only continuous distribution with
this property.

2.2.1 Theorem
a) If T ∼ E(λ) then

Pλ(T > t|T > s) = Pλ(T > t− s)

for all t ≥ s ≥ 0.
b) If T has continuous distribution with

P (T > t|T > s) = P (T > t− s) (2.1)

is satisfied for all t ≥ s ≥ 0, then T ∼ E(λ) with λ = − ln(P (T > 1)) > 0.

Proof.
a) If T ∼ E(λ) then

Pλ(T > t|T > s) =
Pλ(T > t)

Pλ(T > s)
=

exp(−λt)

exp(−λs)
= exp(−λ(t− s)) = Pλ(T > t− s).

b) Let q = m
n an arbitrary rational number with n,m ∈ IN . The property (2.1) implies

P (T > q) = P

(
T >

m

n
, T >

1

n

)

= P

(
T >

1

n

)
· P
(
T >

m

n

∣∣∣T >
1

n

)
= P

(
T >

1

n

)
· P
(
T >

m

n
− 1

n

)
.

Per induction, we get

P (T > q) = P

(
T >

1

n

)m

.

In particular, we have

P (T > 1) = P

(
T >

1

n

)n

so that the reliability function satisfies

F (q) = S(q) = P (T > q) = P (T > 1)m/n = P (T > 1)q
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2.2 Properties of the exponential distribution

for all rational q > 0. Since F is monotone decreasing, it holds

F (t) = S(t) = P (T > 1)t

for all t ≥ 0. In particular, it follows 0 < P (T > 1) < 1. Hence we have

λ := − ln(P (T > 1)) > 0

and

F (t) = S(t) = exp(−λt)

for all t ≥ 0 so that T ∼ E(λ). �

2.2.2 Theorem
If T has continuous distribution with cumulative hazard function H then H(T ) ∼ E(1).

Proof. Theorem 2.1.7 provides

exp(−H(t)) = 1− F (t) = F (t) = S(t) ⇔ H(t) = − ln(S(t))

so that

P (H(T ) > t) = P (− ln(S(T )) > t) = P (S(T ) ≤ e−t) = e−t

for all t ≥ 0 since S(T ) has a uniform distribution on (0, 1) according to Theorem 2.1.2. �

2.2.3 Theorem
If T1, . . . , TN ∼ E(λ) are independent, then

a)
N∑

n=1

Tn ∼ G(λ,N), b) λ
N∑

n=1

Tn ∼ G(1, N), c) 2λ
N∑

n=1

Tn ∼ χ2
2N

where χ2
n is the χ2 distribution with n degrees of freedom.

Proof.
a) At first note that T ∼ G(λ,N) implies fT (t) =

λN tN−1

(N−1)! e
−λt ·1[0,∞)(t). Then SN :=

∑N
n=1 Tn ∼

G(λ,N) follows by induction:
For N = 1, we get fT (t) = λe−λt = fT1(t).
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If fSN
(t) = λN tN−1

(N−1)! e
−λt holds then the convolution theorem provides

fSN+1
(t) = fSN+TN+1

(t) =

∫ ∞

−∞
fSN

(x)fTN+1
(t− x)dx

=

∫ ∞

−∞

λNxN−1

(N − 1)!
e−λx1[0,∞)(x)λe

−λ(t−x)1[0,∞)(t− x)dx

=
λN+1

(N − 1)!
e−λt

∫ t

0
xN−1dx 1[0,∞)(t)

=
λN+1

(N − 1)!
e−λt 1

N
tN 1[0,∞)(t) =

λN+1tN

N !
e−λt 1[0,∞)(t).

b) From SN :=
∑N

n=1 Tn ∼ G(λ,N), we get for the distribution function with Definition 2.1.12

FλSN
(t) = P (λSN ≤ t) = P

(
SN ≤ t

λ

)

= FSN

(
t

λ

)
=

1

Γ(N)

∫ λ t
λ

0
sN−1e−sds =

1

Γ(N)

∫ t

0
sN−1e−sds

which means λ
∑N

n=1 Tn ∼ G(1, N).
c) Similar to b), we obtain

F2λSN
(t) =

1

Γ(N)

∫ λ t
2λ

0
sN−1e−sds =

1

Γ(N)

∫ t
2

0
sN−1e−sds =:

1

Γ(N)
G

(
t

2

)

with G′(t) = tN−1e−t. Hence

f2λSN
(t) = F ′

2λSN
(t) =

1

Γ(N)

1

2
G′
(
t

2

)
=

1

Γ(N)

1

2

(
t

2

)N−1

e−t/2

so that 2λ
∑N

n=1 Tn ∼ χ2
2N since the density of the χ2 distribution with n degrees of freedom

which is given by

f(t) =
tn/2−1e−t/2

2n/2Γ
(
n
2

) .
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2.2.4 Theorem (see e.g. Deshpande, Purohit (2016))
Let T1, . . . , TN ∼ E(λ) be independent, T(1), . . . , T(N) the corresponding order statistics,

Yn := T(n) − T(n−1), n = 2, . . . , N, Y1 := T(1),

the consecutive sample spacings,

Dn := (N − n+ 1)Yn, n = 1, . . . , N,

the normalised sample spacings, then
a) Y1, . . . , YN are independent with Yn ∼ E((N − n+ 1)λ) for n = 1, . . . , N ,
b) D1, . . . ,DN ∼ E(λ) are independent.

Proof. The joint density of T∗ := (T(1), . . . , T(N)) is

fT∗
(t∗) = fT(1),T(2),...,T(N)

(t1, t2, . . . , tN )

=

{
N ! · λe−λt1 · λe−λt2 · . . . · λe−λtN for 0 < t1 < t2 < . . . < tN < ∞,

0 else.

Consider the transformation

g : {(t1, t2, . . . , tN ); 0 < t1 < t2 < . . . < tN < ∞} −→ {(y1, y2, . . . , yN ); yn > 0, n = 1, 2, . . . , N}

given by

g :





y1 = t1,

y2 = t2 − t1,
...

yN = tN − tN−1,

g−1 :





t1 = y1,

t2 = y1 + y2,
...

tN = y1 + . . . + yN .

g is a 1-1 transformation with the determinant of the Jacobian matrix given by

det(g′(t∗)) = det

(
∂

∂(t1, . . . , tN )
g(t1, . . . , tN )

)
= det




1 0 0 . . . 0 0

−1 1 0 . . . 0 0

0 −1 1 . . . 0 0

0 0 −1 0 0
...

...
. . .

. . .

0 0 0 . . . −1 1




= 1.
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Then Y = (Y1, . . . , YN ) = g(T∗) has the density

fY (y) = f(Y1,...,YN )(y1, . . . , yN ) = fT∗
(g−1(y))/|det(g′(g−1(y))|

= N ! · λe−λy1 · λe−λ(y1+y2) · . . . · λe−λ(y1+...+yN )

= N · λe−λN y1 · (N − 1)λe−λ(N−1)y2 · . . . · λe−λyN

=

N∏

n=1

(N − n+ 1)λe−(N−n+1)λ yn =

N∏

n=1

fYn(yn).

Hence Y1, . . . , YN are independent with Yn ∼ E((N−n+1)λ) for n = 1, . . . , N and D1, . . . ,DN ∼
E(λ) are independent. �
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2.3 Classes of distributions with ageing properties

2.3 Classes of distributions with ageing properties

2.3.1 Definition (IFR distribution)
T with continuous distribution has a IFR distribution (Increasing Failure Rate) if

St1(s) ≥ St2(s)

is satisfies for all s > 0, t1 ≤ t2, where

St(s) :=
S(t+ s)

S(t)
.

2.3.2 Remark
If T has a continuous distribution then

S(t+ s)

S(t)
=

P (T > t+ s)

P (T > t)
=

P (T > t+ s)

P (T ≥ t)
= P (T > t+ s|T ≥ t).

If T has not a continuous distribution, then St is defined as

St(s) :=
S(t+ s)

limh↓0 S(t− h)
= P (T > t+ s|T ≥ t),

so that a discrete IFR distribution is defined via this conditional distribution, see Kahle and
Liebscher (2013), p. 43.

2.3.3 Theorem
T has a continuous IFR distribution if and only if its hazard function h is increasing.

Proof. Theorem 2.1.7 provides

St(s) :=
S(t+ s)

S(t)
=

exp
(
−
∫ t+s
0 h(u)du

)

exp
(
−
∫ t
0 h(u)du

) = exp

(
−
∫ t+s

t
h(u)du

)
.

As soon as h is increasing, we get for all t1 ≤ t2

St1(s) = exp

(
−
∫ t1+s

t1

h(u)du

)
≥ exp

(
−
∫ t2+s

t2

h(u)du

)
= St2(s)

for all s > 0. �
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2.3.4 Definition (AIFR distribution)
T has a AIFR distribution (Increasing Failure Rate in Average) if g given by

g(t) := S(t)1/t

is a decreasing function on R+.

2.3.5 Remark
If S(t)1/t is decreasing then also

ln
(
S(t)1/t

)
=

ln(S(t))

t
=

ln(exp(−H(t)))

t
=

−H(t)

t
(2.2)

is decreasing and −H(t)
t can be interpreted as average cumulative failure rate.

2.3.6 Theorem
If a distribution is IFR then it is AIFR. The converse does not hold in general.

Proof. If a distribution is IFR then its hazard function h is increasing according to Theorem
2.3.3 so that

H(t) =

∫ t

0
h(u) du ≤ h(t) t.

Hence with (2.2)

∂

∂t
ln
(
S(t)1/t

)
=

∂

∂t

−H(t)

t
=

−h(t)

t
+

H(t)

t2
≤ −h(t)

t
+

h(t) t

t2
= 0

so that with ln
(
S(t)1/t

)
also S(t)1/t is decreasing.

To show that the converse does not hold in general, consider the hazard function h of the
counterexample given by Kahle and Liebscher 2013, p. 46, which is defined as

h(t) =





0, t < 0.5,

2, 0.5 ≤ t < 1,

1, t ≥ 1.

Since h is not increasing, the corresponding distribution is not IFR. However, this distribution
is AIFR since

H(t) =





0, t < 0.5,

2t− 1, 0.5 ≤ t < 1,

t, t ≥ 1,
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and

H(t)

t
=





0, t < 0.5,

2− 1
t , 0.5 ≤ t < 1,

1, t ≥ 1.

H(t)
t is obviously increasing so that with −H(t)

t = ln
(
S(t)1/t

)
also S(t)1/t is decreasing. �

2.3.7 Definition (NBU distribution)
T has a NBU distribution (New Better than Used) if

S(t+ s) ≤ S(t) · S(s)

for all t, s > 0.

2.3.8 Remark
If T has a continuous NBU distribution and S(t) > 0 then

St(s) :=
S(t+ s)

S(t)
≤ S(s), (2.3)

i.e. the conditional survival probability given a survival of an individual used up to t is not larger
then the unconditional survival probability of a new individual without usage, i.e. new better
than used.
Moreover, a distribution is NBU if and only if its cumulative hazard function H satisfies

−H(t+ s) = ln(S(t+ s)) ≤ ln(S(t)) + ln(S(s)) = −H(t)−H(s) (2.4)

or H(t+ s) ≥ H(t) +H(s), respectively.
Moreover, note that equality in (2.3) means that the distribution is memoryless, where the
exponential distribution is the only continuous distribution which is memoryless.

2.3.9 Theorem
If a distribution is AIFR then it is NBU. The converse does not hold in general.

Proof. If a distribution is AIFR then

S(t+ s)1/(t+s) ≤ S(t)1/t, S(t+ s)1/(t+s) ≤ S(s)1/s

implying

S(t+ s)t/(t+s) ≤ S(t), S(t+ s)s/(t+s) ≤ S(s).
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Multiplying both inequalities yields

S(t+ s) = S(t+ s)t/(t+s) · S(t+ s)s/(t+s) ≤ S(t) · S(s),

which means that the distribution is NBU.
To show that the converse does not hold in general, consider the hazard function h of the
counterexample given by Kahle and Liebscher 2013, p. 47, which is defined as

h(t) =





0, t < 1,

1, 1 ≤ t < 1.5,

0, 1.5 ≤ t < 2,

1, t ≥ 2.

(2.5)

That this hazard function indeed defines an NBU distribution which is not an AIFR distribution
is an exercise. �

2.3.1 Example (Weibull distribution)
If T ∼ W(α, β) then the hazard function h is according to Theorem 2.1.11 given by

h(t) =
β

α

(
t

α

)β−1

.

This function is strictly increasing for β > 1, constant for β = 1 and decreasing for β < 1.
Hence the Weibull distribution is IFR and thus AIFR and NBU for β ≥ 1. In particular, the
exponential distribution is IFR, AIFR, and NBU. A Weibull distribution is not AIFR and thus
not IFR for β < 1 since

S(t)1/t =

(
exp

[
−
(
t

α

)β
])1/t

= exp

[
− tβ−1

αβ

]

is increasing in t for β < 1. For β < 1, the Weibull distribution is also not NBU, since the NBU
property is according to (2.4) equivalent to

1

αβ
(t+ s)β = H(t+ s) ≥ H(t) +H(s) =

1

αβ
tβ +

1

αβ
sβ

for all s, t ≥ 0. This would mean in particular for s = t

(2t)β ≥ 2 tβ ⇔ 2β ≥ 2 ⇔ β ≥ 1

so that the Weibull distribution with β < 1 cannot be NBU.
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2.4 Censored lifetimes

2.4 Censored lifetimes

Usually lifetime experiments in engineering are very time consuming and costly so that not every
object can be observed until failure.

2.4.1 Definition (Type I censoring)
The objects are only observed until a predefined fixed time c, so that instead of the real lifetimes
t1, . . . , tN only

zn = min(tn, c), dn = 11{tn ≤ c} =

{
1, if failure of the n’th object is observed, i.e. tn ≤ c,

0, if no failure of the n’th object is observed, i.e. tn > c,

is observed for n = 1, . . . , N . Thereby, 11{tn ≤ c} := 11[0,c](tn) denotes the indicator function.

2.4.2 Definition (Progressive Type I censoring)
There are predefined fixed progressive censoring times c1 < c2 < . . . < cK and given samples
sizes 0 = N0 < N1 < N2 < . . . < NK = N so that objects with n ∈ {Nk−1 + 1, . . . , Nk} are only
observed until ck, for k = 1, . . . ,K. This means that instead of the real lifetimes t1, . . . , tN only

zn = min(tn, ck), dn = 11{tn ≤ ck} =

{
1, if tn ≤ ck,

0, if tn > ck,

is observed for n ∈ {Nk−1 + 1, . . . , Nk} for k = 1, . . . ,K.

If the lifetime experiments are running parallel then also Type II censoring can be used.

2.4.3 Definition (Type II censoring)
The objects are only observed until a predefined fixed number R of failures are observed. If
t(1) ≤ t(2) ≤ . . . ≤ t(N) are the ordered real lifetimes then only

zn = min(tn, t(R)), dn = 11{tn ≤ t(R)} =

{
1, if tn ≤ t(R),

0, if tn > t(R),

is observed for n = 1, . . . , N . This means that N −R observations are censored.

The corresponding random variables are always denoted by Z1, . . . , ZN and D1, . . . ,DN .

2.4.4 Definition (Progressive Type II censoring)
Here integers R1, . . . , RK and N1, . . . , NK are predefined such that R1+. . .+RK+N1+. . .+NK ≤
N . At first the objects are observed until R1 failures are noted. From the remaining N − R1

objects, N1 objects are removed so that observations of these objects are censored by t(R1).
Then the remaining N − R1 − N1 objects are observed until they provide R2 failures. From
the remaining N − R1 − N1 − R2 objects, N2 objects are removed. This is repeated until
N − (R1 + . . . + RK + N1 + . . . + NK) ≥ 0 objects remain and provide censored observations
as well. At all R1 + . . . + RK failures are observed and N − (R1 + . . . + RK) observations are
censored.
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2.4.5 Definition (Random censoring)
The objects are only observed until different censoring constants c1, . . . , cN which are realizations
of i.i.d. random variables C1, . . . , CN . This means that instead of the real lifetimes t1, . . . , tN
only

zn = min(tn, cn), dn = 11{tn ≤ cn} =

{
1, if tn ≤ cn,

0, if tn > cn,

is observed for n = 1, . . . , N .

Note that Type I censoring is a special case of random censoring where the distribution of
C1, . . . , CN is given by a one-point measure on c.

Sometimes the life times of N objects can be only observed at predefined fixed time points
0 = τ0 < τ1 < . . . < τI < τI+1 = ∞. Then we have interval censored data.

2.4.6 Definition (Interval censoring)
The objects are only observed at predefined fixed time points 0 = τ0 < τ1 < . . . < τI < τI+1 = ∞.
This means that instead of the real life times t1, . . . , tN only

zn =

{
i, if tn ∈ (τi−1, τi] for i = 1, . . . , I,

I + 1, if tn ∈ (τI ,∞),

is observed for n ∈ 1, . . . , N .

Often objects are not entering at the same time in a study. We will denote the time point when
the nth object has entered the study by bn (b for beginning or birth time) and assume that
b1, . . . , bN are realizations of random variables B1, . . . , BN . If we can observe b1, . . . , bN then
tn = t̃n − bn are the life times where t̃n, n = 1, . . . , N , are the observed failure times. If the
study has a predefined fixed end point τ then we have randomly censored data with cn = τ − bn.
However, the situation becomes more complicated if the birth times and life times can be only
observed at predefined fixed time points 0 = τ0 < τ1 < . . . < τI < τI+1 = ∞.

2.4.7 Example (Diamonds pull outs)
The data set Diamonds_B28_Matrix.xlsx shows the appearance of 46 diamonds on a segment of
a drilling tool. At the beginning of the experiments, only 22 diamonds are visible on the surface
of the segment. During the drilling process, diamonds are pulled out but also new diamonds
appear which are lying in deeper layers of the metal matrix. However, this can be only observed
at predefined time points because the drilling process has to be interrupted for this. In this
experiment, the process was interrupted every 60 seconds and this was done 25 times. If one
would consider only the 22 diamonds which are visible at the beginning of the experiments then
the data are interval censored data in the sense of Definition 2.4.6. To include the observations
concerning the remaining 44 diamonds then Definition 2.4.6 must be extended. Since the time of
the first appearance of a diamond can be interpreted as a birth of the diamond and the pull out
time of a diamond as a death of a diamond, we call this type of censored data interval censored
births and deaths data.
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2.4.8 Definition (Doubly interval censoring)
The births (first appearance) and deaths (life time) are only observed at predefined fixed time
points 0 = τ0 < τ1 < . . . < τI < τI+1 = ∞. This means that instead of the real lifetimes
t1, . . . , tN only

zn =





(0, i) if bn = 0, tn ∈ (τi−1, τi] for i = 1, . . . , I,

(h, i) if bn ∈ (τh−1, τh], tn + bn ∈ (τi−1, τi] for h, i = 1, . . . , I, h < i,

(h, I + 1), if bn ∈ (τh−1, τh], tn + bn ∈ (τI ,∞) for h = 1, . . . , I,

(0, I + 1), if bn = 0, tn ∈ (τI ,∞),

is observed for n ∈ 1, . . . , N .
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2.5 Estimation for parametric lifetime distributions

Let be θ ∈ Θ the unknown parameter of the lifetime distribution. Then Pθ, fθ, Fθ, and Sθ denote
the corresponding probability measure, the corresponding density function, the corresponding
cumulative distribution function and the corresponding survival function, respectively.

2.5.1 Definition (Maximum likelihood estimate for uncensored observations)
θ̂ = θ̂(t1, . . . , tN ) is called maximum likelihood estimate for θ if

θ̂ ∈ argmax
N∏

n=1

fθ(tn).

For censoring, we consider at first progressive Type I censoring which includes Type I censoring
as a special case. Then we get the following likelihood function (see e.g. Klein and Moeschberger
2003)

l(θ) :=

N∏

n=1

fθ(zn)
dnSθ(zn)

1−dn .

This is also the likelihood function for random censoring if the censoring variable C1, . . . , CN

and the life time variables T1, . . . , TN are independent and the distributions of C1, . . . , CN do
not depend on θ.

2.5.2 Definition (Maximum likelihood estimate for progressive Type I and random censored
observations)
θ̂ = θ̂((z1, d1), . . . , (zN , dN )) is called maximum likelihood estimate for θ based on progressive
Type I and random censored observations if

θ̂ ∈ argmax
N∏

n=1

fθ(zn)
dnSθ(zn)

1−dn .

To derive the maximum likelihood estimate for this type of censored observations (z1, d1), . . . ,
(zN , dN ) we can regard the loglikelihood function

L(θ) := ln

(
N∏

n=1

fθ(zn)
dnSθ(zn)

1−dn

)
=

N∑

n=1

ln(fθ(zn)
dn) +

N∑

n=1

ln(Sθ(zn)
1−dn)

=

N∑

n=1

dn ln(fθ(zn)) +

N∑

n=1

(1− dn) ln(Sθ(zn)).

If ∂
∂θL(θ)

∣∣∣
θ=θ̃

= 0 and ∂2

∂2θL(θ)
∣∣∣
θ=θ̃

is negative definite then θ̃ = θ̂ is the maximum likelihood

estimate.
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2.5 Estimation for parametric lifetime distributions

2.5.3 Example (Exponential distribution with progressive Type I or random censoring)
The loglikelihood function is here with zn = min(tn, cn) and J :=

∑N
n=1 dn

L(λ) =

N∑

n=1

dn ln(λe
−λzn) +

N∑

n=1

(1− dn) ln(e
−λzn)

= J ln(λ)− λ
N∑

n=1

zn.

Then we have

L′(λ) = J
1

λ
−

N∑

n=1

zn = 0

if and only if 1
λ = 1

J

∑N
n=1 zn so that the maximum likelihood estimator for λ is

λ̂ =
J

∑N
n=1 zn

.

For Type I censoring with c = cn, n = 1, . . . , N , this simplifies to

λ̂ =
J

(N − J) c+
∑N

n=1 dntn
.

If there are no censored observations then J = N and

λ̂ =
N

∑N
n=1 tn

.

The likelihood function for Type II censoring is given for the ordered sample t(1), . . . , t(N) by
(see e.g. Deshpande, Purohit 2016)

l(θ) =

(
N

R

)
R!

R∏

n=1

fθ(t(n))Sθ(t(R))
N−R =

(
N

R

)
R!

N∏

n=1

fθ(zn)
dnSθ(zn)

1−dn .

2.5.4 Definition (Maximum likelihood estimate for Type II censored observations)
θ̂ = θ̂((z1, d1), . . . , (zN , dN )) is called maximum likelihood estimate for θ based on Type II
censored observations if

θ̂ ∈ argmax
N∏

n=1

fθ(zn)
dnSθ(zn)

1−dn .
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2.5.5 Example (Exponential distribution with Type II censoring)
Since the likelihood function is the same as for progressive Type I censoring with R =

∑N
n=1 dn,

the maximum likelihood estimator is given by

λ̂ =
R

∑N
n=1 zn

=
R

(N −R) t(R) +
∑R

n=1 t(n)
.

2.5.6 Theorem (Likelihood function for interval censored data)
If T1, . . . , TN are independent with cumulative distribution function Fθ, then the likelihood func-
tion for interval censored data z1, . . . , zN is given by

l(θ) =

N∏

n=1

(
I∏

i=1

(Fθ(τi)− Fθ(τi−1))
11{zn=i} (1− Fθ(τI))

11{zn=I+1}
)
,

where 11 denotes the indicator function.

2.5.7 Theorem (Likelihood function for doubly interval censored birth and death data)
If B1, . . . , BN , T1, . . . , TN are independent so that Bn has cumulative distribution function Gθ

and Tn has cumulative distribution function Fθ for n = 1, . . . , N , then the likelihood function
for doubly interval censored birth and death data z1, . . . , zN satisfies

l(θ) =

N∏

n=1

I+1∏

i=1

I+1∏

h=1
h<i

(∫ τh

τh−1

(Fθ(τi − u)− Fθ(τi−1 − u)) dGθ(u)

)11{zn=(h,i)}

. (2.6)

Proof. Set Dn = Bn + Tn for the "death time". Then we have

l(θ) := l(θ; z1, . . . , zN ) =
N∏

n=1

Pθ(Zn = zn) =
N∏

n=1

I+1∏

h,i=0
h<i

Pθ

(
Zn = (h, i)

)

=
N∏

n=1

I+1∏

i=1

I+1∏

h=1
h<i

Pθ

(
Bn ∈ (τh−1, τh], Dn ∈ (τi−1, τi]

)11{zn=(h,i)}
.

Since Tn := Dn −Bn, n = 1, . . . , N , we can rewrite

Pθ

(
Bn ∈ (τh−1, τh], Dn ∈ (τi−1, τi]

)
= Pθ

(
Bn ∈ (τh−1, τh], Bn + Tn ∈ (τi−1, τi]

)

=

∫∫

R2

11(τh−1,τh](y1) 11(τi−1,τi](y2) dP
(Bn,Bn+Tn)
θ (y1, y2).

Using the elementary transformation theorem from the measure theory and then the indepen-
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dence of Bn and Tn, we obtain

∫∫

R2

11(τh−1,τh](y1) 11(τi−1,τi](y2) dP
(Bn,Bn+Tn)
θ (y1, y2)

=

∫∫

R2

11(τh−1,τh](u) 11(τi−1,τi](v + u) dP
(Bn,Tn)
θ (u, v)

=

∫∫

R2

11(τh−1,τh](u) 11(τi−1,τi](v + u) dP Tn
θ (v) dPBn

θ (u)

=

∫ τh

τh−1

∫ τi−u

τi−1−u
dFθ(v) dGθ(u) =

∫ τh

τh−1

(Fθ(τi − u)− Fθ(τi−1 − u)) dGθ(u).

This implies the assertion. �
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2.6 Goodness-of-fit tests

Let be F = {Fθ; θ ∈ Θ} a family of given cumulative distribution functions for θ ∈ Θ ⊂ R
r and

F the true cumulative distribution function, then we want to test

H0 : F ∈ F , H1 : F /∈ F
If we have an estimate θ̂ of θ, we can use F

θ̂
for a test. There are several goodnes-of-fit tests based

on F
θ̂

to test the null hypothesis. The most flexible goodness-of-fit test is the χ2 goodness-of-fit
test.

2.6.1 Definition (χ2 goodness-of-fit test, see e.g. Schervish 1997, Theorem 7.133)
Let be I1, I2, . . . , IL disjoint intervals such that

⋃L
l=1 Il = [0,∞),

I1 := [a1, b1] with a1 = 0, Il := (al, bl] for l = 2, . . . , L− 1, IL := (aL, bL) with bl = ∞,

p l := F
θ̂
(bl)− F

θ̂
(al), Nl := ♯{n; tn ∈ Il},

Tχ2 := Tχ2(t1, . . . , tN ) :=
L∑

l=1

(Nl −N p l)
2

N p l
,

and χ2
L−r−1;1−α the (1 − α)-quantile of the χ2 distribution with L − r − 1 degrees of freedom,

then the χ2 goodness-of-fit test is given by the decision rule

reject H0 : F ∈ F if Tχ2 > χ2
L−r−1;1−α.

This is an approximate α-level test for H0 : F ∈ F if N p l ≥ 5 holds for all l = 1, . . . , L. Hence
the al and bl must be chosen so that this is satisfied.

2.6.2 Example
A natural choice for interval censored data is I1 = (0, τ1], I2 = (τ1, τ2], . . . II = (τI−1, τI ],
II+1 = (τI ,∞) so that L = I + 1. If N p l ≥ 5 is not satisfied then classes should be combined.

2.6.3 Lemma
If F

θ̂
is continuous and strictly increasing and k ∈ IN then

al = F−1

θ̂

(
(l − 1)k

N

)
, bl = F−1

θ̂

(
lk

N

)
for l = 1, . . . ,

⌊
N

k

⌋

satifies

N
(
F
θ̂
(bl)− F

θ̂
(al)

)
= k for l = 1, . . . ,

⌊
N

k

⌋
.

Proof. Since F
θ̂
(F−1

θ̂
(x)) = x for all x ∈ R, it holds

F
θ̂
(bl)− F

θ̂
(al) =

lk

N
− (l − 1)k

N
=

k

N

for all l = 1, . . . ,
⌊
N
k

⌋
. �
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2.6.4 Corollary

If k ∈ IN satisfies k ≥ 5, L =
⌊
N
k

⌋
, N1 = ♯

{
n, F

θ̂
(tn) ∈

[
0, k

N

]}
, Nl = ♯

{
n, F

θ̂
(tn) ∈

(
(l−1)k

N , lkN

]}

for l = 2, . . . , L− 1, NL = ♯
{
n, F

θ̂
(tn) ∈

(
(L−1)k

N ,∞
)}

,

Tχ2 := Tχ2(t1, . . . , tN ) :=

L∑

l=1

(Nl − k)2

k
,

then the decision rule

reject H0 : F ∈ F if Tχ2 > χ2
L−r−1;1−α.

is an approximate α-level test for H0 : F ∈ F .

Proof. The assertion follows with

F
θ̂
(tn) ∈

(
(l − 1)k

N
,
lk

N

]
⇐⇒ tn ∈

(
F−1

θ̂

(
(l − 1)k

N

)
, F−1

θ̂

(
lk

N

)]

and Lemma 2.6.3. �
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2.7 Confidence sets and prediction intervals

Let be P(Rr) the set of all subsets of Rr. The following definitions, lemmas and theorems are
given for uncensored data t1, . . . , tN . However, they hold also for censored data z1, . . . , zN and in
more general situations so that we provide the general concepts for data of the form z1, . . . , zN .
We assume that z1, . . . , zN are realizations of Z1, . . . , ZN .

2.7.1 Definition (Confidence set)
C : [0,∞)N ∋ (z1, . . . , zN ) → C(z1, . . . , zN ) ∈ P(Rs) is a (1 − α)-confidence set function for the
aspect a(θ) ∈ R

s of θ if

Pθ(a(θ) ∈ C(Z1, . . . , ZN )) ≥ 1− α

is satisfied for all θ ∈ Θ.

2.7.2 Lemma
If θ = (θ1, . . . , θr)

⊤ ∈ R
r and Ci : [0,∞)N ∋ (z1, . . . , zN ) → Ci(z1, . . . , zN ) ∈ P(R) are (1 − α)-

confidence set functions for θi for i = 1, . . . , r then C : [0,∞)N ∋ (z1, . . . , zN ) → C(z1, . . . , zN ) ∈
P(Rr) given by

C(z1, . . . , zN ) = C1(z1, . . . , zN )× C2(z1, . . . , zN )× . . .× Cr(z1, . . . , zN )

is a (1− rα)-confidence set function for θ.

Proof. Since Pθ(θi /∈ Ci(Z1, . . . , ZN )) = 1 − Pθ(θi ∈ Ci(Z1, . . . , ZN )) ≤ 1 − (1 − α) = α, we
obtain

Pθ(θ ∈ C(Z1, . . . , ZN )) = Pθ(θ1 ∈ C1(Z1, . . . , ZN ) and . . . and θr ∈ Cr(Z1, . . . , ZN ))

= 1− Pθ(θ1 /∈ C1(Z1, . . . , ZN ) or . . . or θr /∈ Cr(Z1, . . . , ZN ))

≥ 1−
r∑

i=1

Pθ(θi /∈ Ci(Z1, . . . , ZN )) = 1− rα.�

Let be Z0 the random variable for a future observation. Typically we have here that Z1, . . . , ZN , Z0

are independent and identically distributed.

2.7.3 Definition (Prediction interval)
P : [0,∞)N ∋ (z1, . . . , zN ) → P(z1, . . . , zN ) ∈ P(R) is a (1 − α)-prediction interval function for
Z0 if

Pθ(Z0 ∈ P(Z1, . . . , ZN )) ≥ 1− α

is satisfied for all θ ∈ Θ.
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To compare several prediction intervals, one can consider the length of the prediction intervals
and the coverage rate, i.e. add the relative number of future observations falling in the prediction
interval. A combination of the length and the coverage rate of a prediction interval is the interval
score of Gneiting und Raftery (2007).

2.7.4 Definition (Gneiting und Raftery (2007))
Is [l, u] := [l(z1, . . . , zN ), u(z1, . . . , zN )] := P(z1, . . . , zN ) a (1 − α)-prediction interval for Z0 and
z0 a future observation, then

S(P(z1, . . . , zN ), z0) := (u− l) +
2

α
(l − z0)11{z0 < l}+ 2

α
(z0 − u)11{z0 > u}

is called an interval score of the (1− α)-prediction interval P(z1, . . . , zN ) for Z0 at z0.

2.7.5 Remark (Naive or plug-in prediction interval)
If Z0, Z1, . . . , ZN are i.i.d., each with cumulative distribution function Fθ and θ̂ := θ̂(z1, . . . , zN )
is an estimate for θ then a naive or plug-in (1− α)-prediction interval P is given by

P(z1, . . . , zN ) =
[
F−1

θ̂
(η1), F

−1

θ̂
(η2)

]

where 0 ≤ η1 < η2 ≤ 1 with η2 − η1 = 1 − α. For finite samples N , these prediction intervals
are usually too small so that Pθ(Z0 ∈ P(Z1, . . . , ZN )) ≥ 1 − α is not satisfied. However, if the
estimator θ̂N (Z1, . . . , ZN ) is a consistent estimator for θ then

lim
N→∞

F−1

θ̂N
(η1) = F−1

θ (η1), lim
N→∞

F−1

θ̂N
(η2) = F−1

θ (η2)

if F−1
θ (η) is continuous in θ for η = η1, η2. Then

lim
N→∞

Pθ(Z0 ∈ P(Z1, . . . , ZN )) = lim
N→∞

(
Fθ(F

−1

θ̂N
(η2))− Fθ(F

−1

θ̂N
(η1))

)

= Fθ(F
−1
θ (η2))− Fθ(F

−1
θ (η1)) = η2 − η1 = 1− α.

For finite samples, the uncertainty of an estimator θ̂ must be taken into account. A general
simple approach for doing this is to base the prediction interval on a confidence set for θ.

2.7.6 Theorem (Prediction intervals based on confidence sets for indenpendet observations)
If Z1, . . . , ZN , Z0 are independent distributed, 0 ≤ η1 < η2 ≤ 1 with η2 − η1 = 1 − α1, and C is
a (1− α2)-confidence set function, then P given by

P(z1, . . . , zN ) =
⋃

θ∈C(z1,...,zN )

[
F−1
θ (η1), F

−1
θ (η2)

]

is a (1− α1)(1− α2)-prediction interval function for Z0.

Proof. At first note that for any θ∗ ∈ Θ

Pθ∗

(
Z0 ∈

[
F−1
θ∗

(η1), F
−1
θ∗

(η2)
])

= Fθ∗

(
F−1
θ∗

(η2)
)
− Fθ∗

(
F−1
θ∗

(η1)
)
= η2 − η1 = 1− α1



2 Experiments with one stress level

Christine Müller, Statistics of Reliability and Material Fatigue, WS 2021/22

35

is satisfied. Then we obtain for any θ∗ ∈ Θ with the independence of Z0 and Z1, . . . , ZN

Pθ∗(Z0 ∈ P(Z1, . . . , ZN )) = Pθ∗


Z0 ∈

⋃

θ∈C(Z1,...,ZN )

[
F−1
θ (η1), F

−1
θ (η2)

]



≥ Pθ∗


Z0 ∈

⋃

θ∈C(Z1,...,ZN )

[
F−1
θ (η1), F

−1
θ (η2)

]
, θ∗ ∈ C(Z1, . . . , ZN )




≥ Pθ∗

(
Z0 ∈

[
F−1
θ∗

(η1), F
−1
θ∗

(η2)
]
, θ∗ ∈ C(Z1, . . . , ZN )

)

= Pθ∗

(
Z0 ∈

[
F−1
θ∗

(η1), F
−1
θ∗

(η2)
])

· Pθ∗ (θ∗ ∈ C(Z1, . . . , ZN )) ≥ (1− α1)(1 − α2) �

2.7.7 Remark
Usually α1 = α2 with (1 − α1)

2 = 1 − α is used in Theorem 2.7.6. However, for large sample
sizes N , it is better to use α1 > α2 with (1 − α1)(1 − α2) = 1 − α to be competitive with the
naive prediction interval. In particular one should use α1(N) ↑ α and α2(N) ↓ 0 for N → ∞
to get the same asymptotic behavior as the naive prediction interval. One has only to ensure
that α2(N) is skrinking not too quickly to 0 so that the confidence set is not shrinking to one
point which is the underlying parameter. But usually a rate α2(N) ↓ 0 can be found so that the
confidence set is shrinking to the true parameter.

Observations with exponential distribution

2.7.8 Lemma
If T1, . . . , TN are independent and Tn ∼ G(λ, βn) for n = 1, . . . , N , then

∑N
n=1 Tn ∼ G(λ,∑N

n=1 βn).

Proof. By induction as in the proof of Theorem 2.2.3.

2.7.9 Lemma
If T1, . . . , TN ∼ E(λ) are independent and Fλ,N is the cumulative distribution function of the
Gamma distribution with parameters λ and N , then C given by

C(t1, . . . , tN ) =

{
λ;

N∑

n=1

tn ∈
[
F−1
λ,N

(α
2

)
, F−1

λ,N

(
1− α

2

)]}

is a (1− α)-confidence set function for λ.

2.7.10 Corollary
If T1, . . . , TN , T0 ∼ E(λ) are independent, 0 ≤ η1 < η2 ≤ 1 with η2 − η1 = 1− α, and C is given
by Lemma 2.7.9, then P given by

P(t1, . . . , tN ) =
⋃

λ∈C(t1,...,tN )

[
F−1
λ,1 (η1), F

−1
λ,1 (η2)

]

is a (1− α)2-prediction interval function for T0.



36

Christine Müller, Statistics of Reliability and Material Fatigue, WS 2021/22

2.7 Confidence sets and prediction intervals

2.7.11 Theorem (Meeker and Escobar (1998), p. 300)
If T1, . . . , TN , T0 ∼ E(λ) are independent with ordering T(1) ≤ . . . ≤ T(N), Zn = min(Tn, T(R)),

n = 1, . . . , N , are the Typ II censored observations with R ≤ N , θ̂(Z1, . . . , ZN ) is the maxi-
mum likelihood estimator for θ = 1

λ based on Z1, . . . , ZN and fn,m;α is the α-quantile of the F
distribution with n and m degrees of freedom, then P given by

P(z1, . . . , zN ) =
[
θ̂(z1, . . . , zN ) f2,2R;α/2, θ̂(z1, . . . , zN ) f2,2R;1−α/2

]
,

is a (1− α)-prediction interval function for T0.

Proof. According to Example 2.5.5, the maximum likelihood estimator for λ is given by

λ̂(Z1, . . . , ZN ) =
R

(N −R) t(R) +
∑R

n=1 t(n)

so that

θ̂(Z1, . . . , ZN ) =
(N −R)T(R) +

∑R
n=1 T(n)

R
=

(N −R+ 1)T(R) +
∑R−1

n=1 T(n)

R

is the maximum likelihood estimator for θ = 1
λ . Using the normalised sample spacings

Dn := (N − n+ 1)(T(n) − T(n−1)), n = 2, . . . , N, D1 := N T(1),

we get

θ̂(Z1, . . . , ZN ) =

∑R
n=1Dn

R
,

where D1, . . . ,DR ∼ E(λ) are independent according to Theorem 2.2.4. Theorem 2.2.3 provides

2λ
R∑

n=1

Dn ∼ χ2
2R

and 2λT0 ∼ χ2
2. Hence

T0

θ̂(Z1, . . . , ZN )
=

2λT0
2

2λ
∑R

n=1 Dn

2R

has a F distribution with 2 and 2R degrees of freedom. This implies

Pλ(T0 ∈ P(Z1, . . . , ZN )) = Pλ

(
f2,2R;α/2 ≤ T0/θ̂(Z1, . . . , ZN ) ≤ f2,2R;1−α/2

)
= 1− α.�

2.7.12 Remark
Theorem 2.7.11 provides in particular a prediction interval for uncensored data with exponential
distribution. Since the exponential dsitribution is a special Gamma distribution, prediction
intervals for Gamma distributions can be used as well.
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Observations with Gamma distribution

2.7.13 Lemma
If X,Y are independent and X ∼ G(λ, β1), Y ∼ G(λ, β2), then

X

X + Y
∼ B(β1, β2),

where B(a, b) denotes the Beta distribution given by the density

f(x) =
Γ(a)Γ(b)

Γ(a+ b)
xa(1− x)b11[0,1](x).

Proof. See Kahle et al. (2016) Proposition 2.6.

2.7.14 Theorem
If T1, . . . , TN , T0 ∼ G(λ, β) are independent, β is a known parameter, S(t1, . . . , tN ) :=

∑N
n=1 tn,

η2 − η1 = 1− α and ba,b;α the α-quantile of the B(a, b) distribution, then P given by

P(t1, . . . , tN ) =

[
S(t1, . . . , tN )(1− bNβ,β;η2)

bNβ,β;η2

,
S(t1, . . . , tN )(1− bNβ,β;η1)

bNβ,β;η1

]
,

is a (1− α)-prediction interval function for T0.

Proof. We have S(T1, . . . , TN ) ∼ G(λ,Nβ) according to 2.7.8 so that

S(T1, . . . , TN )

S(T1, . . . , TN ) + T0
∼ B(Nβ, β)

according to Lemma 2.7.13. This implies

Pλ,β(T0 ∈ P(T1, . . . , TN ))

= Pλ,β

(
S(T1, . . . , TN )(1− bNβ,β;η2)

bNβ,β;η2

≤ T0 ≤
S(T1, . . . , TN )(1− bNβ,β;η1)

bNβ,β;η1

)

= Pλ,β (S(T1, . . . , TN ) ≤ bNβ,β;η2(S(T1, . . . , TN ) + T0),

bNβ,β;η1(S(T1, . . . , TN ) + T0) ≤ S(T1, . . . , TN ))

= Pλ,β

(
bNβ,β;η1 ≤ S(T1, . . . , TN )

S(T1, . . . , TN ) + T0
≤ bNβ,β;η2

)

= η2 − η1 = 1− α.�
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Observations with (log)normal distribution

Assume now that T1, . . . , TN are independent with a lognormal distribution. Then Y1 = ln(Tn), . . . , YN =
ln(TN ) have a normal distribution. Set

y = (y1, . . . , yN )⊤, y. =
1

N

N∑

n=1

yn, σ̂(y)2 =
1

N − 1

N∑

n=1

(yn − y.)2

and let be Y , Y ., and σ̂(Y )2 the corresponding random variables. If Yn ∼ N (µ, σ2), then

Y . ∼ N (µ, 1
N σ2), (N − 1) σ̂(Y )2

σ2 has a χ2-distribution with N − 1 degrees of freedom and Y . and
σ̂(Y )2 are independent.

2.7.15 Lemma
If Y1, . . . , YN ∼ N (µ, σ2) are independent and tN−1;α is the α-quantile of the t distribution with
N − 1 degrees of freedom, then Cµ given by

Cµ(y1, . . . , yN ) =

[
y.− σ̂(y)√

N
tN−1;1−α/2, y.+

σ̂(y)√
N

tN−1;1−α/2

]

is a (1− α)-confidence set (interval) function for µ.

Proof.

Pµ,σ2(µ ∈ Cµ(Y1, . . . , YN )) = Pµ,σ2

(
− σ̂(Y )√

N
tN−1;1−α/2 ≤ µ− Y . ≤ σ̂(Y )√

N
tN−1;1−α/2

)

= Pµ,σ2

(
tN−1;α/2 ≤

√
N

Y .− µ

σ̂(Y )
≤ tN−1;1−α/2

)
= 1− α

since
√
N Y .−µ

σ̂(Y ) has a t-distribution with N − 1 degree of freedom. �

2.7.16 Lemma
If Y1, . . . , YN ∼ N (µ, σ2) are independent and χ2

N−1;α is the α-quantile of the χ2 distribution
with N − 1 degrees of freedom, then Cσ2 given by

Cσ2(y1, . . . , yN ) =

[
(N − 1)σ̂(Y )2

χ2
N−1;1−α/2

,
(N − 1)σ̂(Y )2

χ2
N−1;α/2

]

is a (1− α)-confidence set (interval) function for σ2.

Proof.

Pµ,σ2(σ2 ∈ Cσ2(Y1, . . . , YN )) = Pµ,σ2

(
(N − 1)σ̂(Y )2

χ2
N−1;1−α/2

≤ σ2 ≤ (N − 1)σ̂(Y )2

χ2
N−1;α/2

)

= Pµ,σ2

(
1

χ2
N−1;1−α/2

≤ σ2

(N − 1)σ̂(Y )2
≤ 1

χ2
N−1;α/2

)

= Pµ,σ2

(
χ2
N−1;α/2 ≤ (N − 1)

σ̂(Y )2

σ2
≤ χ2

N−1;1−α/2

)
= 1− α
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since (N − 1) σ̂(Y )2

σ2 has a χ2-distribution with N − 1 degree of freedom. �

2.7.17 Corollary
Let Y1, . . . , YN ∼ N (µ, σ2) be independent and C given by

C(y1, . . . , yN ) = Cµ(y1, . . . , yN )× Cσ2(y1, . . . , yN ),

where Cµ and Cσ2 are (1−α)-confidence interval functions for µ and σ2 given by Lemma 2.7.15
and Lemma 2.7.16, respectively. Then C is a (1− 2α)-confidence set function for (µ, σ2).

Proof. The assertion follows from Lemma 2.7.2.

2.7.18 Remark
A first (1− α1)(1− α2)-prediction interval for Y0 is given according to Theorem 2.7.6 by

P(y1, . . . , yN ) =
⋃

(µ,σ2)∈C(y1,...,yN )

[
F−1
(µ,σ2)

(α1

2

)
, F−1

(µ,σ2)

(
1− α1

2

)]

where C is a (1−α2)-confidence set function for (µ, σ2). Because of the symmetry of the normal
distribution, the choice η1 = α1

2 and η2 = 1 − α1
2 is the best choice. However, here a better

prediction interval can be obtained by the following theorem.

2.7.19 Theorem
If Y1, . . . , YN , Y0 ∼ N (µ, σ2) are independent, then P given by

P(y1, . . . , yN ) =

[
y.− σ̂(y)

√
1 +

1

N
tN−1;1−α/2, y.+ σ̂(y)

√
1 +

1

N
tN−1;1−α/2

]

is a (1− α)-predition interval function for Y0.

Proof. Since Y0 and Y . are independent, it holds Y0 − Y . ∼ N (0, σ2
P
) with

σ2
P = var(Y0 − Y .) = var(Y0) + var(Y .) = σ2

(
1 +

1

N

)
.

This implies

1√
1 + 1

N

Y0 − Y .

σ
∼ N (0, 1).

Since Y . and σ̂(Y )2 are independent, also Y0 − Y . and σ̂(Y )2 are independent so that

1√
1 + 1

N

Y0 − Y .

σ̂(Y )
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has a t-distribution with N − 1 degrees of freedom. Hence we can conclude

Pµ,σ2(Y0 ∈ P(Y1, . . . , YN ))

= Pµ,σ2

(
Y .− σ̂(Y )

√
1 +

1

N
tN−1;1−α/2 ≤ Y0 ≤ Y .− σ̂(Y )

√
1 +

1

N
tN−1;1−α/2

)

= Pµ,σ2


−tN−1;1−α/2 ≤

1√
1 + 1

N

Y0 − Y .

σ̂(Y )
≤ tN−1;1−α/2


 = 1− α.�

2.7.20 Corollary
If T1, . . . , TN , T0 ∼ LN (µ, σ2) are independent, then P given by

P(t1, . . . , tN ) =

[
exp

(
y.− σ̂(y)

√
1 +

1

N
tN−1;1−α/2

)
, exp

(
y.+ σ̂(y)

√
1 +

1

N
tN−1;1−α/2

)
)

]

with yn = log(tn), n = 1, . . . , N , is a (1− α)-predition interval function for T0.
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2.8 Convergence in distribution

Asymptotic prediction intervals can be used in situations where exact predictions intervals cannot
be calculated. To derive approximate prediction intervals, some results about convergence in
distribution are necessary.

2.8.1 Definition (Convergence in probability and almost surely convergence)
Let be (Xn)n∈N, X random variables on (Ω, A, P ) with values in R

r.

(i) (Xn)n∈N converges almost surely to X (briefly Xn → X P -a.s.)
:⇔ P ({ω ∈ Ω; lim

n→∞
Xn(ω) = X(ω)}) = 1.

(ii) (Xn)n∈N converges in probability to X (briefly Xn
P−→ X)

:⇔ ∧
ε>0

lim
n→∞

P ({ω ∈ Ω; ‖Xn(ω)−X(ω)‖ > ε}) = 0.

A general definition of convergence in distribution (also called weak convergence) is the following.

2.8.2 Definition (Convergence in distribution)
Let be (Pn)n∈N, P probability measures on (Rr,Br) where Br is the Borel-σ-algebra on R

r, then
(Pn)n∈N converges in distribution (converges weakly) to P
:⇔
lim
n→∞

Pn(B) = P (B) for all B ∈ Br with P (∂B) = 0, where ∂B is the border of B.

The assumption (Rr,Br) can be weakened but here it will be enough.

2.8.3 Theorem (Theorem of Portmanteau, see e.g. Witting and Müller-Funk 1995, Satz 5.40)
(Pn)n∈N converges in distribution (converges weakly) to P
:⇔
lim
n→∞

∫
f dPn =

∫
f dP for all continuous and bounded f : Rr → R.

2.8.4 Definition (Convergence in distribution for random variables)
Let be (Xn)n∈N, X random variables on (Ω, A, P ) with values in R

r.

(Xn)n∈N converges in distribution to X (briefly Xn
D−→ X)

:⇔
lim
n→∞

PXn(B) = PX(B) for all B ∈ Br with PX(∂B)) = 0.

The following Theorem is sometimes used also as the definition of convergence in distribution.
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2.8.5 Theorem (Convergence in distribution to a continuous distribution, see e.g. Witting and
Müller-Funk 1995, Satz 5.58)
Let (Xn)n∈N, X be random variables on (Ω, A, P ) with values in R

r and cumulative distribution
functions (FXn)n∈N and FX . If FX is continuous then
(Xn)n∈N converges in distribution to X
⇔
lim
n→∞

FXn(x) = FX(x) for all x ∈ R
r.

If FX is not continuous, then lim
n→∞

FXn(x) = FX(x) must be satisfied for all x ∈ R
r, at which FX

is continuous. However, here FX will be always continuous so that the more general definition
is not necessary.

2.8.6 Lemma (Lemma of Slutzky, see e.g. Witting and Müller-Funk 1995, Korollar 5.84)
If (Xn)n∈N and (Yn)n∈N are sequences of random variables, X a random variable. If (Xn)n∈N
converges in distribution to X and (‖Xn − Yn‖)n∈N converges in probability to 0, then (Yn)n∈N
converges to X. Shortly:

Xn
D−→ X, ‖Xn − Yn‖ P−→ 0 =⇒ Yn

D−→ X .

2.8.7 Corollary

(i) (Xn)n∈N
P−→ X =⇒ (Xn)n∈N

D−→ X.

(ii) The reverse implication is not satisfied in general.

(iii) (Xn)n∈N
D−→ a ∈ R

r =⇒ (Xn)n∈N
P−→ a.

(iv) (
√
nXn)n∈N

D−→ X =⇒ (Xn)n∈N
P−→ 0.

2.8.8 Corollary

Let be (Xn)n∈N, (Yn)n∈N, (Zn)n∈N sequences of random variables with Xn
P−→ a ∈ R

r, Yn
P−→

A ∈ R
s×r and Zn

D−→ Z. Then we have:

(i) Xn + Zn
D−→ a+ Z,

(ii) Yn Zn
D−→ A Z.

Both corollaries can be shown as in the one-dimensional case. For alternative proofs see also
Witting and Müller-Funk (1995), Satz 5.83 and Korollar 5.84. To see in particular the assertions
of Corollary 2.8.8 (iii) and (iv), the Cramér-Wold device is helpful.

2.8.9 Theorem (Cramér-Wold, see e.g. Witting and Müller-Funk 1995, Korollar 5.69)
If (Xn)n∈N, X are random varibales with values in R

r, then

Xn
D−→ X ⇐⇒ u⊤Xn

D−→ u⊤X for all u ∈ R
r.
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2.8.10 Lemma (See e.g. Witting and Müller-Funk 1995, Hilfssatz 5.80)
If (Xn)n∈N, X are random varibales with values in R

r, (Yn)n∈N, Y are random varibales with
values in R

s and Xn and Yn are independent for all n ∈ N, then

Xn
D−→ X, Yn

D−→ Y =⇒ (Xn, Yn)
D−→ (X,Y ).

In particular, if r = s,

Xn
D−→ X, Yn

D−→ Y =⇒ Xn + Yn
D−→ X + Y.

2.8.11 Theorem (Continuous mapping thoerem, see e.g. Witting and Müller-Funk 1995, Satz
5.43)
If (Xn)n∈N, X are random variables with values in R

r and f : Rr → R
s is continuous, then

(i) Xn
D−→ X =⇒ f(Xn)

D−→ f(X),

(ii) Xn
P−→ X =⇒ f(Xn)

P−→ f(X).

2.8.12 Theorem (Delta method, see e.g. Witting and Müller-Funk 1995, Satz 5.78)
(Xn)n∈N, X are random variables with values in R

r, f : Rr → R
s is differentiable at θ with

derivative ḟ(θ) = ∂
∂xf(x)

∣∣∣
x=θ

∈ R
r×s, and (cn)n∈N is a sequence in (0,∞) with cn −→ ∞, then

cn(Xn − θ)
D−→ X =⇒ cn(f(Xn)− f(θ))

D−→ ḟ(θ)⊤X.
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2.9 Asymptotic confidence sets and prediction intervals

We present here the results for Type I censored data so that zn = min(tn, c) for n = 1, . . . , N
and c ∈ (0,∞). The special case of uncensored observations is included by c = ∞ which means
that no censoring occurs.

2.9.1 Definition (Asymptotic confidence set)
CN : [0,∞)N ∋ (z1, . . . , zN ) → CN (z1, . . . , zN ) ∈ P(Rr) is an asymptotic (1 − α)-confidence set
function for a(θ) if

lim
N→∞

Pθ(a(θ) ∈ CN (Z1, . . . , ZN )) ≥ 1− α

is satisfied for all θ ∈ Θ.

2.9.2 Definition (Asymptotic prediction interval)
PN : [0,∞)N ∋ (z1, . . . , zN ) → PN (z1, . . . , zN ) ∈ P(R) is an asymptotic (1 − α)-prediction
interval function for T0 if

lim
N→∞

Pθ(T0 ∈ PN (Z1, . . . , ZN )) ≥ 1− α

is satisfied for all θ ∈ Θ.

2.9.3 Theorem (Naive / plug-in prediction interval)
Let θ̂N := θ̂N (Z1, . . . , ZN ) be a weak consistent estimator for θ and Fθ the cumulative distribution
of T0 so that Fθ(t) is continuous in t and F−1

θ (η) is continuous in θ for η = η1, η2. If 0 ≤ η1 <
η2 ≤ 1 and η2 − η1 = 1− α then the naive or plug-in prediction interval function PN given by

PN (z1, . . . , zN ) =
[
F−1

θ̂N
(η1) , F−1

θ̂N
(η2)

]

is an asymptotic 1− α-prediction interval function for T0.

Proof. Since F−1
θ (η) is continuous in θ for η = η1, η2, the weak consistency of θ̂N implies for

any θ ∈ Θ and any ǫ > 0

lim
N→∞

Pθ(F
−1

θ̂N
(η1) > F−1

θ (η1) + ǫ)

≤ lim
N→∞

Pθ(|F−1

θ̂N
(η1)− F−1

θ (η1)| > ǫ) ≤ lim
N→∞

Pθ(‖θ̂ − θ‖ > ǫ̃) = 0

so that

lim
N→∞

Pθ(F
−1

θ̂N
(η1) > F−1

θ (η1) + ǫ) = 0.

Analogously, it follows

lim
N→∞

Pθ(F
−1

θ̂N
(η2) < F−1

θ (η2)− ǫ) = 0.
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Hence

lim
N→∞

Pθ(T0 /∈ PN (Z1, . . . , ZN )) ≤ lim
N→∞

(
Pθ

(
T0 < F−1

θ̂N
(η1)

)
+ Pθ

(
T0 > F−1

θ̂N
(η2)

))

≤ lim
N→∞

(
Pθ

(
T0 < F−1

θ (η1) + ǫ
)
+ Pθ(F

−1

θ̂N
(η1) > F−1

θ (η1) + ǫ)

+ Pθ

(
T0 > F−1

θ (η2)− ǫ
)
+ Pθ(F

−1

θ̂N
(η2) < F−1

θ (η2)− ǫ)
)

= Fθ

(
F−1
θ (η1) + ǫ

)
+ 1− Fθ

(
F−1
θ (η2)− ǫ

)
.

This holds for any ǫ > 0. Since Fθ(t) is continuous in t, there exists for all ǫ∗ > 0 a ǫ > 0 with

∣∣Fθ

(
F−1
θ (η) ± ǫ

)
− Fθ

(
F−1
θ (η)

)∣∣ ≤ ǫ∗

for η = η1, η2. This implies for any ǫ∗ > 0

lim
N→∞

Pθ(T0 /∈ PN (Z1, . . . , ZN ))

≤ Fθ

(
F−1
θ (η1)

)
+ 1− Fθ

(
F−1
θ (η2)

)
+ 2ǫ∗ = η1 + 1− η2 = 1− (η2 − η1) + 2ǫ∗ = α+ 2ǫ∗

and thus limN→∞ Pθ(T0 /∈ PN (Z1, . . . , ZN )) ≤ α. �

Recall that the likelihood function for Type I censored observations is given by

l(θ, zn) := l(θ, zn, dn) := fθ(zn)
dn Sθ(zn)

1−dn

where dn := 11[0,c](tn) and f is the density of Tn. In particular, we have then

ln l(θ, zn) = ln fθ(zn) 11[0,c](tn) + ln (1− Fθ(zn)) 11(c,∞)(tn).

2.9.4 Definition
Is T a random variable with density fθ and Z = min(T, c) then

Iθ(Z) := Eθ

([
∂

∂θ
ln l(θ, Z)

]2)
if θ ∈ R,

Iθ(Z) := Eθ

([
∂

∂θ
ln l(θ, Z)

∂

∂θ
ln l(θ, Z)⊤

])
if θ ∈ R

r,

is called the Fisher information of Z at θ.

2.9.5 Theorem
a) The Fisher information satisfies under regularity conditions

Iθ(Z) = −Eθ

[
∂2

∂2θ
ln l(θ, Z)

]

for all θ ∈ Θ.
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b) If Z1, . . . , ZN are i.i.d., then with Z∗ = (Z1, . . . , ZN )

Iθ(Z∗) = N Iθ(Z1)

for all θ ∈ Θ.

Proof.
a) At first note that it holds

∂2

∂2θ
ln l(θ, z) =

∂

∂θ

∂
∂θ l(θ, z)

l(θ, z)
=

∂
∂θ

∂
∂θ l(θ, z)

l(θ, z)
−

∂
∂θ l(θ, z)

∂
∂θ l(θ, z)

⊤

l(θ, z)2
.

If the regularity conditions ensure that the differentiation can be exchanged with the expectation
then

Eθ

[
∂2

∂2θ
ln l(θ, Z)

]
= Eθ

[
∂
∂θ

∂
∂θ l(θ, Z)

l(θ, Z)

]
− Eθ

[
∂
∂θ l(θ, Z)

l(θ, Z)

∂
∂θ l(θ, Z)⊤

l(θ, Z)

]

=
∂

∂θ

∂

∂θ
Eθ

[
l(θ, Z)

l(θ, Z)

]
− Iθ(Z) =

∂

∂θ

∂

∂θ
1− Iθ(Z) = −Iθ(Z).

b) The independence of Z1, . . . , ZN implies that the likelihood function of Z∗ is given by

l(θ, z∗) :=
N∏

n=1

fθ(zn)
dn Sθ(zn)

1−dn =

N∏

n=1

l(θ, zn)

so that the assertion follows from a). �

2.9.6 Lemma

a)

∫ c

0
λe−λydy = −e−λy

∣∣∣
c

0
= 1− e−λc.

b)

∫ c

0
y λe−λydy = −c e−λc +

1

λ

(
1− e−λc

)
.

c)

∫ c

0
y2 λe−λydy = e−λc

[
−c2 − 2c

λ
− 2

λ2

]
+

2

λ2
.

d)

∫ c

0

(
1

λ
− y

)
λe−λydy − c

∫ ∞

c
λe−λydy = 0.

e)

∫ c

0

(
1

λ
− y

)2

λe−λydy + c2
∫ ∞

c
λe−λydy =

1

λ2

(
1− e−λc

)
.
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Proof.
b) Using partial integration and a) we get

∫ c

0
y λe−λydy = −y e−λy

∣∣∣
c

0
−
∫ c

0
−e−λydy

= −c e−λc +
1

λ

∫ c

0
λe−λydy = −c e−λc +

1

λ

(
1− e−λc

)
.

c) Using partial integration and b) we get

∫ c

0
y2 λe−λydy = −y2 e−λy

∣∣∣
c

0
−
∫ c

0
−2y e−λydy

= −c2 e−λc +
2

λ

∫ c

0
y λe−λydy

= −c2 e−λc +
2

λ

[
−c e−λc +

1

λ

(
1− e−λc

)]

= e−λc

[
−c2 − 2c

λ
− 2

λ2

]
+

2

λ2
.

d) Using a) and b) we obtain

∫ c

0

(
1

λ
− y

)
λe−λydy − c

∫ ∞

c
λe−λydy

=
1

λ

(
1− e−λc

)
−
[
−c e−λc +

1

λ

(
1− e−λc

)]
− c e−λc = 0

e) Finally, we get with a), b), and c)

∫ c

0

(
1

λ
− y

)2

λe−λydy + c2
∫ ∞

c
λe−λydy

=

∫ c

0

(
1

λ2
− 2

λ
y + y2

)
λe−λydy + c2 e−λc

=
1

λ2

(
1− e−λc

)
− 2

λ

[
−c e−λc +

1

λ

(
1− e−λc

)]
+ e−λc

[
−c2 − 2c

λ
− 2

λ2

]
+

2

λ2
+ c2 e−λc

=
1

λ2
− 1

λ2
e−λc +

2c

λ
e−λc − 2

λ2
+

2

λ2
e−λc − c2 e−λc − 2c

λ
e−λc − 2

λ2
e−λc +

2

λ2
+ c2 e−λc

=
1

λ2

(
1− e−λc

)
. �

2.9.7 Lemma
Let be T ∼ E(λ) and Z = min{T, c} (Typ I censoring). Then

a) Iλ(T ) =
1
λ2 ,

b) Iλ(Z) = 1
λ2 (1− eλc).
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Proof. a) We have

∂

∂λ
fλ(t) =

∂

∂λ
λe−λt = e−λt(1− λt) = fλ(t)

(
1

λ
− t

)

so that

Iλ(T ) = Eλ

([
∂

∂λ
ln fλ(T )

]2)
= Eλ



[

∂
∂λfλ(T )

fλ(T )

]2
 = Eλ

([
1

λ
− T

]2)
=

1

λ2
,

since Eλ(T ) =
1
λ and varλ(T ) =

1
λ2 .

b) In the censored case, we have

ln l(λ, z) = ln fλ(z)11[0,c](t) + lnSλ(z)11(c,∞)(t) = (ln λ− λt)11[0,c](t)− λc11(c,∞)(t)

so that

∂

∂λ
ln l(λ, z) =

(
1

λ
− t

)
11[0,c](t)− c11(c,∞)(t).

Hence, Lemma 2.9.6 e) provides

Iλ(Z) = Eλ

([
∂

∂λ
ln l(λ,Z)

]2)
=

∫ c

0

(
1

λ
− t

)2

λe−λtdt+

∫ ∞

c
c2λe−λtdt =

1

λ2

(
1− e−λc

)
. �

2.9.8 Lemma
If Y = log(Z) = log(T ) ∼ N (µ, σ2), then

I(µ,σ2)(Y ) =

(
1
σ2 0

0 1
2σ4

)
.

Proof. We have

∂

∂µ
f(µ,σ2)(y) =

∂

∂µ

1√
2πσ2

e−
1

2σ2 (y−µ)2 = f(µ,σ2)(y)

(
y − µ

σ2

)

and

∂

∂σ2
f(µ,σ2)(y) =

∂

∂σ2

1√
2πσ2

e−
1

2σ2 (y−µ)2 = f(µ,σ2)(y)

(
− 1

2σ2
+

(y − µ)2

2σ4

)

so that

E(µ,σ2)

([
∂

∂µ
ln f(µ,σ2)(Y )

]2)

= E(µ,σ2)



[

∂
∂µf(µ,σ2)(Y )

f(µ,σ2)(Y )

]2
 = E(µ,σ2)

([
y − µ

σ2

]2)
=

σ2

σ4
=

1

σ2
,
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E(µ,σ2)

([
∂

∂µ
ln f(µ,σ2)(Y )

] [
∂

∂σ
ln f(µ,σ2)(Y )

])

= E(µ,σ2)

([
∂
∂µf(µ,σ2)(Y )

f(µ,σ2)(Y )

] [
∂
∂σf(µ,σ2)(Y )

f(µ,σ2)(Y )

])

= E(µ,σ2)

(
−(y − µ)

2σ4
+

(y − µ)3

2σ6

)
= 0,

E(µ,σ2)

([
∂

∂σ2
ln f(µ,σ2)(Y )

]2)

= E(µ,σ2)



[

∂
∂σ2 f(µ,σ2)(Y )

f(µ,σ2)(Y )

]2
 = E(µ,σ2)

([
− 1

2σ2
+

(y − µ)2

2σ4

]2)

= E(µ,σ2)

(
1

4σ4
− (y − µ)2

2σ6
+

(y − µ)4

4σ8

)
=

1

4σ4
− σ2

2σ6
+

3σ4

4σ8
=

1

2σ4
.

Hence the assertion follows. �

2.9.9 Theorem (Schervish 1997, Theorem 7.57 or Theorem 7.63)
If Z1, . . . , ZN are i.i.d., θ̂N := θ̂N (Z1, . . . , ZN ) is the maximum likelihood estimator for θ, then
under regularity conditions (see Schervish 1997, Theorem 7.57 or Theorem 7.63),

a) θ̂N −→ θ∗ Pθ∗-almost surely,

b)
√
N(θ̂N − θ∗)

D−→ N (0r, Iθ∗(Z1)
−1), (2.7)

if θ∗ is the true parameter, i.e. the maximum likelihood estimator converges in distribution to a
normal distribution.

Proof.
a) At first we show θ̂N −→ θ∗ Pθ∗-almost surely.
The strong law of large numbers provides

gN (θ, ω) :=
1

N

N∑

n=1

ln l(θ, Zn(ω)) −→ Eθ∗(ln l(θ, Z1)) =: g(θ) for all θ ∈ Θ (2.8)

for Pθ∗ -almost all ω. Consider any ω satisfying (2.8). If the regularity conditions ensure that
g has a unique maximum at θ∗ ∈ Θ and Θ is compact then we obtain the following properties.
The compactness of Θ implies uniform convergence which means that for any δ > 0, there exists
Nδ such that

|gN (θ, ω)− g(θ)| < δ for all N ≥ Nδ, θ ∈ Θ. (2.9)
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Now let Bǫ(θ∗) be an ǫ-ball around θ∗. The uniqueness of the maximum of g at θ∗ provides the
existence of an ǫ0 > 0 so that for all 0 < ǫ < ǫ0 a δ > 0 exists with

max
θ∈Θ\Bǫ(θ∗)

g(θ) < g(θ∗)− 2δ.

The uniform convergence in (2.9) implies then for N ≥ Nδ

gN (θ, ω) ≤ |gN (θ, ω)− g(θ)|+ g(θ) < δ + g(θ∗)− 2δ = g(θ∗)− δ for θ ∈ Θ \Bǫ(θ∗)

gN (θ∗, ω) ≥ −|gN (θ∗, ω)− g(θ∗)|+ g(θ∗) > g(θ∗)− δ.

This means

θ̂N = argmax ln
N∏

n=1

l(θ, Zn(ω)) = argmax gN (θ, ω) ∈ Bǫ(θ∗)

for all N ≥ Nδ so that θ̂N −→ θ∗ Pθ∗-almost surely.

b) To show
√
N(θ̂N − θ∗)

D−→ N (0r, Iθ∗(Z1)
−1) we use a necessary condition for

θ̂N = argmax
N∑

n=1

ln l(θ, Zn)

and the mean value theorem so that we get

0r =
N∑

n=1

∂

∂θ
ln l(θ, Zn)

∣∣∣∣
θ=θ̂N

=
N∑

n=1

∂

∂θ
ln l(θ, Zn)

∣∣∣∣
θ=θ∗

+
N∑

n=1

∂2

∂2θ
ln l(θ, Zn)

∣∣∣∣
θ=θ̃N

(θ̂N − θ∗)

where θ̃N = (1− αN )θ∗ + αN θ̂N with αN ∈ (0, 1). Hence we get

Vn :=
√
N

1

N

N∑

n=1

∂

∂θ
ln l(θ, Zn)

∣∣∣∣
θ=θ∗

= − 1

N

N∑

n=1

∂2

∂2θ
ln l(θ, Zn)

∣∣∣∣
θ=θ̃N

√
N(θ̂N − θ∗)

so that

√
N(θ̂N − θ∗) = W−1

N VN

with

WN := − 1

N

N∑

n=1

∂2

∂2θ
ln l(θ, Zn)

∣∣∣∣
θ=θ̃N

.
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With θ̂N −→ θ∗ Pθ∗-almost surely, we have also θ̃N −→ θ∗ Pθ∗-almost surely. The weak law of
large numbers provides with Theorem 2.9.5

W ∗
N := − 1

N

N∑

n=1

∂2

∂2θ
ln l(θ, Zn)

∣∣∣∣
θ=θ∗

P−→ −Eθ

[
∂2

∂2θ
ln l(θ, Z1)

∣∣∣∣
θ=θ∗

]
= Iθ∗(Z1)

so that with a regularity condition (for example ∂2

∂2θ ln l(θ, z) is continuous in θ uniformly in z)

WN = WN −W ∗
N +W ∗

N
P−→ Iθ∗(Z1). (2.10)

Again with the regularity assumption that differentiation and expectation can be exchanged, we
get

Eθ∗

[
∂

∂θ
ln l(θ, Zn)

∣∣∣∣
θ=θ∗

]
= Eθ∗

[
∂
∂θ l(θ, Zn)

∣∣
θ=θ∗

l(θ, Zn)

]
=

∂

∂θ
Eθ∗

[
l(θ, Zn

l(θ, Zn

]∣∣∣∣
θ=θ∗

= 0r

and for any u ∈ R
r

Var θ∗

[
u⊤

∂

∂θ
ln l(θ, Zn)

∣∣∣∣
θ=θ∗

]
= Eθ∗



(
u⊤

∂

∂θ
ln l(θ, Zn)

∣∣∣∣
θ=θ∗

)2

 = u⊤Iθ∗(Z1)u.

Hence the central limit theorem provides

√
N

1

N

N∑

n=1

u⊤ ∂
∂θ ln l(θ, Zn)

∣∣
θ=θ∗√

u⊤Iθ∗(Z1)u

D−→ N (0, 1)

and thus

√
N

1

N

N∑

n=1

u⊤
∂

∂θ
ln l(θ, Zn)

∣∣∣∣
θ=θ∗

D−→ N (0, u⊤Iθ∗(Z1)u)

or, respectively, with the Cramér-Wold device of Theorem 2.8.9

Vn =
√
N

1

N

N∑

n=1

∂

∂θ
ln l(θ, Zn)

∣∣∣∣
θ=θ∗

D−→ Nr(0r, Iθ∗(Z1))

With Corollary 2.8.8 we get finally with (2.10)

√
N(θ̂N − θ∗) = W−1

N VN
D−→ Nr(0r, Iθ∗(Z1)

−1).�

If a : Θ → A is an aspect function, then a(θ̂) is a maximum likelihood estimator for a(θ) if θ̂ is
the maximum likelihood estimator for θ. The delta method, Theorem 2.8.12, provides at once
the asymptotic distribution of

√
N(a(θ̂)− a(θ∗)).
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2.9.10 Corollary
If Z1, . . . , ZN are i.i.d., θ̂N := θ̂N (Z1, . . . , ZN ) is the maximum likelihood estimator for θ ∈ Θ ⊂
R
r, a : Θ → R

s is a differentiable aspect function with derivative ȧ(θ∗) = ∂
∂θa(x)

∣∣∣
θ=θ∗

∈ R
r×s,

then under regularity conditions

√
N(a(θ̂N )− a(θ∗))

D−→ N (0s, ȧ(θ∗)⊤Iθ∗(Z1)
−1ȧ(θ∗)), (2.11)

if θ∗ is the true parameter.

Proof. Since

√
N(θ̂N − θ∗)

D−→ Y ∼ Nr(0r, Iθ∗(Z1)
−1),

the δ method, Theorem 2.8.12, provides

√
N(a(θ̂N )− a(θ∗))

D−→ ȧ(θ∗)
⊤Y ∼ N (0s, ȧ(θ∗)

⊤Iθ∗(Z1)
−1ȧ(θ∗)).�

2.9.11 Definition

Ia(θ)(Z) :=
[
ȧ(θ)⊤Iθ(Z)−1ȧ(θ)

]−1

is called the Fisher information of Z for a(θ).

2.9.12 Theorem (Wald-type confidence set)
If Z1, . . . , ZN are i.i.d., θ̂N := θ̂N(z1, . . . , zN ) is the maximum likelihood estimator for θ ∈ R

r,
a : Rr → R

s is a differentiable aspect function, then under regularity conditions, CN given by

CN (z1, . . . , zN ) =

{
a(θ); N

(
a(θ̂N )− a(θ)

)⊤
I
a(θ̂N )

(Z1)
(
a(θ̂N )− a(θ)

)
≤ χ2

s;1−α

}

is an asymptotic (1− α)-confidence set function for a(θ).

Proof. Let be θ∗ ∈ Θ arbitrary. Since Ia(θ∗)(Z1) is a symmetric matrix, Ia(θ∗)(Z1)
1/2 exists with

Ia(θ∗)(Z1) =
(
Ia(θ∗)(Z1)

1/2
)⊤

Ia(θ∗)(Z1)
1/2 and Ia(θ∗)(Z1)

1/2 Ia(θ∗)0(Z1)
−1

(
Ia(θ∗)(Z1)

1/2
)⊤

=
Is×s, where Is×s is the s × s identity matrix. The convergence in (2.11) implies with Corollary
2.8.7 (iv) that a(θ̂N ) converges to a(θ∗) if θ∗ is the true parameter. If the regularity conditions
mean that Ia(θ∗)(Z1) and thus Ia(θ∗)(Z1)

1/2 is continuous in a(θ), then also I
a(θ̂N )

(Z1)
1/2 converges

in probability to Ia(θ∗)(Z1)
1/2 if θ∗ is the true parameter. Hence

√
N(a(θ̂N )− a(θ∗))

D−→ X ∼ N (0s, Ia(θ∗)(Z1)
−1)

implies with Corollary 2.8.8 (ii)

√
N I

a(θ̂N )
(Z1)

1/2(a(θ̂N )− a(θ∗))
D−→ V := Ia(θ∗)(Z1)

1/2 X

∼ N
(
0s, Ia(θ∗)(Z1)

1/2 Ia(θ∗)(Z1)
−1
(
Ia(θ∗)(Z1)

1/2
)⊤)

= N (0s, Is×s).
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Sine f : Rr ∋ u → f(u) = u⊤u ∈ R is a continuous function, the Continuous Mapping Theorem
(Theorem 2.8.11) provides then

N(a(θ̂N )− a(θ∗))⊤Ia(θ̂N )
(Z1) (a(θ̂N )− a(θ∗))

D−→ V ⊤V ∼ χ2
s,

where χ2
r is the χ2-distribution with r degrees of freedom. Hence we obtain

lim
N→∞

Pθ∗(a(θ∗) ∈ CN(t1, . . . , tN ))

= lim
N→∞

Pθ∗

(
N(a(θ̂N )− a(θ∗))⊤Ia(θ̂N )

(Z1) (a(θ̂N )− a(θ∗)) ≤ χ2
s;1−α

)

= Pθ∗

(
V ⊤V ≤ χ2

s;1−α

)
= 1− α. �.

2.9.13 Corollary (One dimensional aspect)
If Z1, . . . , ZN are i.i.d., θ̂N := θ̂N (z1, . . . , zN ) is the maximum likelihood estimator for θ ∈ R

r,
a : Rr → R is a differentiable aspect function, then under regularity conditions, CN given by

CN(z1, . . . , zN ) =

[
a(θ̂N )−

√
1

N
I
a(θ̂N )

(Z1)−1χ2
1;1−α , a(θ̂N ) +

√
1

N
I
a(θ̂N )

(Z1)−1χ2
1;1−α

]

is an asymptotic (1− α)-confidence interval function for a(θ).

Note that we have
√

χ2
1;1−α = q1−α/2 where q1−α/2 is the 1−α/2-quantile of the standard normal

distribution.

2.9.14 Corollary (One-sided confidence intervals)
If Z1, . . . , ZN are i.i.d., θ̂N := θ̂N (z1, . . . , zN ) is the maximum likelihood estimator for θ ∈ R

r,
a : Rr → R is a differentiable aspect function, then under regularity conditions, C

u
N and C

l
N

given by

C
l
N (z1, . . . , zN ) =

[
a(θ̂N )−

√
1

N
I
a(θ̂N )

(Z1)−1 q1−α , ∞
]

C
u
N (z1, . . . , zN ) =

[
−∞ , a(θ̂N ) +

√
1

N
I
a(θ̂N )

(Z1)−1 q1−α

]

are asymptotic one-sided (1− α)-confidence interval function for a(θ).

2.9.15 Corollary
If Z1, . . . , ZN are i.i.d., θ̂N := θ̂N (z1, . . . , zN ) is the maximum likelihood estimator for θ ∈ R

r,
then under regularity conditions, CN given by

CN (z1, . . . , zN ) =

{
θ; N

(
θ̂N − θ

)⊤
I
θ̂N

(Z1)
(
θ̂N − θ

)
≤ χ2

r;1−α

}

is an asymptotic (1− α)-confidence set function for θ.
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2.9.16 Example ((Log)normal distribution: Confidence set for (µ, σ2))
At first, we check that g(µ, σ2) := E(µ∗,σ2

∗
)

(
ln(f(µ,σ2)(Y )

)
has a unique maximum at (µ∗, σ2

∗). To
see this, note that

g(µ, σ2) = E(µ∗,σ2
∗
)

(
ln

(
1√
2πσ2

)
− 1

2σ2
(Y − µ)2

)

= E(µ∗,σ2
∗
)

(
ln

(
1√
2πσ2

)
− 1

2σ2
(Y − µ∗ + µ∗ − µ)2

)

= ln

(
1√
2πσ2

)
− 1

2σ2
E(µ∗,σ2

∗
)

(
(Y − µ∗)

2 + 2(Y − µ∗)(µ∗ − µ) + (µ∗ − µ)2
)

= −1

2
ln(2π) − 1

2
ln(σ2)− 1

2σ2
(σ2

∗ + (µ∗ − µ)2)

(∗)
≤ −1

2
ln(2π) − 1

2
ln(σ2)− 1

2

σ2
∗

σ2
= −1

2
ln(2π)− 1

2

(
ln(σ2) +

σ2
∗

σ2

)
,

where "<" is satisfied in (∗) if and only if µ∗ 6= µ. The function f given by f(σ2) := ln(σ2)+ σ2
∗

σ2

has a unique minimum at σ2
∗ because of

f ′(σ2) =
1

σ2
− σ2

∗
σ4

=
1

σ2

(
1− σ2

∗
σ2

)
= 0 ⇔ σ2 = σ2

∗

and

f ′′(σ2) = − 1

σ4
+ 2

σ2
∗

σ6

σ2=σ2
∗=

1

σ4∗
> 0.

Hence g has a unique maximum at (µ∗, σ2
∗).

According to Corollary 2.9.15, an asymptotic (1 − α)-confidence interval function for (µ, σ2) is
given by

CN (y1, . . . , yN ) =

{
(µ, σ2); N

(
(µ̂− µ)2

σ̂2
+

(σ̂2 − σ2)2

2σ̂4

)
≤ χ2

2;1−α

}

where (µ̂, σ̂2) is the maximum likelihood estimator for (µ, σ2). This follows with Lemma 2.9.8
from

(
θ̂ − θ

)⊤
I
θ̂
(Y )

(
θ̂ − θ

)
=

(
µ̂− µ

σ̂2 − σ2

)⊤(
1
σ̂2 0

0 1
2σ̂4

)(
µ̂− µ

σ̂2 − σ2

)
.

2.9.17 Example ((Log)normal distribution: Confidence set for µ)
We have a(θ) = a(µ, σ2) = µ so that ȧ(θ) =

(1
0

)
which implies with Lemma 2.9.8

Ia(θ)(Y )−1 = ȧ(θ)⊤Iθ(Y )−1ȧ(θ) = (1, 0)I(µ,σ2)(Y )−1

(
1

0

)
= (1, 0)

(
1
σ2 0

0 1
2σ4

)−1(
1

0

)
= σ2.
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Hence Corollary 2.9.13 provides that

CN (y1, . . . , yN ) =

[
µ̂−

√
1

N
σ̂2χ2

1;1−α , µ̂+

√
1

N
σ̂2χ2

1;1−α

]

=

[
µ̂− σ̂√

N
q1−α/2 , µ̂+

σ̂√
N

q1−α/2

]

is an asymptotic (1 − α)-confidence interval function for µ if (µ̂, σ̂2) is the maximum likelihood
estimator for (µ, σ2).

The statistic N(θ̂N − θ∗)⊤Iθ̂N (Z1) (θ̂N − θ∗) can be used to test H0 : θ = θ∗ against H1 : θ 6= θ∗.
This test known as Wald test. An alternative test for testing this hypotheses is given by the
likelihood ratio test based on the test statistic

LN (θ∗) := LN (z1, . . . , zN ) :=
l(θ∗, (z1, . . . , zN ))

l(θ̂N , (z1, . . . , zN ))
,

where θ̂N := θ̂N (z1, . . . , zN ) is again the maximum likelihood estimator for θ and l(θ, (z1, . . . , zN )) :=∏N
n=1 l(θ, zn).

2.9.18 Theorem (Likelihood-ratio confidence set)
If Z1, . . . , ZN are i.i.d., θ̂N := θ̂N (z1, . . . , zN ) is the maximum likelihood estimator for θ ∈ R

r,
then under regularity conditions, CN given by

CN (z1, . . . , zN ) =
{
θ;−2 ln(LN (θ)) ≤ χ2

r;1−α

}

is an asymptotic (1− α)-confidence set function for θ.

Proof. See for example Schervish (1997), Section 7.5.1. Set lN (θ) := ln l(θ, (z1, . . . , zN )) =∑N
n=1 ln l(θ, zn). Then Taylor expansion provides for arbitrary θ∗ ∈ Θ

lN (θ∗) = lN (θ̂N ) + (θ∗ − θ̂N )⊤
∂

∂θ
lN (θ)

∣∣
θ=θ̂N

+
1

2
(θ∗ − θ̂N )⊤

∂2

∂2θ
lN (θ)

∣∣
θ=θ̃N

(θ∗ − θ̂N)

where θ̃N = θ∗ + αN (θ̂N − θ∗) for some αN ∈ (0, 1). The definition of a maximum likelihood
estimator means that ∂

∂θ lN (θ)
∣∣
θ=θ̂N

= 0r so that

−2 ln(LN (θ∗)) = −2
(
lN (θ∗)− lN (θ̂N )

)
= −(θ∗ − θ̂N )⊤

∂2

∂2θ
lN (θ)

∣∣
θ=θ̃N

(θ∗ − θ̂N ).

The law of large numbers and Theorem 2.9.5 imply

1

N

∂2

∂2θ
lN (θ)

∣∣
θ=θ∗

=
1

N

N∑

n=1

∂2

∂2θ
ln l(θ∗, Zn)

∣∣
θ=θ∗

P−→ Eθ∗

[
∂2

∂2θ
ln l(θ, Z1)

∣∣
θ=θ∗

]
= −Iθ∗(Z1).

According to Theorem 2.9.9 a), θ̂N converges to θ∗ in probability if θ∗ is the true parameter.
With θ̂N also θ̃N converges to θ∗ in probability. Completely analog to the proof of Theorem
2.9.12 we obtain

1

N

∂2

∂2θ
lN (θ)

∣∣
θ=θ̃N

P−→ −Iθ∗(Z1).
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and

(θ∗ − θ̂)⊤
(
− ∂2

∂2θ
lN (θ)

∣∣
θ=θ̃N

)
(θ∗ − θ̂)

D−→ χ2
r.�

2.9.19 Theorem (Prediction intervals based on confidence sets)
If T0, T1, . . . , TN are independent distributed with cumulative distribution function Fθ, 0 ≤ η1 <
η2 ≤ 1 with η2 − η1 = 1 − α1, and CN is an asymptotic (1 − α2)-confidence set function based
on zn = min(tn, c), n = 1, . . . , N , then PN given by

PN (z1, . . . , zN ) =
⋃

θ∈CN (z1,...,zN )

[
F−1
θ (η1), F

−1
θ (η2)

]

is an asymptotic (1− α1)(1− α2)-prediction interval function for T0.

Proof. The proof is the same as for Theorem 2.7.6.

Another type of prediction intervals can be constructed by one-sided asymptotic confidence
intervals for a1(θ) = F−1

θ (η1) and a1(θ) = F−1
θ (η1) obtained with the δ-method.

2.9.20 Theorem (Prediction intervals based on the δ-method)
Let T0, T1, . . . , TN be i.i.d. with distribution function Fθ, Zn = min(Tn, c) for n = 1, . . . , N ,
θ̂N := θ̂N (Z1, . . . , ZN ) is the maximum likelihood estimator for θ ∈ R

r, 0 ≤ η1 < η2 ≤ 1 with
η2 − η1 = 1− α1, a1, a2 : Rr → R with a1(θ) = F−1

θ (η1) and a2(θ) = F−1
θ (η2) are differentiable

aspect functions, and

v1 :=

√
1

N
I
a1(θ̂N )

(Z1)−1 q1−α2/2,

v2 :=

√
1

N
I
a2(θ̂N )

(Z1)−1 q1−α2/2.

Then PN given by

PN (z1, . . . , zN ) =
[
F−1

θ̂N
(η1)− v1 , F−1

θ̂N
(η2) + v2

]

is an asymptotic (1− α1)(1− α2)-prediction interval function for T0.

Proof. At first note

Pθ (T0 ∈ PN (Z1, . . . , ZN )) = Pθ

(
F−1

θ̂N
(η1)− v1 ≤ T0 ≤ F−1

θ̂N
(η2) + v2

)

≥ Pθ

(
T0 ≥ F−1

θ (η1) ∧ F−1
θ (η1) ≥ F−1

θ̂N
(η1)− v1 ∧ T0 ≤ F−1

θ (η2) ∧ F−1
θ (η2) ≤ F−1

θ̂N
(η2) + v2

)

(∗)
= Pθ

(
F−1
θ (η1) ≤ T0 ≤ F−1

θ (η2)
)
Pθ

(
F−1
θ (η1) ≥ F−1

θ̂N
(η1)− v1 ∧ F−1

θ (η2) ≤ F−1

θ̂N
(η2) + v2

)

= (η2 − η1)
(
1− Pθ

(
F−1
θ (η1) < F−1

θ̂N
(η1)− v1 ∨ F−1

θ (η2) > F−1

θ̂N
(η2) + v2

))

≥ (1− α1)
(
1− Pθ

(
F−1
θ (η1) < F−1

θ̂N
(η1)− v1

)
− Pθ

(
F−1
θ (η2) > F−1

θ̂N
(η2) + v2

))
,
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where (∗) holds because of the independence of T0 and θ̂N(Z1, . . . , ZN ). Corollary 2.9.14 provides

lim
N→∞

Pθ

(
F−1
θ (η1) ≥ F−1

θ̂N
(η1)− v1

)
≥ 1− α2

2
,

lim
N→∞

Pθ

(
F−1
θ (η2) ≤ F−1

θ̂N
(η2) + v2

)
≥ 1− α2

2
,

so that

lim
N→∞

Pθ (T0 ∈ PN (Z1, . . . , ZN ))

≥ (1− α1)
(
1− α2

2
− α2

2

)
= (1− α1)(1 − α2).�

2.9.21 Example (Asymptotic prediction intervals for the exponential distribution)
Here we have Tn ∼ E(λ).
1. Asymptotic prediction interval based on the δ-method
Since

F−1
λ (η) = inf{t; Fλ(t) ≥ η} = inf{t; 1− e−λt ≥ η} = inf{t; 1− η ≥ e−λt}

= inf{t; 1− η ≥ e−λt} = inf{t; −λt ≤ ln(1− η)} =
− ln(1− η)

λ
= a(λ)

and Iλ(T1) =
1
λ2 according to Lemma 2.9.7 a), we obtain

Ia(λ)(T1)
−1 = ȧ(λ)⊤Iλ(T1)

−1ȧ(λ) =
ln(1− η)2

λ4
λ2 =

ln(1− η)2

λ2
.

Setting for example η1 = α1
2 and η2 = 1 − α1

2 so that a1(λ) = F−1
λ (η1), a2(λ) = F−1

λ (η2), then
the asymptotic (1− α1)(1 − α2)-prediction interval for T0 based on the δ-method is given by

PN (t1, . . . , tN )

=

[
F−1

λ̂N
(η1)−

√
1

N
I
a1(λ̂N )

(T1)−1 q1−α2/2 , F−1

λ̂N
(η2) +

√
1

N
I
a2(λ̂N )

(T1)−1 q1−α2/2

]

=

[− ln(1− η1)

λ̂N

− | ln(1− η1)|√
Nλ̂N

q1−α2/2 ,
− ln(1− η1)

λ̂N

+
| ln(1− η2)|√

Nλ̂N

q1−α2/2

]

=

[− ln(1− η1)

λ̂N

(
1− q1−α2/2√

N

)
,

− ln(1− η2)

λ̂N

(
1 +

q1−α2/2√
N

)]

where λ̂N is the ML estimate. If α2 = α2N converges to zero so that

q1−α2/2√
N

N→∞−→ 0 (2.12)

then the constistency of the ML estimate leads to

PN (t1, . . . , tN )
N→∞−→

[
F−1
λ∗ (η1) , F

−1
λ∗ (η2)

]
(2.13)
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2.9 Asymptotic confidence sets and prediction intervals

which would be used if the underlying parameter λ∗ is known.

2. Asymptotic prediction interval based on the Wald-type confidence set
Since Iλ(T1) =

1
λ2 according to Lemma 2.9.7, we get with Corollary 2.9.15 that

CN (t1, . . . , tN ) =
{
λ; N(λ̂N − λ)I

λ̂N
(T1)(λ̂N − λ) ≤ χ2

1;1−α2

}

=

{
λ;

(λ̂N − λ)2

λ̂2
N

≤
χ2
1;1−α2

N

}
=



λ; −λ̂N

√
χ2
1;1−α

N
≤ λ̂N − λ ≤ λ̂N

√
χ2
1;1−α2

N





=

{
λ; λ̂N − λ̂N√

N
q1−α2/2 ≤ λ ≤ λ̂N +

λ̂N√
N

q1−α2/2

}
=
[
λ̂l , λ̂u

]

with λ̂l := λ̂N − λ̂N√
N
q1−α2/2 and λ̂u := λ̂N + λ̂N√

N
q1−α2/2 is an asymptotic Wald-type (1 − α2)-

confidence interval for λ. Since the cumulative distribution Fλ of the exponential distribution is
an increasing function of λ and thus F−1

λ is an decreasing function of λ, we get that

PN (t1, . . . , tN ) =
[
F−1

λ̂u

(α1

2

)
, F−1

λ̂l

(
1− α1

2

) ]
,

is an asymptotic (1− α1)(1− α2)-prediction interval for T0. Here again, the convergence (2.12)
implies the convergence (2.13) of the prediction interval.

3. Asymptotic prediction interval based on the likelihood-ratio confidence set
The asymptotic prediction interval can be also created with Theorem 2.9.18 via the likelihood
ratio statistics. Since λ̂N = N∑N

n=1 tn
and thus

l(λ̂N , (t1, . . . , tN )) =

N∏

n=1

λ̂N e−λ̂N tn = λ̂N
Ne−λ̂N

∑N
n=1 tn = λ̂N

Ne−N

we get

ln(LN (λ)) = ln

(
λN exp(−λ

∑N
n=1 tn)

λ̂N
N exp(−N)

)

= ln


λN

(∑N
n=1 tn
N

)N

exp

(
−λ

N∑

n=1

tn +N

)
 = N ln

(
λ

∑N
n=1 tn
N

)
− λ

N∑

n=1

tn +N.

Hence

CN (t1, . . . , tN ) =

{
λ; 2λ

N∑

n=1

tn − 2N

(
1 + ln

(
λ

∑N
n=1 tn
N

))
≤ χ2

1;1−α2

}

=

{
λ; 2N

[
λ

λ̂N

− 1− ln

(
λ

λ̂N

)]
≤ χ2

1;1−α2

}
=

{
λ;

λ

λ̂N

− 1− ln

(
λ

λ̂N

)
≤

χ2
1;1−α2

2N

}
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is an asymptotic (1 − α2)-confidence set for λ. The asymptotic prediction interval is given by
Theorem 2.9.19. However, in this case, a more explicit version is not possible. However, since
χ2
1;1−α2
N =

(
q1−α2/2√

N

)2
, the convergence (2.12) implies again that the confidence set shrinks to

the underlying parameter λ∗ and hence the convergence (2.13) of the corresponding prediction
interval follows as well.

2.9.22 Example (Asymptotic prediction interval for the (log)normal distribution)
If Yn = ln(Tn) ∼ N (µ, σ2) then F(µ,σ2)(y) = F(0,1)

(y−µ
σ

)
so that

F−1
(µ,σ2)

(η) = inf{z; F(µ,σ2)(z) ≥ η} = inf

{
z; F(0,1)

(
z − µ

σ

)
≥ η

}

z=σu+µ
= inf

{
σu+ µ; F(0,1) (u) ≥ η

}
= σ F−1

(0,1)(η) + µ =
√
σ2 qη + µ = a((µ, σ2)) = a(θ)

where qη := F−1
(0,1)(η). With

ȧ(θ) =

(
1

1
2(σ

2)−
1
2 qη

)
, I(µ,σ2)(Y1) =

(
1
σ2 0

0 1
2σ4

)
,

we get

Ia(θ)(Y1)
−1 = ȧ(θ)⊤ I(µ,σ2)(Y1)

−1 ȧ(θ) =
(
1,

qη
2σ

) ( σ2 0

0 2σ4

) (
1
qη
2σ

)
= σ2 +

q2η σ
2

2
.

Because of the symmetry of the normal distribution, we can set η1 =
α1
2 and η2 = 1− α1

2 . Then
the asymptotic (1 − α1)(1 − α2)-prediction interval for Y0 = ln(T0) based on the δ-method is
given by

PN (y1, . . . , yN )

=


µ̂+ σ̂qη1 −

√
1

N

(
σ̂2 +

q2η1 σ̂
2

2

)
q1−α2

2
, µ̂+ σ̂qη2 +

√
1

N

(
σ̂2 +

q2η2 σ̂
2

2

)
q1−α2

2


 ,

where (µ̂, σ̂2) is the maximum likelihood estimator for θ = (µ, σ2).
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2.10 Nonparametric methods

2.10 Nonparametric methods

If the distribution class of the lifetime distribution is unknown then nonparametric methods can
be used. However, prediction intervals cannot be derived.

If there are no censored observations then the empirical distribution function

FN (t) :=
1

N

N∑

n=1

11(∞,t](tn)

is a nonparametric estimator of the underlying distribution function F (t) and 1 − FN (t) is a
nonparametric estimator of the survival function S(t) := 1− F (t).

2.10.1 Theorem
a) An asymptotic (1− α)-confidence interval for F (t) for noncensored observations is given by

[
FN (t)− q1−α/2

√
FN (t) (1 − FN (t))√

N
,FN (t) + q1−α/2

√
FN (t) (1 − FN (t))√

N

]
.

b) An asymptotic naive (1 − α)-prediction interval for T0 for noncensored observations is given
by

[F−1
N (η1), F

−1
N+(η2)]

where η2 − η1 = 1− α and F−1
N+(η) := sup{z;FN (z) ≤ η}.

Proof. By central limit theorem and law of large numbers for Bernoulli variables.�

However, this does not work anymore as soon as there are censored observations.

Since an empirical distribution function provides always a discrete distribution we shall consider
at first discrete lifetime distributions.

2.10.2 Definition (Hazard function for discrete distribution)
The hazard function (hazard rate) h : R+ → R for a discrete random variable T is defined by

h(t) := P (T = t|T ≥ t).
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2.10.3 Theorem
The hazard function for a discrete distribution with support 0 ≤ τ1 < τ2 < τ3 < . . . satisfies:

a) h(t) = 1− S(t)

S−(t)
with S−(t) := lim

s↑t
S(s),

b) S(τk) =
k∏

i=1

(1− h(τi)) for k ∈ {1, 2, 3, . . .}.

Proof. a) The definition provides

h(t) := P (T = t|T ≥ t) =
P (T = t)

P (T ≥ t)

=
F (t)− lims↑t F (s)

1− lims↑t F (s)
=

1− S(t)− lims↑t(1− S(s))

lims↑t S(s)
=

S−(t)− S(t)

S−(t)
= 1− S(t)

S−(t)
.

b) The assertion a) implies

1− h(τi) =
S(τi)

S−(τi)
=

S(τi)

S(τi−1)
for i ∈ {2, 3, . . .} and 1− h(τ1) =

S(τ1)

S−(τ1)
= S(τ1)

so that

k∏

i=1

(1− h(τi)) = S(τ1) ·
S(τ2)

S(τ1)
· S(τ3)
S(τ2)

. . . · S(τk)

S(τk−1)
= S(τk).�

Let z1, . . . , zN with zn = min{tn, cn} be right censored observations, dn = 11[0,cn](tn), and τ1 <
τ2 < τ3 < . . . < τI be ordered distinct time points of observed failures (deaths) of the noncensored
observations zn with zn = tn and dn = 1. Define for i = 1, . . . , I

bi := ♯{n ∈ {1, . . . , N}; zn = τi and dn = 1},
yi := ♯{n ∈ {1, . . . , N}; zn ≥ τi},

where ♯ stands for the number of elements of a set. Thereby yi is the number of individuals at
risk at time point τi and bi is the number of individuals which fails (dies) at time point τi. An
estimator of the hazard rate at τi for i = 1, . . . , I is given by

ĥ(τi) :=
bi
yi
.

Theorem 2.10.3 provides then an estimate for the survival function based on z1, . . . , zN .
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2.10.4 Definition (Kaplan-Meier estimator / Product-Limit estimator, see Klein and Moeschberger
2003, p. 92)
The Kaplan-Meier estimate (Product-Limit estimate) of the survival function S of the underlying
distribution based on censored observations z1, . . . , zN is given by

ŜKM(t) :=

{
1 for t < τ1,∏

i; τi≤t

(
1− bi

yi

)
for τ1 ≤ t ≤ τI .

If bI = yI then Ŝ(τI) = 0 and Ŝ is decreasing from 1 to 0.

If the observations are coming from a continuous distribution then the uncensored observations
are usually pairwise different. If no observation is censored then the Kaplan-Meier estimate
provides the empirical distribution function.

2.10.5 Theorem
If there are no censored observations and the observations are pairwise different then

FN = 1− ŜKM ,

i.e. the Kaplan-Meier estimate provides the empirical distribution function.

Proof. The assumption means τ1 = t(1) < τ2 = t(2) < . . . < τN = t(N), where t(1), . . . , t(N) are
the ordered noncensored observations. This implies bi = 1 and yi = N − i + 1 for i = 1, . . . , N
so that for any t ∈ [τk, τk+1) with k = 1, . . . , N − 1

1− ŜKM(t) = 1−
∏

i; τi≤t

(
1− bi

yi

)
= 1−

∏

i; τi≤t

(
1− 1

N − i+ 1

)

= 1−
∏

i; τi≤t

N − i

N − i+ 1
= 1− N − 1

N
· N − 2

N − 1
· N − 3

N − 2
· . . . N − k

N − k + 1

= 1− N − k

N
=

k

N
=

1

N

N∑

n=1

11(∞,t](tn) = FN (t).

Obviously, we have 1− ŜKM(t) = 1− 1 = FN (t) for t < τ1 and 1− ŜKM(t) = 1− 0 = FN (t) for
t ≥ τN . �

2.10.6 Theorem (See Kahle and Liebscher 2013, p. 99)
The Kaplan-Meier estimator is a generalized maximum likelihood estimator for S in the class of
step functions with jumps at τ1, . . . , τI .

Proof. The observations consist of the event times τ1, . . . , τI , the number of failures/deaths
bi at event time τi, and the number yi of individuals under risk at event time τi, i = 1, . . . , I.
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Unknown parameters are hi = h(τi) with i = 1, . . . , I. Set

j := argmax{i ∈ {1, . . . , I}; τj ≤ t}

and

θ := (h1, . . . , hj).

Then we have

S(t) =
∏

i; τi≤t

(1− hi) = g((h1, . . . , hj)) = g(θ)

so that an ML estimate θ̂ for θ provides an ML estimate g(θ̂) for S(t). To derive the ML estimate
for θ, note that bi can be interpreted as realization of Bi ∼ B(yi, hi), i.e. Bi has binomial
distribution with parameters yi and hi. Then the likelihood function of the observations is given
by

l(θ; (b1, . . . , bj)) := l(θ; (b1, . . . , bj), (y1, . . . , yj), (τ1, . . . , τj)) =

j∏

i=1

(
yi
bi

)
hbii (1− hi)

yi−bi

so that

ln(l(θ; (b1, . . . , bj))) =

j∑

i=1

(
ln

((
yi
bi

))
+ bi ln(hi) + (yi − bi) ln(1− hi)

)

and

∂

∂hi
ln(l(θ; (b1, . . . , bj))) =

bi
hi

− yi − bi
1− hi

= 0

⇐⇒ bi − hi bi = hi yi − hi bi ⇐⇒ hi =
bi
yi
.

Hence we obtain θ̂ =
(

b1
y1
, . . . ,

bj
yj

)
. �

Since the Kaplan-Meier estimator is a generalized maximum likelihood estimator for S, it has
an asymptotic normal distribution and confidence sets for S(t) can be derived.
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2.10.7 Theorem (See Kahle and Liebscher 2013, p. 100, Klein and Moeschberger 2003, p. 92)
An asymptotic (1− α)-confidence interval for S(t) is given by

[ŜKM(t)− q1−α/2 σ̂KM(t), ŜKM (t) + q1−α/2 σ̂KM(t)],

where qα is the α-quantile of the standard normal distribution and σ̂KM(t) is given by Green-
wood’s formula

σ̂KM(t)2 := ŜKM(t)2
∑

i; τi≤t

bi
yi(yi − bi)

.

Proof. The number of failures/deaths bi at event time τi can be interpreted as realization of
Bi ∼ B(yi, hi), i.e. Bi has binomial distribution with parameters yi and hi. In particular we
have E(Bi) = yi hi or

E

(
Bi

yi

)
= hi and var

(
Bi

yi

)
=

hi (1− hi)

yi

so that with the central limit theorem

Bi
yi

− hi√
hi (1−hi)

yi

D−→ N (0, 1)

which means with ĥi :=
Bi
yi

ĥi − hi
D−→ Vi ∼ N

(
0,

hi (1− hi)

yi

)
.

With the δ-method, we get

ln(1− ĥi)− ln(1− hi)
D−→ Wi :=

−1

1− hi
Vi ∼ N

(
0,

1

(1− hi)2
hi (1− hi)

yi

)
= N

(
0,

hi
yi (1− hi)

)
.

Then we obtain with the martingale central limit theorem

ln(ŜKM(t))− ln(S(t)) =

j∑

i=1

(
ln(1− ĥi)− ln(1− hi)

) D−→
j∑

i=1

Wi ∼ N
(
0,

j∑

i=1

hi
yi (1− hi)

)
.

Again applying the δ-method leads to

ŜKM(t)− S(t) = exp(ln(ŜKM (t)))− exp(ln(S(t)))

D−→ exp(ln(S(t)))

j∑

i=1

Wi = S(t)

j∑

i=1

Wi ∼ N
(
0, S(t)2

j∑

i=1

hi
yi (1− hi)

)
.
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A consistent estimate of the asymptotic variance S(t)2
∑j

i=1
hi

yi (1−hi)
is

ŜKM(t)2
j∑

i=1

ĥi

yi (1− ĥi)
= ŜKM(t)2

j∑

i=1

Bi
yi

yi (1− Bi
yi
)
= ŜKM(t)2

∑

i; τi≤t

Bi

yi(yi −Bi)
= σ̂KM (t)2

so that with Lemma 2.8.8

ŜKM(t)− S(t)

σ̂KM(t)

D−→ N (0, 1).�

An alternative estimator for the survival function can be obtained via the cumulative hazard
function for discrete distributions.

2.10.8 Definition (Cumulative hazard function for discrete distributions)
If T has a discrete distribution with support 0 ≤ τ1 < τ2 < τ3 < . . ., then H : R+ → R given by

H(t) :=
∑

i; τi≤t

h(τi)

is called cumulative hazard function.

An estimator for H(t) is given via the estimates ĥ(τi) =
bi
yi

for h(τi).

2.10.9 Definition (Nelson-Aalen estimator, see Klein and Moeschberger 2003, p. 94)
The Nelson-Aalen estimate of the cumulative hazard function H of the underlying distribution
based on censored observations z1, . . . , zN is given by

Ĥ(t) :=
∑

i; τi≤t

bi
yi
.

2.10.10 Theorem
If T has a continuous distribution and Ĥ(t) is the Nelson-Aalen estimate of the cumulative
hazard function H then

ŜNA(t) := exp(−Ĥ(t))

is an estimate for the survival function S(t).

Proof. This follows at once from Theorem 2.1.7.�

Note that for small x > 0 we have 1− x ≈ exp(−x) so that

ŜNA(t) := exp(−Ĥ(t)) =
∏

i; τi≤t

exp

(
− bi
yi

)
≈
∏

i; τi≤t

(
1− bi

yi

)
= ŜKM(t).
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An estimated variance of the Nelson-Aalen estimate Ĥ(t) is given by

σ̂NA(t)
2 :=

∑

i; τi≤t

bi
y2i

,

see Klein and Moeschberger 2003, p. 94.
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Chapter 3

Experiments with different stress levels

Usually lifetime experiments under realistic stress are lasting very long so that a failure often
cannot be observed. To overcome this problem are step-stress experiments or accelerated lifetime
experiments.

3.1 Step-stress experiments

Before the experiment, stress levels 0 < s1 < s2 < . . . < sK and censoring times c1 < c2 <
. . . < cK are fixed. Then each experiment starts with a the first stress level s1. If no failure is
observed until time c1 then the stress is increased to s2. If no failure is observed until time c2
then the stress is increased to s3. And so on until time cK is reached. The question is how to
model the influence of the increased stress. Balakrishnan (2009) proposed to make the following
assumption:

F(θ1,...,θK)(t) :=





Fθ1(t) for 0 < t ≤ c1,

Fθk(t+ ak−1 − ck−1) for ck−1 < t ≤ ck, k = 2, . . . ,K − 1,

FθK (t+ aK−1 − cK−1) for cK−1 < t < ∞,

(3.1)

where

ak−1 := θk

k−1∑

i=1

(
ci − ci−1

θi

)
for k = 2, . . . ,K,

c0 := 0, a0 := 0 and Fθk , k = 1, . . . ,K, is the cumulative distribution function of a scale family

of distributions, i.e. Fθk(t) = F
(

t
θk

)
for some cumulative distribution function F . Note that

ak−1 − ck−1 is a location shift.
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3.1 Step-stress experiments

3.1.1 Lemma
F(θ1,...,θK) given by (3.1) is continuous and the density is given by

f(θ1,...,θK)(t) =





fθ1(t) for 0 < t ≤ c1,

fθk(t+ ak−1 − ck−1) for ck−1 < t ≤ ck, k = 2, . . . ,K − 1,

fθK (t+ aK−1 − cK−1) for cK−1 < t < ∞,

where fθk(t) = F ′
θk
(t) for k = 1, . . . ,K.

Proof. For k = 1, . . . ,K we have

Fθk(ck + ak−1 − ck−1) = F

(
ak−1 + ck − ck−1

θk

)

= F

(
k∑

i=1

(
ci − ci−1

θi

))
= F

(
θk+1

k∑

i=1

(
ci − ci−1

θi

)
1

θk+1

)

= Fθk+1
(ak) = Fθk+1

(ck + ak − ck).

Similarly

fθk(ck + ak−1 − ck−1) = fθk+1
(ck + ak − ck). �

For the family of exponential distributions with scale parameter θ = 1
λ we obtain

F(θ1,...,θK)(t) :=





1− e−t/θ1 for 0 < t ≤ c1,

1− e
−(t+

θ2
θ1

c1−c1)/θ2 for c1 < t ≤ c2,

1− e−(t+ak−1−ck−1)/θk for ck−1 < t ≤ ck, k = 2, . . . ,K − 1,

1− e−(t+aK−1−cK−1)/θK for cK−1 < t < ∞.

The parameter (θ1, . . . , θK) can be estimated with the maximum likelihood method if at least
one observations is obtained in each of the intervals (0, c1], (c1, c2], . . . , (cK−1, cK ]. Note that
the observations are given by z1, . . . , zN with zn = min(tn, cK) and dn = 11{tn ≤ cK} for
n = 1, . . . , N . Then the likelihood function is given by

f(θ1,...,θK)(z1, . . . , zN ) =
N∏

n=1

f(θ1,...,θK)(tn)
dn
(
1− F(θ1,...,θK)(cK)

)1−dn .

The problem is that the maximum likelihood estimator and corresponding confidence sets and
prediction intervals cannot be determined if there is no observation in [0, c1].
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3.2 Accelerated lifetime experiments

In accelerated lifetime experiments, different experiments are run under different stress levels,
usual at stress level larger then the stress level which is of interest. Then the expected lifetime
E(T (s)) depends on the stress level s and the dependence is given by via a given link function.
Here it is assumed that this function is known up to a parametervector θ. We assume that N
life time experiments at different stress levels sn ∈ S for n = 1, . . . , N are executed and that the
lifetime Tn of the product shall be observed in each lifetime experiment. However, if the stress is
too low then often the lifetime cannot be observed since the time up to the event, the "death",
is too long. Therefore usually a time c is fixed at which the lifetime experiment is stopped.
Then the only information is that the product has survived the time c. Such observations are
socalled censored observations. It is clear that the censored observations should also be used in
an analysis of lifetime data. Therefore define

Zn :=

{
Tn, if Tn ≤ c,

c, if Tn > c,
and Dn :=

{
1, if Tn ≤ c,

0, if Tn > c.

Then (Z1,D1, s1), . . . , (ZN ,DN , sN ) are the available informations where Dn is the censoring
variable. Let be tn, zn, and dn the realizations of Tn, Zn and Dn respectively and z∗ =
(z1, . . . , zN )⊤, d∗ = (d1, . . . , dN )⊤, s∗ = (s1, . . . , sN )⊤. The likelihood function is then given
by (see e.g. Klein and Moeschberger 2003, p.75)

Lθ(z∗, d∗, s∗) :=
N∏

n=1

fθ,sn(zn)
dnSθ,sn(zn)

1−dn

if fθ,sn is the lifetime distribution density of Tn at stress sn and

Sθ,sn(t) :=

∫ ∞

t
fθ,sn(u) du

the survival function of Tn at time t and stress sn. Assume Tn ∼ T (sn).

Typical link functions (see e.g. Haibach 2006, S.25)

1870 Wöhler: log(E(T (s))) = θ0 − θ1 s

1910 Basquin: log(E(T (s))) = θ0 − θ1 log(s)

1914 Stromeyer: log(E(T (s))) = θ0 − θ1 log(s− sL)

1963 Bastenaire: log(E(T (s))) = θ0 − log(s − sL)− θ1(s− sL)
θ3

Thereby, sL is the fatigue limit (in German Dauerfestigkeit), i.e. the stress level at which no
failure can be observed. This is an unknown parameter like the other parameter θ0, θ1, θ2 and
must be estimated as well. However, a fatigue limit greater zero cause problems in estimation.
Moreover, it is not clear what log(E(T (s))) should be when s < sL is used in this case.

S-N curves (in German Wöhlerlinien)
Since lifetime is often measures in number of load cycles when the stress is given by cyclic
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load, engineers use N instead of t for the dependent variable. They plot this variable on the
horizontal axis of a diagram. And the vertical axis provides then the levels of the stress, given
by the amplitude of the cyclic load. The estimated link functions are then the S-N curves. Since
the dependent variable is plotted on the horizontal axis, the S-N curves are often not correctly
estimated when the method of least squares is used in direction of the vertical axis. This is the
reason that the fatigue limit sL can be estimated then. However this is not correct since then
the lifetime, the number of load cycles, is not anymore the dependent variable.

Hence it makes more sense to regard the following link function:

ln(E(T (s))) = gθ(s)

with

gθ(s) = θ0 − θ1 s, (3.2)

gθ(s) = θ0 − θ1 log(s), (3.3)

gθ(s) = θ0 + θ1
1

s
, (3.4)

gθ(s) = θ0 + θ1

(
1

s

)θ2

, (3.5)

gθ(s) = θ0 − θ1 s− θ2 log(s), (3.6)

gθ(s) = θ0 − θ1 log(s) + θ2

(
1

s

)θ3

. (3.7)

with θ0, θ1, θ2, θ3 > 0.

A better definition of the fatigue limit would be the largest stress level s with gθ(s) ≥ L where
L is a large number so that experiments having this lifetime can be considered as experiments
without failure in a relevant time period.

3.2.1 Definition (Alternative definition of fatigue limit)
Is L a large value, then the stress level sL with gθ(sL) = L, i.e. sL = g−1

θ (L) is called fatigue
limit.

Of interest are especially the estimators and confidence sets for two one-dimensional aspects.
Namely the fatigue limit aL(θ) = g−1

θ (L) and the lifetime time at a given stress level s0, i.e.
a0(θ) = exp(gθ(s0)).

The aspects aL(θ) = g−1
θ (L) and a0(θ) = exp(gθ(s0)) can be estimated by the maximum likeli-

hood method by aL(θ̂) and a0(θ̂) if θ̂ is the maximum likelihood estimator for θ. The maximum
likelihood estimator for θ is given by

θ̂ := θ̂(z∗, d∗, s∗) := arg max
θ

Lθ(z∗, d∗, s∗)

=
N∏

n=1

fθ,sn(zn)
dnSθ,sn(zn)

1−dn =
N∏

n=1

fθ,sn(tn)
11[0,c](tn) (1− Fθ,sn(c))

11(c,∞)(tn) .
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Set

l(θ, t, s) := ln
(
fθ,s(t)

11[0,c](t) (1− Fθ,s(c))
11(c,∞)(t)

)

= ln(fθ,s(t))11[0,c](t) + ln (1− Fθ,s(c)) 11(c,∞)(t).

and

l̇(θ, t, s) :=
∂

∂θ
l(θ, t, s).

Further we assume that (t1, s1), . . . , (tN , sN ) are realizations of i.i.d. random variables (T1, S1),
. . . , (TN , SN ) where P T |S=s([0, t]) = Fθ,s and PS = δ. This means that the stress levels s1, . . . , sN
are given by the design measure δ, i.e. they follow a random design. If (t1, s1), . . . , (tN , sN ) are re-
alizations of i.i.d. random variables (T1, S1), . . . , (TN , SN ) then also (z1, d1, s1), . . . , (zN , dN , sN )
are realizations of i.i.d. random variables (Z1,D1, S1), . . . , (ZN ,DN , SN ). Assuming that z∗ =
(z1, . . . , zN )⊤, d∗ = (d1, . . . , dN )⊤, s∗ = (s1, . . . , sN )⊤ are realizations of Z∗ = (Z1, . . . , ZN )⊤,
D∗ = (D1, . . . ,DN )⊤, S∗ = (S1, . . . , SN )⊤ then a modification of Theorem 2.9.9 holds.

3.2.2 Theorem (Schervish 1997, Theorem 7.57 or Theorem 7.63)
If (T1, S1), . . . , (TN , SN ) are i.i.d., θ̂N := θ̂N (Z∗,D∗, S∗) is the maximum likelihood estimator for
θ, then under regularity conditions (see Schervish 1997, Theorem 7.57 or Theorem 7.63),

√
N(θ̂N − θ∗)

D−→ N (0r, Iθ∗(δ)
−1), (3.8)

if θ∗ is the true parameter, where

Iθ∗(δ) := Eθ∗

(
l̇(θ∗, T1, S1) l̇(θ∗, T1, S1)

⊤
)
=

∫
Eθ∗

(
l̇(θ∗, T1, s) l̇(θ∗, T1, s)

⊤
)
δ(ds).

If the design measure δ is a discrete probability measure, i.e. δ =
∑K

k=1 akes̃k with
∑K

k=1 ak = 1,
then we have

Iθ∗(δ) =

K∑

k=1

ak Eθ∗

(
l̇(θ∗, T1, s̃k) l̇(θ∗, T1, s̃k)

⊤
)
.

If δ is a continuous probability measure with probability density g then

Iθ∗(δ) =

∫
Eθ∗

(
l̇(θ∗, T1, s) l̇(θ∗, T1, s)

⊤
)

g(s) ds.

Usually one would use concrete designs where s1, . . . , sN are given by the experimenter and
not by random. However, each concrete design dN = (s1, . . . , sN ) can be associated with the
probability measure given by

δN :=
1

N

N∑

n=1

esn
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where es denotes the one-point (Dirac) measure on the point s, i.e. es(A) = 1 if s ∈ A and
es(A) = 0 if s /∈ A for any A of the Borel-σ-algebra. The probability measure δN is also called
generalized design.

Often the generalized design δN converges weakly to a probability measure δ which is then
considered as asymptotic design measure.

3.2.3 Example (Example of convergent generalized designs)
a) A concrete design with

dN = (s1, s2, s1, s2, . . . , s1, s
⊤
2 ),

where s1, s2 is repeated N
2 times, has the generalized design given by

δN =
1

N

(
N

2
es1 +

N

2
es1

)
=

1

2
es1 +

1

2
es2

so that the convergence to δ = 1
2es1 +

1
2es2 is obvious.

b) A concrete design with

dN =

(
1

N
,
2

N
, . . . ,

N − 1

N
, 1

)

has a generalized design measure δN which converges weakly to the uniform measure on [0, 1],
i.e. to a continuous design measure δ with density g(s) = 11[0,1](s).

3.2.4 Lemma
If s1, . . . , sN are realizations of independent S1, . . . , SN ∼ δ, δ has finite support, and δN =
1
N

∑N
n=1 esn , then δN → δ weakly almost surely.

Proof. Let {s̃1, . . . , s̃I} be the finite support of δ. The strong law of large numbers provides

lim
N→∞

δN ({s̃i}) = lim
N→∞

1

N

N∑

n=1

eSn(ω)({s̃i}) = lim
N→∞

1

N

N∑

n=1

1I{s̃i}(Sn(ω)) = E(1I{s̃i}(S1)) = δ({s̃i})

for all ω ∈ Ω0 with P (Ω0) = 1. Each ω ∈ Ω0 satisfies

lim
N→∞

∫
f(s) δN (ds) = lim

N→∞

I∑

i=1

f(s̃i) δN ({s̃i}) =
I∑

i=1

f(s̃i) δ({s̃i}) =
∫

f(s) δ(ds)

for all all continuous and bounded functions f : [0,∞) → R. Hence δN converges weakly to δ
according to the Theorem of Portmanteau (Theorem 2.8.3) for all ω ∈ Ω0. This means δN → δ
weakly almost surely. �
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3.2.5 Corollary
If T1, . . . , TN are independent and δN converges weakly to δ almost surely then the maximum
likelihood estimator θ̂N for θ satisfies

√
N(θ̂N − θ∗)

D−→ N (0r, Iθ∗(δ)
−1),

if θ∗ is the true parameter and Iθ∗(δ) is given by Theorem 3.2.2.

3.2.6 Corollary
If T1, . . . , TN are independent and δN converges weakly to δ almost surely then the maximum
likelihood estimator a(θ̂N ) for a(θ) ∈ R

s satisfies

√
N(a(θ̂N )− a(θ∗))

D−→ N (0s, ȧ
⊤
θ∗Iθ∗(δ)

−1ȧθ∗),

if θ∗ is the true parameter, Iθ∗(δ) is given by Theorem 3.2.2 and ȧθ =
∂
∂θa(θ).

3.2.7 Lemma
If θ̂N is the maximum likelihood estimator for θ, then under regularity conditions,

I
θ̂N

(δN ) :=
1

N

N∑

n=1

E
θ̂N

(
l̇(θ̂N , T1, sn) l̇(θ̂N , T1, sn)

⊤
) P−→ Iθ∗(δ).

Proof. If δN has support included in [smin, smax] and

sup
s∈[smin,smax]

‖E
θ̂N

(
l̇(θ̂N , T1, sn) l̇(θ̂N , T1, sn)

⊤
)
− Eθ∗

(
l̇(θ∗, T1, sn) l̇(θ∗, T1, sn)

⊤
)
‖ P−→ 0

then

I
θ̂N

(δN )− Iθ∗(δN )
P−→ 0.

The Theorem of Portmanteau (Theorem 2.8.3) provides

Iθ∗(δN )
P−→ Iθ∗(δ)

so that the assertion follows. �

If ȧθ is continuous in θ then also

ȧ⊤
θ̂N

I
θ̂N

(δN )−1 ȧ
θ̂N
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is a consistent estimator of ȧ⊤θ Iθ∗(δ)
−1ȧθ. If additional a(θ) ∈ R, i.e. a(θ) is one-dimensional,

then Corollary 3.2.6 implies

√
N

a(θ̂N )− a(θ∗)√
ȧ⊤
θ̂N

I
θ̂N

(δN )−1 ȧ
θ̂N

D−→ N (0, 1)

so that we get the following theorem.

3.2.8 Theorem
CN given by

CN (z∗, d∗, s∗)

=

[
a(θ̂N )−

√
1

N
ȧ⊤
θ̂N

I
θ̂N

(δN )−1ȧ
θ̂N

q1−α/2 , a(θ̂N ) +

√
1

N
ȧ⊤
θ̂N

I
θ̂N

(δN )−1ȧ
θ̂N

q1−α/2

]

is an asymptotic (1− α)-confidence interval function for a(θ) ∈ R.

Hence Theorem 3.2.8 provides confidence intervals for the fatigue limit aL(θ) = g−1
θ (L) and the

expected lifetime time at a given stress level s0, i.e. a0(θ) = exp(gθ(s0)). Since gθ is a decreasing
function, we can conclude that on

[
0 , aL(θ̂N )−

√
1

N
ȧ⊤
Lθ̂N

I
θ̂N

(δN )−1ȧ
Lθ̂N

q1−α/2

]

the fatigue limit given by L is satisfied in (1 − α) · 100% of cases. Prediction intervals for the
lifetime T0 at a stress level s0 are given by the following theorems.

3.2.9 Theorem (Naive / plug-in prediction interval)
Let θ̂N := θ̂N (z∗, d∗, s∗) be a weakly consistent estimator for θ and Fθ,s0(t) is continuous in t and
F−1
θ,s0

(η) continuous in θ at η = η1, η2. If 0 ≤ η1 < η2 ≤ 1 and η2 − η1 = 1− α then the naive or
plug-in prediction interval function PN given by

PN (z∗, d∗, s∗) =
[
F−1

θ̂N ,s0
(η1) , F−1

θ̂N ,s0
(η2)

]

is an asymptotic 1− α-prediction interval function for T0.
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3.2.10 Theorem
Let be θ̂N := θ̂N (Z∗,D∗, S∗) be the maximum likelihood estimator for θ. Then CN given by

CN (z∗, d∗, s∗) =
{
θ ∈ R

r; N
(
θ̂N − θ

)⊤
I
θ̂N

(δN )
(
θ̂N − θ

)
≤ χ2

r;1−α2

}

or

CN (z∗, d∗, s∗) =

{
θ ∈ R

r;−2 ln

( ∏N
n=1 fθ,sn(zn)

dnSθ,sn(zn)
1−dn

∏N
n=1 fθ̂N ,sn

(zn)dnSθ̂N ,sn
(zn)1−dn

)
≤ χ2

r;1−α2

}

is an asymptotic (1− α2)-confidence set function for θ and PN given by

PN (z∗, d∗, s∗) =
⋃

θ∈CN (z∗,d∗,s∗)

[
F−1
θ,s0

(η1), F
−1
θ,s0

(η2)
]

with 0 ≤ η1 < η2 ≤ 1 and η2 − η1 = 1− α1 is an asymptotic (1− α1)(1−α2)-prediction interval
function for T0 at s0.

3.2.11 Theorem (Prediction intervals based on on the δ-method)
Let T0, T1, . . . , TN be independent, θ̂N := θ̂N(Z∗,D∗, S∗) is the maximum likelihood estimator
for θ ∈ R

r, 0 ≤ η1 < η2 ≤ 1 with η2 − η1 = 1 − α1, a1, a2 : Rr → R with a1(θ) = F−1
θ,s0

(η1) and

a2(θ) = F−1
θ,s0

(η2) are differentiable aspect functions, and

v1N :=

√
1

N
ȧ⊤
1θ̂N

I
θ̂N

(δN )−1 ȧ
1θ̂N

q1−α2/2,

v2N :=

√
1

N
ȧ⊤
2θ̂N

I
θ̂N

(δN )−1 ȧ
2θ̂N

q1−α2/2.

Then PN given by

PN (z∗, d∗, s∗) =
[
F−1

θ̂N ,s0
(η1)− v1N , F−1

θ̂N ,s0
(η2) + v2N

]

is an asymptotic (1− α1)(1 − α2)-prediction interval function for T0 at s0.

Proof. The proof is the same as for Theorem 2.9.20.
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3.3 Accelerated lifetime experiments with exponential distribu-
tion

At first, we consider also the exponential distribution which is the simplest lifetime distribution
so that

fθ,s(t) = λθ(s) exp(−λθ(s)t)

is the lifetime density. Here the link function λθ : S → (0,∞) is known up to the parameter
vector θ ∈ R

r. The expected lifetime is then

Eθ(Tn) =
1

λθ(sn)
.

Simple reasonable functions for λθ are the following:

λθ(s) = θs, θ ∈ (0,∞), (3.9)

λθ(s) = θ0 + θ1s, θ = (θ0, θ1)
⊤ ∈ (0,∞)2, (3.10)

λθ(s) = exp(θ0 + θ1s), θ = (θ0, θ1)
⊤ ∈ ℜ × (0,∞), (3.11)

λθ(s) =
1

exp(gθ(s))
, (3.12)

where gθ is given by (3.2) to ((3.7). All these functions ensure that the expected life time is
decreasing with increasing stress s. The function given by (3.9) provides an infinite life time if
there is no stress while function (3.10) is more flexible allowing a finite expected life time for
no stress. A similar flexibility is achieved by function (3.11), however without allowing infinte
expected life time at s = 0. Function (3.11) is function proposed by Wöhler.

We derive now the maximum likelihood estimator of θ given by

θ̂ := arg max
θ

Lθ(z∗, d∗, s∗)

and the information matrix.

Since the survival function for the exponential distribution satisfies Sθ,s(t) =
exp(−λθ(s)t), the loglikelihood function has the form

logLθ(z∗, d∗, s∗) =
∑

dn=1

(log λθ(sn)− λθ(sn)zn) +
∑

dn=0

(−λθ(sn)c) =

N∑

n=1

l(θ, tn, sn)

with

l(θ, t, s) := (log λθ(s)− λθ(s)t) 1I[0,c](t)− λθ(s)c 1I(c,∞)(t).

The maximum likelihood estimator θ̂ is a solution of

N∑

n=1

l̇(θ̂, tn, sn) = 0,
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where

l̇(θ, t, s) :=
∂

∂θ
l(θ, t, s) =

∂

∂θ
λθ(s)

[(
1

λθ(s)
− t

)
1[0,c](t)− c 1(c,∞)(t)

]
.

Set also

l̈(θ, t, s) :=
∂

∂θ
l̇(θ, t, s) =

∂2

∂2θ
λθ(s)

[(
1

λθ(s)
− t

)
1[0,c](t)− c 1(c,∞)(t)

]

+
∂

∂θ
λθ(s)

∂

∂θ
λθ(s)

⊤
(
− 1

λθ(s)2

)
1[0,c](t).

3.3.1 Lemma (See for the proof Lemma 2.9.6)

a)

∫ c

0
λe−λydy = −e−λy

∣∣∣
c

0
= 1− e−λc.

b)

∫ c

0
y λe−λydy = −c e−λc +

1

λ

(
1− e−λc

)
.

c)

∫ c

0
y2 λe−λydy = e−λc

[
−c2 − 2c

λ
− 2

λ2

]
+

2

λ2
.

d)

∫ c

0

(
1

λ
− y

)
λe−λydy − c

∫ ∞

c
λe−λydy = 0.

e)

∫ c

0

(
1

λ
− y

)2

λe−λydy + c2
∫ ∞

c
λe−λydy =

1

λ2

(
1− e−λc

)
.

3.3.2 Lemma
Let be S a random variable giving the stress levels s by the distribution δ and T the life time
which has the exponential distribution with parameter λθ(s) as conditional distribution given
S = s . Then we have

Iθ(δ) := Eθ

(
l̇(θ, T, S) l̇(θ, T, S)⊤

)

=

∫
1

λθ(s)2

(
1− e−λθ(s)c

) ∂

∂θ
λθ(s)

∂

∂θ
λθ(s)

⊤δ(ds) = − Eθ

(
l̈(θ, T, S)

)
.
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Proof Since 1I[0,c](t)1I(c,∞)(t) = 0, we have with Lemma 3.3.1 e)

Eθ

(
l̇(θ, T, S) l̇(θ, T, S)⊤

)

=

∫ ∫
∂

∂θ
λθ(s)

∂

∂θ
λθ(s)

⊤
[(

1

λθ(s)
− t

)
1I[0,c](t)− c 1I(c,∞)(t)

]2

· λθ(s)e
−λθ(s)t dt δ(ds)

=

∫
∂

∂θ
λθ(s)

∂

∂θ
λθ(s)

⊤
[∫ c

0

(
1

λθ(s)
− t

)2

λθ(s)e
−λθ(s)tdt

+c2
∫ ∞

c
λθ(s)e

−λθ(s)tdt

]
δ(ds)

=

∫
1

λθ(s)2

(
1− e−λθ(s)c

) ∂

∂θ
λθ(s)

∂

∂θ
λθ(s)

⊤δ(ds).

Lemma 3.3.1 a) and d) implies

Eθ

(
l̈(θ, T, S)

)

=

∫ ∫ {
∂2

∂2θ
λθ(s)

[(
1

λθ(s)
− t

)
1[0,c](t)− c 1(c,∞)(t)

]

+
∂

∂θ
λθ(s)

∂

∂θ
λθ(s)

⊤
(
− 1

λθ(s)2

)
1[0,c](t)

}
λθ(s)e

−λθ(s)tdt δ(ds)

=

∫ {
∂2

∂2θ
λθ(s)

[∫ c

0

(
1

λθ(s)
− t

)
λθ(s)e

−λθ(s)tdt− c

∫ ∞

c
λθ(s)e

−λθ(s)tdt

]

+
∂

∂θ
λθ(s)

∂

∂θ
λθ(s)

⊤
(
− 1

λθ(s)2

)∫ c

0
λθ(s)e

−λθ(s)tdt

}
δ(ds)

= 0−
∫

1

λθ(s)2

(
1− e−λθ(s)c

) ∂

∂θ
λθ(s)

∂

∂θ
λθ(s)

⊤δ(ds). �



3 Experiments with different stress levels

Christine Müller, Statistics of Reliability and Material Fatigue, WS 2021/22

79

3.4 Accelerated lifetime experiments with lognormal distribution

Here we will consider only uncensored independent observations.

If T ∼ LN (µθ(s), σ
2) then ln(T ) ∼ N (µ(s), σ) and lnE(T ) = ln

(
exp(µθ(s) +

1
2σ

2)
)
= µθ(s) +

1
2σ

2. Hence we can work with normally distributed random variables Y0 = ln(T0) ∼ N (µθ(s0), σ
2), Y1 =

ln(T1) ∼ N (µθ(s1), σ
2), . . . , YN = ln(TN ) ∼ N (µθ(sN ), σ2) with

µθ(s) = gθ(s),

where gθ is given by (3.2) to (3.7), for example. We should have only in mind that the unknown
parameter are θ and σ2 here.

Classical linear model
If

µθ(s) = x(s)⊤θ

then we have a classical linear model.

3.4.1 Example
If Yn = ln(Tn) ∼ N (µθ(sn), σ

2) then ln(Eθ(Tn)) = µθ(sn) +
1
2σ

2 according to Theorem 2.1.18.
Then we get in particular the Basquin model ln(Eθ(Tn)) = θ0 − θ1 ln(sn) if θ0 = 1

2σ
2 and

µθ(sn) = −θ1 ln(sn).

Let be θ ∈ R
r, y∗ = (y1, . . . , yN )⊤ the realization of Y∗ = (Y1, . . . , YN )⊤ and set s∗ = (s1, . . . , sN )⊤,

X = (x(s1), . . . , x(sN ))⊤. Then the maximum likelihood estimator θ̂ for θ is the least squares
estimator, i.e. θ̂ = (X⊤X)−1X⊤y∗. Moreover,

σ̂2 =
1

N − r

N∑

n=1

(yn − x(sn)
⊤θ̂)2

is an unbiased estimator of σ2. Then µ
θ̂
(s0) = x(s0)

⊤θ̂ is an unbiased estimator for µθ(s0) =

x(s0)
⊤θ and µ

θ̂
(s0)+

1
N

∑N
n=1(yn−x(sn)

⊤θ̂)2 is the maximum likelihood estimator for ln(E(T0)).

3.4.2 Theorem
If θ ∈ R

r, then C given by

C(y∗, s∗) =
[
x(s0)

⊤θ̂ ±
√

x(s0)⊤(X⊤X)−1x(s0) σ̂2 tN−r;1−α/2

]

is a (1− α)-confidence interval function for µθ(s0) = x(s0)
⊤θ.

Proof. Since Y∗ ∼ N (Xθ, σ2IN×N ) we have

Eθ(x(s0)
⊤θ̂) = x(s0)

⊤ (X⊤X)−1X⊤X θ = x(s0)
⊤θ

and

varθ(x(s0)
⊤θ̂) = σ2 x(s0)

⊤ (X⊤X)−1 x(s0),
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so that

x(s0)
⊤θ̂ − x(s0)

⊤θ√
σ2 x(s0)⊤ (X⊤X)−1 x(s0)

∼ N (0, 1).

Since θ̂ and σ̂2 are independent and (N − r) σ̂
2

σ2 ∼ χ2
N−r, we obtain

x(s0)
⊤θ̂ − x(s0)

⊤θ√
σ̂2 x(s0)⊤ (X⊤X)−1 x(s0)

∼ tN−r. �

A confidence set for ln(Eθ(T0)) = µθ(s0) +
1
2σ

2 = gθ(s0) or Eθ(T0) = exp(µθ(s0) +
1
2σ

2) is not
that easy to obtain. However for prediction intervals, the transfer from Y0 to T0 is more easy.

3.4.3 Theorem
If θ ∈ R

r, then P given by

P(y∗, s∗) =
[
x(s0)

⊤θ̂ ±
√

(1 + x(s0)⊤(X⊤X)−1x(s0)) σ̂2 tN−r;1−α/2

]

is a (1− α)-predition interval function for Y0 at s0.

Proof. Since Eθ(Y0) = x(s0)
⊤θ, we have

Eθ(Y0 − x(s0)
⊤θ̂) = 0

and

varθ(Y0 − x(s0)
⊤θ̂) = σ2 + σ2 x(s0)

⊤ (X⊤X)−1 x(s0)

since Y0 and Y∗ = (Y1, . . . , YN )⊤ are independent. Hence we obtain

Y0 − x(s0)
⊤θ̂√

σ2 (1 + x(s0)⊤ (X⊤X)−1 x(s0))
∼ N (0, 1).

Since Y0 − x(s0)
⊤θ̂ and σ̂2 are independent and (N − r) σ̂

2

σ2 ∼ χ2
N−r, we obtain

Y0 − x(s0)
⊤θ̂√

σ̂2 (1 + x(s0)⊤ (X⊤X)−1 x(s0))
∼ tN−r. �

3.4.4 Corollary
If θ ∈ R

rand P given by

P(y∗, s∗) = [L(y∗, s∗) , U(y∗, s∗)] =
[
x(s0)

⊤θ̂ ±
√
(1 + x(s0)⊤(X⊤X)−1x(s0)) σ̂2 tN−r;1−α/2

]

is a (1− α)-prediction interval for Y0 based on y∗ and y∗ = (ln(t1), . . . , ln(tN ))⊤, then

P0(t∗, s∗) = [ exp (L(y∗, s∗)) , exp (U(y∗, s∗)) ]

is a (1− α)-predition interval function for T0 at s0 based on t∗ = (t1, . . . , tN ).
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Proof. Since T0 = exp(Y0), we get

Pθ(T0 ∈ P0(T∗, s∗)) = Pθ (exp (L(Y∗, s∗)) ≤ T0 ≤ exp (U(Y∗, s∗)))

= Pθ (L(Y∗, s∗) ≤ Y0 ≤ U(Y∗, s∗)) = 1− α.�

Nonlinear model
If µθ(s) is not linear in θ ∈ R

r then we have a classical nonlinear model given by

Yn = µθ(sn) + En

with En ∼ N (0, σ2) for n = 1, . . . , N .

3.4.5 Example
If Yn = ln(Tn) ∼ N (µθ(sn), σ

2) with ln(Eθ(Tn)) = µθ(sn) +
1
2σ

2 according to Theorem 2.1.18,

then we get in particular the model ln(Eθ(Tn)) = θ0 + θ1

(
1
sn

)θ2
if θ0 = 1

2σ
2 and µθ(sn) =

θ1

(
1
sn

)θ2
.

The Taylor expansion provides

Yn = µθ(sn) + En ≈ µθ∗(sn) + µ̇θ∗(sn)
⊤(θ − θ∗) +En

so that

Zn := Yn − µθ∗(sn) = µ̇θ∗(sn)
⊤θ̃ + En.

Hence Zn follows approximately a linear model. Using this approximation, approximate con-
fidence intervals and prediction intervals can be derived. Again let θ̂N be the least squares
estimator, which is also the maximum likelihood estimator of the nonlinear model, and

σ̂2
N :=

1

N − r

N∑

n=1

(yn − µ
θ̂N

(sn))
2

the estimator of σ2. Thereby σ̂2
N is a consistent estimator of σ2. If the concrete design measure

δN =
∑N

n=1 esn is again converging to the a design δ, then the least squares estimator has an
asymptotic normal distribution.

3.4.6 Theorem (Jennrich 1969)
If δn converges weakly to δ almost surely and θ̂N is the least squares estimator in the nonlinear
model, then

√
N
(
θ̂N − θ∗

) D−→ N
(
0r, σ

2Ĩθ∗(δ)
−1
)

(3.13)

with Ĩθ∗(δ) :=
∫
µ̇θ∗(s) µ̇θ∗(s)

⊤ δ(ds), µ̇θ∗(s) :=
∂
∂θµθ(s)

∣∣
θ=θ∗

if θ∗ is the true parameter.
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Proof. The proof follows as for any maximum likelihood estimator. Hence we have only to
calculate the information matrix. At first note

∂

∂θ
ln(fθ,s(y)) =

∂

∂θ
ln

(
1√
2πσ2

exp

(
− 1

2σ2
(y − µθ(s))

2

))

=
∂

∂θ

(
− 1

2σ2
(y − µθ(s))

2

)
=

1

σ2
(y − µθ(s))

∂

∂θ
µθ(s)

so that

Iθ(δ) =

∫
E

(
∂

∂θ
ln(fθ,s(Y ))

∂

∂θ
ln(fθ,s(Y ))⊤

)
δ(ds)

=
1

σ2

∫
E

((
Y − µθ(s)

σ

)2
)

µ̇θ(s) µ̇θ(s)
⊤δ(ds) =

1

σ2

∫
1 · µ̇θ(s) µ̇θ(s)

⊤δ(ds). �

Set Ṁθ,N := (µ̇θ(s1), . . . , µ̇θ(sN ))⊤ and let be q1−α/2 the (1 − α/2)-quantile of the standard
normal distribution.

3.4.7 Theorem
If the support of δ is included in [smin, smax], δn converges weakly to δ almost surely, µ̇•(s)
as function of θ is equicontinuous for s ∈ [smin, smax], θ̂N is the least squares estimator in the
nonlinear model, then CN given by

CN (y∗, s∗) =

[
µ
θ̂N

(s0)±
√

σ̂2 µ̇
θ̂N

(s0)⊤
(
Ṁ⊤

θ̂N ,N
Ṁ

θ̂N ,N

)−1
µ̇
θ̂N

(s0) q1−α/2

]

is an asymptotic (1− α)-confidence interval function for µθ(s0).

Proof. The asymptotic normality in (3.13) and Theorem 2.8.12 (δ-method) provide

√
N
(
µ
θ̂N

(s0)− µθ∗(s0)
) D−→ N

(
0, σ2 µ̇θ∗(s0)

⊤ Ĩθ∗(δ)
−1 µ̇θ∗(s0)

)
. (3.14)

The asymptotic normality in (3.13) implies with Corollary 2.8.7 (iv) also θ̂N
P−→ θ∗ so that with

the equicontinuity of µ̇•(s)

1

N
Ṁ⊤

θ̂N ,N
Ṁ

θ̂N ,N
− 1

N
Ṁ⊤

θ∗Ṁθ∗ =
1

N

N∑

n=1

(
µ̇
θ̂N

(sn) µ̇θ̂N
(sn)

⊤ − µ̇θ∗(sn) µ̇θ∗(sn)
⊤
) P−→ 0r×r

and

µ̇
θ̂N

(s0)
P−→ µ̇θ∗(s0).

Since δN = 1
N

∑N
n=1 esn converges weakly (in distribution) to δ almost surely, we obtain with

the Theorem of Portmanteau (Theorem 2.8.3) additionally

1

N
Ṁ⊤

θ∗Ṁθ∗ =
1

N

N∑

n=1

µ̇θ∗(sn) µ̇θ∗(sn)
⊤ = Ĩθ∗(δN )

P−→ Ĩθ∗(δ)
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so that

1

N
Ṁ⊤

θ̂N ,N
Ṁ

θ̂N ,N

P−→ Ĩθ∗(δ).

This implies

N
(
Ṁ⊤

θ̂N ,N
Ṁ

θ̂N ,N

)−1 P−→ Ĩθ∗(δ)
−1

and with µ̇
θ̂N

(s0)
P−→ µ̇θ∗(s0) and σ̂2

N
P−→ σ2

σ̂2
N N µ̇

θ̂N
(s0)

⊤
(
Ṁ⊤

θ̂N ,N
Ṁ

θ̂N ,N

)−1
µ̇
θ̂N

(s0)
P−→ σ2 µ̇θ∗(s0)

⊤ Ĩθ∗(δ)
−1 µ̇θ∗(s0). (3.15)

Hence we obtain with (3.14) and Corollary 2.8.8

µ
θ̂N

(s0)− µθ∗(s0)√
σ̂2
N µ̇

θ̂N
(s0)⊤

(
Ṁ⊤

θ̂N ,N
Ṁ

θ̂N ,N

)−1
µ̇
θ̂N

(s0)

=

√
N
(
µ
θ̂N

(s0)− µθ∗(s0)
)

√
σ̂2
N N µ̇

θ̂N
(s0)⊤

(
Ṁ⊤

θ̂N ,N
Ṁ

θ̂N ,N

)−1
µ̇
θ̂N

(s0)

D−→ N (0, 1). �

3.4.8 Theorem (Simple prediction interval)
If θ̂N is the least squares estimator in the nonlinear model, then PN given by

PN (y∗, s∗) =
[
µ
θ̂N

(s0)− σ̂N q1−α/2, µθ̂N
(s0) + σ̂N q1−α/2

]

is an asymptotic (1− α)-predition interval function for Y0 at s0.

Proof. Since

σ̂2
N

P−→ σ2, µθ∗(s0)− µ
θ̂N

(s0)
P−→ 0,

Y0 − µθ∗(s0)

σ
=

E0

σ
∼ N (0, 1)

we get

Y0 − µ
θ̂N

(s0)

σ̂N
=

E0

σ̂N
+

µθ∗(s0)− µ
θ̂N

(s0)

σ̂N

D−→ N (0, 1). �

A wider asymptotic prediction interval is obtained by the following approximations.

Convergence (3.14) implies

µ
θ̂N

(s0)− µθ∗(s0) ≈ N
(
0, σ2 1

N
µ̇θ∗(s0)

⊤ Iθ∗(δ)
−1 µ̇θ∗(s0)

)
.
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Since Y0 = µθ∗(s0) + E0 with E0 ∼ N (0, σ2) and E0 is independent of θ̂N , we have

µ
θ̂N

(s0)− Y0 = µ
θ̂N

(s0)− µθ∗(s0)− E0 ≈ N
(
0, σ2 1

N
µ̇θ∗(s0)

⊤ Iθ∗(δ)
−1 µ̇θ∗(s0) + σ2

)
.

As shown in the proof of Theorem 3.4.7, µ̇θ∗(s0)
⊤ Iθ∗(δ)

−1 µ̇θ∗(s0) can be approximated by

N µ̇
θ̂N

(s0)
⊤
(
Ṁ⊤

θ̂N ,N
Ṁ

θ̂N ,N

)−1
µ̇
θ̂N

(s0) and σ2 by σ̂2
N so that

µ
θ̂N

(s0)− Y0 ≈ N
(
0, σ̂2

N

(
1 + µ̇

θ̂N
(s0)

⊤
(
Ṁ⊤

θ̂N ,N
Ṁ

θ̂N ,N

)−1
µ̇
θ̂N

(s0)

))
,

or, respectively,

µ
θ̂N

(s0)− Y0√
σ̂2
N

(
1 + µ̇

θ̂N
(s0)⊤

(
Ṁ⊤

θ̂N ,N
Ṁ

θ̂N ,N

)−1
µ̇
θ̂N

(s0)

) ≈ N (0, 1).

3.4.9 Theorem
If θ̂N is the least squares estimator in the nonlinear model, then PN given by

PN (y∗, s∗) =

[
µ
θ̂N

(s0)±
√

σ̂2
N

(
1 + µ̇

θ̂N
(s0)⊤

(
Ṁ⊤

θ̂N ,N
Ṁ

θ̂N ,N

)−1
µ̇
θ̂N

(s0)

)
q1−α/2

]

is an asymptotic (1− α)-predition interval function for Y0 at s0.

Proof. Property (3.15) implies

σ̂2
N µ̇

θ̂N
(s0)

⊤
(
Ṁ⊤

θ̂N ,N
Ṁ

θ̂N ,N

)−1
µ̇
θ̂N

(s0)
P−→ 0

so that the result follows from Theorem 3.4.8. �

For estimating the stress level sL such that µθ(sL) = L, i.e. for estimating aL(θ) := µ−1
θ (L), we

can use again aL(θ̂N ) = µ−1

θ̂N
(L) as estimator. Set ȧL(θ∗) = ∂

∂θaL(θ)
∣∣∣
θ=θ∗

.

3.4.10 Theorem
If θ̂N is the least squares estimator in the nonlinear model, then CN given by

CN (y∗, s∗) =

[
aL(θ̂N )±

√
σ̂2
N ȧL(θ̂N )⊤

(
Ṁ⊤

θ̂N ,N
Ṁ

θ̂N ,N

)−1
ȧL(θ̂N ) q1−α/2

]

is an asymptotic (1− α)-confidence interval function for aL(θ) := µ−1
θ (L).

Proof. The asymptotic normality in (3.13) and Theorem 2.8.12 (δ-method) provide

√
N
(
aL(θ̂N )− aL(θ∗)

) D−→ N
(
0, σ2 ȧL(θ∗)⊤ Iθ∗(δ)

−1 ȧL(θ∗)
)
.
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and thus, like in the proof of Theorem 3.4.7,

aL(θ̂N )− aL(θ∗)√
σ̂2
N ȧL(θ∗)⊤

(
Ṁ⊤

θ̂N ,N
Ṁ

θ̂N ,N

)−1
ȧL(θ∗)

=

√
N
(
aL(θ̂N )− aL(θ∗)

)

√
σ̂2
N N ȧL(θ∗)⊤

(
Ṁ⊤

θ̂N ,N
Ṁ

θ̂N ,N

)−1
ȧL(θ∗)

D−→ N (0, 1). �

If the stress level sL with ln(Eθ(T )) = L should be estimated, then we should know σ2 since
Eθ(T ) = exp(µθ(s) +

1
2σ

2) and thus ln(Eθ(T )) = µθ(s) +
1
2σ

2 = L or µθ(s) = L− σ2. There are
two possibilities: neglecting σ2 > 0 so that the lifetime at sL satisfies ln(Eθ(T )) > L or to use
L̃ = L− σ̂2.
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3.5 Nonparametric methods

If the class of distribution is not known then a nonparametric approach can be used. However,
prediction is then not possible as in the case of one stress level. A very successful approach is
available with the Cox model of proportional hazard rate. It can be used also if not only the
stress level is the covariate but also if other and several covariates shall be included in the model.
Let x ∈ R

r be a r-dimensional covariate.

3.5.1 Definition (Cox model of proportional hazard rate)
In a Cox model of proportional hazard rate it is assumed that T1, . . . , TN are independent with
hazard functions hθ(·, x1), . . . hθ(·, xN ) satisfying

hθ(t, x) = h0(t) exp(x
⊤θ),

for all t ∈ R+, x ∈ R
r, where θ ∈ R

r and h0 : R+ → R is the so called baseline hazard rate.

In a Cox model of proportional hazard rate, we have

hθ(t, x)

hθ(t, x̃
= exp((x− x̃)⊤θ)

so that the quotient is independent of t and depends only on the covariates. This is of course a
special assumption which is not always satisfied so that it must be verified.

We assume that we have randomly censored and uncensored observations (z1, d1, x1), . . . , (zN , dN , xN )
where zn = min(tn, cn), dn = 11(−∞,cn](tn) for n = 1, . . . , N . Let 0 ≤ τ1 < τ2 < τ3 < . . . < τI be
the observed event times (failures/deaths) and set

Ri := {n ∈ {1, . . . , N}; zn ≥ τi}.

If the event times are pairwise different then the relation between event time and covariate is
unique so that x(1), . . . , x(I) can be defined as the covariates corresponding to τ1, . . . , τI .

3.5.2 Definition (Partial maximum likelihood estimator in the Cox model)
If the event times are pairwise different, then the (partial) maximum likelihood estimator in a
Cox model of proportional hazard rate is given as the parameter θ̂ which maximizes the partial
likelihood function

lP (θ) :=

I∏

i=1

exp(x⊤(i)θ)∑
n∈Ri

exp(x⊤n θ)
.

For the motivation of the partial likelihood we need the following lemma.
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3.5.3 Lemma
The function

g(h) = h exp(−hk)

with k > 0 has a unique maximum at h = 1
k .

Proof. We have

g′(h) = exp(−hk) + h exp(−hk) (−k) = exp(−hk) (1 − hk) = 0 ⇔ h =
1

k
,

g′′(h) = exp(−hk) (−k) (1 − hk) − exp(−hk) k = exp(−hk) (−2k + hk2),

so that

g′′
(
1

k

)
= exp(−hk) (−2k + k) < 0. �

3.5.4 Remark (Motivation of the partial likelihood function, see Klein and Moeschberger 2003,
p. 258)
Define the cumulative baseline hazard function as

H0(t) :=

∫ ∞

0
h0(t) dt.

Then the cumulative hazard function H(·, x) at x is given by

Hθ(t, x) = H0(t) exp(x
⊤θ).

Theorem 2.1.7 provides for the survival function S(·, x) at x

Sθ(t, x) = exp(−Hθ(t)) = exp
(
−H0(t) exp(x

⊤θ)
)
.

and for the density fθ(·, x) at x

fθ(t, x) = hθ(t, x)Sθ(t, x).

If we assume that the censoring variables C1, . . . , Cn are independent of T1, . . . , TN and not
depending on θ then the likelihood function for θ is given by, see Section 2.5

l(θ) =
N∏

n=1

fθ(zn, xn)
dn Sθ(zn, xn)

1−dn =
N∏

n=1

hθ(zn, xn)
dn Sθ(zn, xn)

=

(
I∏

i=1

h0(τi) exp(x
⊤
(i)θ)

) (
N∏

n=1

exp
(
−H0(zn) exp(x

⊤
n θ)
))

=

(
I∏

i=1

h0(τi) exp(x
⊤
(i)θ)

)
exp

(
−

N∑

n=1

H0(zn) exp(x
⊤
n θ)

)
.
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This expression is maximized with respect to the function h0 if h0(t) = 0 for all t /∈ {τ1, . . . , τI}
and h(τi) = h0i for i = 1, . . . , I so that

H0(t) =
∑

i; τi≤t

h0i. (3.16)

Hence we get for the maximized likelihood function

max
h:R+→R

l(θ) =

(
I∏

i=1

h0i exp(x
⊤
(i)θ)

)
exp


−

N∑

n=1

∑

i; τi≤zn

h0i exp(x
⊤
n θ)




=

(
I∏

i=1

h0i exp(x
⊤
(i)θ)

)
exp


−

I∑

i=1

∑

n; τi≤zn

h0i exp(x
⊤
n θ)




=

(
I∏

i=1

h0i exp(x
⊤
(i)θ)

)
exp


−

I∑

i=1

h0i
∑

n∈Ri

exp(x⊤n θ)




=

(
I∏

i=1

exp(x⊤(i)θ)

) 


I∏

i=1

h0i exp


−h0i

∑

n∈Ri

exp(x⊤n θ)






=

(
I∏

i=1

exp(x⊤(i)θ)

) (
I∏

i=1

gi(h0i)

)
,

where

gi(h) := h exp(−h ci), ci :=
∑

n∈Ri

exp(x⊤n θ)

for i = 1, . . . , I. Lemma 3.5.3 implies

max
h∈R

gi(h) = gi

(
1

ci

)
=

1

ci
exp(1) (3.17)

so that maximizing the likelihood function with respect to h01, . . . , h0I leads to

max
h01,...,h0I

max
h:R+→R

l(θ) =

(
I∏

i=1

exp(x⊤(i)θ)

) (
I∏

i=1

1

ci
exp(1)

)
= eI

I∏

i=1

exp(x⊤(i)θ)∑
n∈Ri

exp(x⊤n θ)

which is proportional to the partial likelihood lP (θ).

3.5.5 Remark (Estimation of the baseline cumulative hazard function and the survival function)
If θ̂ is the partial maximum likelihood estimator, then (3.16) and (3.17) imply that Ĥ0 given by

Ĥ0(t) :=
∑

i; τi≤t

1
∑

n∈Ri
exp(x⊤n θ̂)
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is an estimate of the baseline hazard function. This estimator is also called Breslow estimator
for the baseline hazard function, see Klein and Moeschberger 2003, p. 258 and 283. Then Ŝ(·, x)
given by

Ŝ(t, x) := exp
(
−Ĥ0(t) exp(x

⊤θ̂)
)

is the estimate of the survival function Sθ(·, x) at x.

If the lifetime follows a continuous distribution then the time points of events should be different.
However, this is often not the case because of rounding. Then so called ties appear. If ties are
present then the partial likelihood must be modified. Define for i = 1, . . . , I

Bi := {n ∈ {1, . . . , N}; zn = τi and dn = 1},
bi := ♯Bi,

ξi :=
∑

n∈Bi

xn,

yi := ♯{n ∈ {1, . . . , N}; zn ≥ τi} = ♯Ri.

We have bi = 1 for i = 1, . . . , I if no ties appear.

3.5.6 Definition (Partial maximum likelihood estimator / Breslow estimator in the Cox model
with ties, see see Klein and Moeschberger 2003, p. 259)
The general (partial) maximum likelihood estimator (Breslow estimator) in a Cox model of
proportional hazard rate is given as the parameter θ̂B which maximizes the partial likelihood
function of Breslow given by

lB(θ) :=

I∏

i=1

exp(ξ⊤i θ)(∑
n∈Ri

exp(x⊤n θ)
)bi .

3.5.7 Remark
It is clear that lP (θ) = lB(θ) holds in the case of no ties. Moreover, we have for the general case

lB(θ) =

I∏

i=1

∏

n∈Bi

exp(x⊤n θ)∑
n∈Ri

exp(x⊤n θ)
.

There are also other proposals for the partial likelihood function for the case with ties which
generalize the partial likelihood function for the case without ties, see Klein and Moeschberger
2003, p. 259.
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3.5.8 Definition (Breslow estimator of the survival function, see see Klein and Moeschberger
2003, p. 283)
The Breslow estimator of the survival function Sθ(·, x) at x is ŜB(·, x) given by

ŜB(t, x) := exp
(
−Ĥ0B(t) exp(x

⊤θ̂B)
)

where

Ĥ0B(t) :=
∑

i; τi≤t

bi∑
n∈Ri

exp(x⊤n θ̂)
,

and θ̂B is partial maximum likelihood estimator of Breslow.

3.5.9 Remark
Again we have Ĥ0B = Ĥ0 and ŜB(·, x) = Ŝ(·, x) in the case of no ties. Moreover, we get

Ĥ0B(t) =
∑

i; τi≤t

bi
yi
,

i.e. the Nelson-Aalen estimator of the cumulative hazard function, in the case where no influence
of covariates exists, i.e. θ̂B = 0.

To check the model, the so called Cox-Snell residuals can be used.

3.5.10 Definition (Cox-Snell residuals, see Klein and Moeschberger 2003, p. 355)
The Cox-Snell residuals are defined as

r̂n := Ĥ0B(tn) exp(x
⊤
n θ̂B)

for n = 1, . . . , N , where Ĥ0B and θ̂B are the Breslow estimators for the cumulative hazard
function and θ, respectively.

3.5.11 Lemma
If T is a continuous lifetime distribution with strictly increasing cumulative distribution function
F on R+ and cumulative hazard function H, then
a) F (T ) has a uniform distribution on [0, 1],
b) H(T ) ∼ E(1), i.e. H(T ) has an exponential distribution with λ = 1.

Proof. a) With F also F−1 is continuous and strictly increasing and F−1 is the inverse of F on
R+ so that F (F−1(u)) = u for all u ∈ [0, 1]. Hence we have for any u ∈ [0, 1]

P (F (T ) ≤ u) = P (F−1(F (T )) ≤ F−1(u)) = F (F−1(u)) = u.



3 Experiments with different stress levels

Christine Müller, Statistics of Reliability and Material Fatigue, WS 2021/22

91

b) Since g given by g(z) = 1− exp(−z) is strictly increasing on R+, the assertion in a) together
with Theorem 2.1.7 provides for any z ∈ R+

P (H(T ) ≤ z) = P (g(H(T )) ≤ g(z))

= P (1− exp(−H(T )) ≤ 1− exp(−z)) = P (F (T ) ≤ 1− exp(−z)) = 1− exp(−z). �

3.5.12 Theorem
If T1, . . . , Tn are independent observations from the Cox model given by Definition 3.5.1, x1, . . . , xN
are fixed covariates then the theoretical Cox-Snell residuals

Rn := H0(Tn) exp(x
⊤
n θ)

satisfy Rn ∼ E(1) for n = 1, . . . , N and are independent.

Proof. Since

hθ(·, xn) = h0(·) exp(x⊤n θ),

is the hazard function of Tn at xn, the cumulative hazard function Tn at xn is

Hθ(·, xn) = H0(·) exp(x⊤n θ).

Hence Lemma 3.5.11 provides Rn = Hθ(Tn, xn) ∼ E(1). The independence of R1, . . . , RN follows
from the independence of T1, . . . , TN . �

3.5.13 Remark (Model check)
If the model is correct then the Cox-Snell residuals r̂1, . . . , r̂N should follow approximately an E(1)
distribution. This can be checked by classical goodness-of-fit tests as presented in Section 2.6.
Moreover, since the cumulative hazard function HE(1) of a E(1) distribution satisfies HE(1)(t) =
t, also the points (r̂n,HE(1)(r̂n)) for n = 1, . . . , N can be plotted. If the model is a good
approximation then these points should follow a straight line through the origin with a slope of
1.
If there are only few different values of the covariates xn, say x(1), . . . , x(J) then the survival
function for each x(j) can be estimated with the methods of Section 2.10 and plotted together.
If the proportional hazard model is correct then these survival function should be more or less
parallel since they are only shifted by exp(x⊤(j)θ). In particular, if some survival functions are
crossing then the model of proportional hazard function is doubtful.

3.5.14 Remark (Analysis with R)
The R package survival includes several methods for survival analysis as the Kaplan-Meier and
Nelson-Aalen estimator, analysis of Cox models, and parametric accelerated failure time models.
In particular, the R function coxph provides the analysis of the cox model.
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Chapter 4

Crack initiation

4.1 Crack detection using surface photos

Figure 4.1 shows a round specimen of steel which was exposed to cyclic load. Photos were
obtained from a small inner part during the fatigue experiment. Figure 4.2 shows how micro
cracks were initiated and how micro cracks grow during the experiment.

Figure 4.1: Round specimen of steel

With the R package crackrec decribed in Gunkel et al. (2012) micro cracks can be detected.
Figure 4.3 shows the detected cracks after 18.000 load cycles. With the package crackrec, crack
cluster can determined. Crack clusters are connected sets of pixels below a given threshhold.
Such a crack cluster is shown in Figure 4.4. The longest shortest path through the crack cluster
is then a crack path, which is shown on the righthand side of Figure 4.4.

Here is of special interest the micro cracks which are initiated in the beginning. An example of
detected micro cracks after 1.000 load cycles is shown in Figure 4.5. In this image 131 cracks were
found, where the maximum length of a detected crack consisted of 27.72 pixels. The data set
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After 5.000 After 18.000

At the beginning load cycles load cycles

Figure 4.2: Development of micro cracks

Figure 4.3: Image after 18.000 load cycles without and with detected micro cracks

 

 

 

 

Figure 4.4: The longest shortest path (righthand side) through a crack cluster (lefthand side)

S01 B30 X 62.425 Y 212.250 erg cracks.asc provides the size of the detected crack clusters,
the length of the detected crack paths and the coordinates of the start and end points of the
crack paths.

The question is, how to model the crack initiation. One possibility is to model the initiated
micro cracks by spatial Poisson point process. A Poisson process is a stochastic process.



4 Crack initiation

Christine Müller, Statistics of Reliability and Material Fatigue, WS 2021/22

95

Figure 4.5: Image after 1.000 load cycles without and with detected micro cracks

4.2 Point processes for crack initiation

4.2.1 Definition (Stochastic process, see e.g. Iacus 2008, p. 14)
Let (Ω,A, P ) be a probability space. A stochastic process on X with state space S is a family
of random variables Y = {Y (x); x ∈ X} = {Yx; x ∈ X} defined on Ω and with values in S, i.e.

Y = {Y (x); x ∈ X} = Yx; x∈X : Ω ∋ ω −→ Y (ω) = Yx; x∈X (ω) = {Y (x)(ω); x ∈ X} ∈SX .

a) If X = IN , then Y a discrete-time process.
b) If X = [a, b] ⊂ R with a < b, then Y is a continuous-time process.
c) If X ⊂ R

d with d > 1, then Y is a spatial process, also called random field.
d) If S = R, then Y is real valued stochastic process.

Note that SX is the space of all functions f : X → S.

If X = {1, . . . , n} and S = R then {Y (x); x ∈ X} = (Y (1), . . . , Y (n)) = (Y1, . . . , Yn) is a
n-dimensional random vector.

4.2.2 Definition (Simple point process, see Jacobsen 2006, p. 10)
A simple point process is a sequence T = (Tn)n≥1 of [0,∞]-valued random variables (events)
defined on (Ω,A, P ) such that
a) P (0 < T1 ≤ T2 ≤ . . .) = 1,
b) P (Tn < Tn+1, Tn < ∞) = P (Tn < ∞) for all n ≥ 1,
c) P (limn→∞ Tn = ∞) = 1.
If T = (Tn)n≥1 does not satisfy Condition c), then T = (Tn)n≥1 is called simple point process
with explosion.
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4.2.3 Definition (Counting process, Jacobsen 2006, p. 11/12)
Let T = (Tn)n≥1 be a simple point process. The associated counting process N = (N(t))t≥0 =
(Nt)t≥0 is a continuous time process with

Nt =

∞∑

n=1

1I[0,t](Tn).

Hence Nt counts the number of events in the time interval [0, t] and N0 ≡ 0. A counting process
is a stochastic process with state space S = N0 := N∪ {0}. For P -almost all ω ∈ Ω, the samples
path N·(ω) : R+ ∋ t → Nt(ω) ∈ N0 belongs to the space W of counting process paths,

W = {w ∈ N
R+

0 ; w(0) = 0, w is right-continuous, increasing, ∆w(t) = 0 or 1 for all t ≥ 0}

with R
+ := [0,∞) and ∆w(t) := w(t)−w(t−) where w(t−) := limτ↑t w(τ). The functions in W

are also called cadlag functions (cadlag = continue à droite, limite à gauche).

Having a random variable N with values in W , then the associated simple point process T =
(Tn)n≥1 is given by

Tn = inf{t ≥ 0; Nt = n}.

In particular, we have

Tn ≤ t ⇐⇒ Nt ≥ n.

Since any w ∈ W is a right-continuous, increasing step, it defines a discrete measure on R
+ given

by
∑

t;∆w(t)=1

ǫt

where ǫt is the one-point (Dirac) measure on t, i.e. ǫt(A) = 1IA(t) for all A ∈ B, if B denotes the
Borel-σ-algebra on R. Hence each path N(ω) defines a discrete measure on R

+ given by

µω := M(ω) :=
∑

t;∆Nt(ω)=1

ǫt =
∑

n∈N; Tn(ω)<∞
ǫTn(ω). (4.1)

Denoting with P(R+) all discrete measures on R
+, then

M : Ω ∋ ω → M(ω) ∈ P(R+)

is a random measure, the counting measure.

4.2.4 Definition (Point process on R
d, see e.g. https://en.wikipedia.org/wiki/Point process)

Let (Ω,A, P ) be a probability space. If P(Rd) is the set of all discrete measures on R
d equipped

with a appropriate σ-algebra, then the random variable (random measure)

M : Ω ∋ ω → M(ω) ∈ P(Rd)

is called point process on R
d. It is called simple point process if M(ω)({x}) = µω({x}) ∈ {0, 1}

holds for all x ∈ R
d for P -almost all ω.



4 Crack initiation

Christine Müller, Statistics of Reliability and Material Fatigue, WS 2021/22

97

The random discrete measure M can be also represented via the points (events) as in the one-
dimensional case given in (4.1), i.e.

M =
∞∑

n=1

ǫXn , or M(ω) =
∞∑

n=1

ǫXn(ω), respectively,

where Xn : Ω → R
d, n = 1, 2, . . ., are random vectors providing the event point (see Baddeley et

al. 2006, p. 3).

4.2.5 Definition (Cox point process, Poisson point process)
(see e.g. https://en.wikipedia.org/wiki/Point process)
Let λ : Rd → R be a integrable function and set Λ(B) =

∫
B λ(x)dx for any B ∈ Bd, the Borel-

σ-algebra on R
d.

a) A point process M is called Cox point process if

(i) for any B ∈ Bd, M(B) has Poisson distribution with parameter Λ(B), i.e. the density

of M(B) is given by p(k) = Λ(B)k

k! e−Λ(B),

(ii) M(B1), . . . ,M(BI) are independent for any finite collection of disjoint subsets
B1, . . . , BI ∈ Bd.

b) A Cox point process is called a Poisson point process if λ is the constant function so that
Λ(B) = λ‖B‖, where ‖B‖ is the Lebesgue measure of B.
c) The function λ is called the intensity function of the process. If it is constant, then it is called
intensity parameter.

Testing a Poisson point process
If it should be tested whether given points x1, . . . , xN ∈ R

d are realizations of a Poisson point
process, then the following simple test can be applied: Divide the space in L d-dimensional
disjoint intervals I1, . . . , IL of equal size and determine the number of points falling in Il, i.e.

ml := ♯{n; xn ∈ Il},

for l = 1, . . . , L. The numbers m1, . . . ,mL are realization of random variables M1 = M(I1), . . . ,
ML = M(IL). The nullhypothsis is then that M1, . . . ,ML are i.i.d. with Poisson distribution.
The parameter λ of this Poisson distribution can be estimated by the maximum likelihood
estimator. Having the estimator λ̂, the expected number of observations in each interval is λ̂. If
λ̂ > 5, then the χ2 goodness-of-test given by Definition 2.6.1 can be used by replacing Npl by λ̂
and Nl by ml. Since only one parameter, namely λ must be estimated, the parameter dimension
r is here 1.
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Chapter 5

Crack growth and degradation

5.1 Fatigue crack growth equations

The most famous fatige crack growth equation is the Paris-Erdogan equation given by (see e.g.
Sobczyk and Spencer 1992)

d a

dN
= C (∆K)m, (5.1)

where a is the crack length, N is the number of load cycles, C and m are material constants,
K is the stress intensity factor and ∆K = Kmax − Kmin is the stress intensity factor range.
Thereby it is used

K = σY
√
πa,

where Y is a geometry parameter and σ is a uniform tensile stress perpendicular to the crack
plane. Using ∆σ = σmax − σmin as the range of the cyclic stress amplitude we obtain

∆K = ∆σY
√
πa

so that (5.1) becomes

d a

dN
= C (∆σY

√
π)m am/2. (5.2)

Since the number of load cycles N is a measurement of the time, we will use here t instead of
N . Instead of a, we will use l for the length. Moreover, we set θ1 = C (∆σY

√
π)m and θ2 =

m
2 .

Then (5.2) becomes

d l

d t
= θ1 l

θ2 . (5.3)

This is an ordinary differential equations.
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5.1.1 Lemma
Equation (5.3) has the following solutions depending on θ2:

(i) θ2 = 1 ⇒ l = l(t) = θ0 · exp(θ1 · t)
with θ0 > 0,

(ii) θ2 < 1 ⇒ l = l(t) = α1 · (t− α0)
α2

with α0 < t, α1 = (θ1 · (1− θ2))
1

1−θ2 , α2 =
1

1− θ2
> 0,

(iii) θ2 > 1 ⇒ l = l(t) = α1 · (α0 − t)−α2

with α0 > t, α1 = (θ1 · (θ2 − 1))
−1

θ2−1 , α2 =
1

θ2 − 1
> 0.

Proof

(i)
∂l

∂t
=

∂

∂t
[θ0 · exp(θ1 · t)] = θ0 · exp(θ1 · t) · θ1 = θ1 · l,

(ii)
∂l

∂t
=

∂

∂t
[α1 · (t− α0)

α2 ] =
∂

∂t

[
(θ1 · (1− θ2))

1
1−θ2 · (t− α0)

1
1−θ2

]

= (θ1 · (1− θ2))
1

1−θ2 · (1− θ2)
−1 · (t− α0)

1
1−θ2

−1

= θ
1

1−θ2
1 · (1− θ2)

1
1−θ2 · (1− θ2)

− 1−θ2
1−θ2 · (t− α0)

1
1−θ2

− 1−θ2
1−θ2

= θ
1−θ2
1−θ2
1 · θ

θ2
1−θ2
1 · (1 − θ2)

θ2
1−θ2 · (t− α0)

θ2
1−θ2

= θ1 ·
(
(θ1 · (1− θ2))

1
1−θ2 · (t− α0)

1
1−θ2

)θ2

= θ1 · (α1 · (t− α0)
α2)θ2 = θ1 · lθ2 .

Part (iii) is an exercise. �

However, in Example 1.0.3, the independent variable is the length l and the dependent variable
is the time t. Hence we have to calculate the inverse t(l) of the functions t(l) of Lemma 5.1.1.

5.1.2 Lemma
The inverse function t(l) of the functions l(t) of Lemma 5.1.1 are:

(i) θ2 = 1 ⇒ t = t(l) = β0 + β1 · ln(l)

with β0 = − 1

θ1
· ln(θ0) , β1 =

1

θ1
,

(ii) θ2 < 1 ⇒ t = t(l) = β0 + β1 · lβ2

with β0 = α0 < t , β1 =

(
1

α1

) 1
α2

> 0 , β2 =
1

α2
> 0,

(iii) θ2 > 1 ⇒ t = t(l) = β0 + β1 · lβ2

with β0 = α0 > t , β1 = −
(

1

α1

) 1
−α2

< 0 , β2 = − 1

α2
< 0.
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Proof

(i) l = l(t) = θ0 · exp(θ1 · t) ⇔ ln(l) = ln(θ0) + θ1 · t

⇔ t =
1

θ1
· ln(l)− 1

θ1
· ln(θ0) ⇔ t = t(l) = β0 + β1 · ln(l),

(ii) l = l(t) = α1 · (t− α0)
α2 ⇔

(
l

α1

) 1
α2

= t− α0

⇔ t = α0 +

(
l

α1

) 1
α2 ⇔ t = t(l) = β0 + β1 · lβ2 ,

(iii) l = l(t) = α1 · (α0 − t)−α2 ⇔
(

l

α1

) 1
−α2

= α0 − t

⇔ t = α0 −
(

l

α1

)−1
α2 ⇔ t = t(l) = β0 + β1 · lβ2 .
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5.2 Crack growth prediction via (non)linear models

All models obtained by Lemma 5.1.1 and Lemma 5.1.2 are linear or nonlinear in the unknown
parameters. Since crack growth is not deterministic, a simple stochastic version of these function
can be obtained by adding a random error. This will lead to the following models.

Linear model:

Yn = θ0 + θ1 log(xn) + En

Nonlinear models:

Yn = θ0 exp(θ1xn) + En, (5.4)

Yn = θ1 · (xn − θ0)
θ2 + En, (5.5)

Yn = θ1 · (θ0 − xn)
−θ2 + En, (5.6)

Yn = θ0 + θ1 x
θ2
n + En, (5.7)

where we have in model (5.7)

unbounded growth if θ1 > 0, θ2 > 0
bounded growth if θ1 < 0, θ2 < 0.

A linearized model of model (5.7) is

Yn = θ0 + θ1 xn + θ2 xn log(xn) + En.

If the errors are normally distributed, exact predictions intervals for the linear models, are given
by Theorem 3.4.3. Theorem 3.4.9 provide approximate prediction intervals for the nonlinear
models. Thereby the errors must be not normally distributed, since the Theorem 3.4.6 holds for
more general distributions.

5.2.1 Example (Virkler data)
For the Virkler data reasonable models are the nonlinear model

Tn = θ0 + θ1 l
θ2
n + En

and its linearization

Tn = θ0 + θ1 ln + θ2 ln log(xn) + En,

where Tn is the time variable and ln are the given length values. Figure 5.1 shows the results for
prediction for one series.

Figure 5.2 shows the main drawback of using independent additive errors. These additive errors
can only model measurements errors so that shortly after the last available observation the
prediction intervals are already very large. However one would not expect a big jump after the
last observation since the crack length depends very much on the crack length of the last time
point. Hence there is a stochastic dependence between observations. Therefore it is better to
use an approach based on a stochastic processes like the Wiener process, the Gamma process or
processes given by stochastic differential equations.
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Figure 5.1: Prediction for the Virkler data with a linearized and a nonlinear model
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Figure 5.2: Prediction for the Virkler data with a nonlinear model

5.3 Birnbaum-Saunders model

Birnbaum and Saunders (1969) proposed a very simple model for crack growth where the crack
growth process is a deterministic functions disturbed only by one random variable.
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5.3 Birnbaum-Saunders model

5.3.1 Definition
The Birnbaum-Saunders degradation process Y = {Y (x); x ≥ 0} is given by

Y (x) = µx+ σ Z
√
x,

where µ > 0, σ > 0, and Z is a random variable with standard normal distribution.

5.3.2 Definition (First passage time / time to failure, see e.g. Kahle et al. 2016, p. 12)
If c > 0 is a given critical value and Y = {Y (x); x ≥ 0} is a time-contimuous process then

Xc := inf{x ≥ 0; Y (x) ≥ c}

is called the first passage time of the value c (time to failure at c) of the process Y .

Since Y is random also Xc is a random variable. Therefore, it has cumulative distribution
function FXc and a density fXc given by fXc(x) = F ′

Xc
(x). Moreover Y (x) > y with y ≥ c

implies Xc < x so that we get with the formel of total probability for any y ≥ c

P (Y (x) > y) = P (Y (x) > y, Xc < x) =

∫ x

0
P (Y (x) > y | Xc = z) fXc(z) dz. (5.8)

5.3.3 Theorem
The cumulative distribution function FXc of the first passage time of c of a Birnbaum-Saunders
degradation process Y = {Y (x); x ≥ 0} is given by

FXc(x) = 1− Φ

(
c− µx

σ
√
x

)
,

where Φ is the cumulative distribution function of the standard normal distribution.

Proof. Since

∂

∂x
Y (x) = µ+

σ Z

2
√
x

becomes positive for large x for any Z, the process is possibly at first decreasing but then always
strictly increasing if x is large enough. Hence it holds Xc ≤ x ⇔ Y (x) ≥ c so that

FXc(x) = P (Xc ≤ x) = P (Y (x) ≥ c) = P (µx+ σ Z
√
x ≥ c) = P

(
Z ≥ c− µx

σ
√
x

)
. �

Since

∂

∂x

c− µx

σ
√
x

=
∂

∂x

(
c

σ
√
x
− µ

√
x

σ

)
= − c

2σ
√
x
3 − µ

2σ
√
x
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is always negative for x > 0 and

lim
x↓0

c− µx

σ
√
x

= lim
x↓0

(
c

σ
√
x
− µ

√
x

σ

)
= ∞, lim

x→∞
c− µx

σ
√
x

= lim
x→∞

(
c

σ
√
x
− µ

√
x

σ

)
= −∞,

the function

1− Φ

(
c− µx

σ
√
x

)

is a strictly increasing function from 0 at x = 0 to 1 for x → ∞. Hence it is a cumulative
distribution function of a lifetime distribution.

5.3.4 Definition (Birnbaum-Saunders distribution)
T has a Birnbaum-Saunders distribution if its cumulative distribution function FT is given by

FT (t) = 1− Φ

(
c− µ t

σ
√
t

)

for t ≥ 0.

The Birnbaum-Saunders distribution is a lifetime distribution with three parameters µ, σ, and
c. If T has a Birnbaum-Saunders distribution then

E(T ) =
c

µ
+

σ2

2µ2
, var(T ) = E(T 2)− (E(T ))2 = c

σ2

µ3
+

5σ4

4µ4
,

see Kahle and Liebscher (2013).
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5.4 Wiener processes for modeling degradation processes

Crack grwoth is a special form of degradation. A simple model for degradation is given by
the Wiener process. It bases on the Brownian motion which is a time-contimuous process with
normal distribution.

5.4.1 Definition (Brownian motion / Wiener process without drift, see e.g. Iacus 2008, p. 18)
A real valued stochastic process B = {B(x); x ≥ 0} is called a Brownian motion (Wiener process
without drift) if

(i) B(0) = 0,

(ii) B(x2)−B(x1) ∼ N (0, x2 − x1) for all 0 ≤ x1 ≤ x2,

(iii) the increments B(xi+1) − B(xi), i = 1, . . . , n, are independent for all n ∈ IN, n > 1,
and 0 ≤ x1 < x2 < . . . < xn+1.

The Brownian motion is a Gaussian process. In particular,

(B(x1), . . . , B(xn)) ∼ Nn(0n,Σ),

where 0n is the n-dimensional vector consisting of zeros and the matrix Σ is given by Σ =
(min(xi, xj))i,j=1,...,n. This implies B(x) ∼ N (0, x) and B(x2 − x1) ∼ N (0, x2 − x1) so that
B(x2 − x1) ∼ B(x2)−B(x1).

A realization b = {b(x); x ≥ 0} of B = {B(x); x ≥ 0} is a continuous function b : [0,∞) → R

and is called path.

A Brownian motion on [0, ξ] can be simulated with the following algorithm (see e.g. Iacus 2008,
p. 19): Devide the interval [0, ξ] into a grid such that 0 = x1 < x2 < . . . < xN−1 < xN = ξ with
∆x := xi+1−xi for i = 2, . . . , N and set B(0) = B(x1) = 0 and i = 1. Iterate then the following
steps:

1. i = i+ 1.

2. Generate a random number z from the standard normal distribution, i.e. from N (0, 1).

3. Set B(xi) = B(xi−1) + z
√
∆x.

4. If i < N , go to step 1.

The simulated process will approach a realization of the Brownian motion the better the smaller
∆x is.
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5.4.2 Definition (Wiener Process / Brownian motion with drift, see e.g. Kahle et al. 2016, p.
11)
A real valued stochastic process W = {W (x); x ≥ 0} is called a Wiener process (Brownian
motion with drift) if

W (x) = µx+ σB(x),

where µ ∈ R, σ ∈ (0,∞), B = {B(x); x ≥ 0} is a Brownian motion. The parameter µ is called
drift parameter and the parameter σ2 is called volatility parameter. The Wiener process is called
Wiener process with positive (negative) drift if µ > 0 (µ < 0).

5.4.3 Lemma
The Wiener process satisfies for any x4 > x4 > x2 > x1 ≥ 0

(i) W (0) = 0,

(ii) W (x2)−W (x1) ∼ N (µ(x2 − x1), σ
2(x2 − x1)) for all x2 > x1 ≥ 0,

(iii) W (x2)−W (x1) ∼ W (x2 − x1) for all x2 > x1 ≥ 0,

(iv) the increments W (xi+1)−W (xi), i = 1, . . . , n, are independent for all n ∈ IN, n > 1,

0 ≤ x1 < x2 < . . . < xn+1.

Proof. (i) is clear. For (ii) and (iii) note that

W (x2)−W (x1)

= µx2 − µx1 + σB(x2)− σB(x1) ∼ µ(x2 − x1) + σB(x2 − x1) = W (x2 − x1).

(iv) follows from the independence of B(xi+1)−B(xi), i = 1, . . . , n. �

Here we will assume without loss of generality that the drift parameter satisfies µ ≥ 0.

Now we consider the first passage time xc of a value c of a Wiener process W . The continuity of
any path {w(x); x ≥ 0} implies w(xc) = c so that Xc = z if and only if W (z) = c.
More precisely, Xc = z ⇒ W (z) = c, W (z) = c ⇒ Xc ≤ z.
Hence we obtain with (5.8) for any y ≥ c

P (W (x) > y) =

∫ x

0
P (W (x) > y | W (z) = c) fXc(z) dz

Lemma 5.4.3 (i)
=

∫ x

0
P (W (x)−W (z) > y − c | W (z)−W (0) = c) fXc(z) dz

Lemma 5.4.3 (iv)
=

∫ x

0
P (W (x)−W (z) > y − c) fXc(z) dz

Lemma 5.4.3 (iii)
=

∫ x

0
P (W (x− z) > y − c) fXc(z) dz

=

∫ x

0
(1 − FW (x−z)(y − c)) fXc(z) dz, (5.9)
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where FW (x) is the cumulative distribution function of W (x). Differentiation with respect to y
leads to the integral equation

fW (x)(y) =

∫ x

0
fW (x−z)(y − c) fXc(z) dz. (5.10)

5.4.4 Lemma (See e.g. Kahle et al. 2016, p. 14)
If W = {W (x); x ≥ 0} is a Wiener process without drift, i.e. with µ = 0, then the cumulative
distribution function FXc and the density fXc of the the first passage time Xc of the value c are
given for any x ≥ 0 by

FXc(x) = 2

(
1− Φ

(
c

σ
√
x

))

and

fXc(x) =
c√

2πσ2x3
exp

(
− c2

2σ2x

)
,

respectively, where Φ denotes the cumulative distribution function of the standard normal dis-
tribution.

Proof. At first note that

F ′
Xc

(x) = −2Φ′
(

c

σ
√
x

) −1

2

c

σ
√
x3

=
c√

2πσ2x3
exp

(
− c2

2σ2x

)
.

To prove the form of FXc(x), we use the fact that W (x) = σB(x) holds for all x ≥ 0. This

implies with B(x)√
x

∼ N (0, 1)

P (W (x) > y) = P (σB(x) > y) = P

(
B(x)√

x
>

y

σ
√
x

)
= 1− Φ

(
y

σ
√
x

)
. (5.11)

In particular, we get for y = c and z < x

P (W (x− z) > y − c) = 1− Φ

(
y − c

σ
√
x− z

)
= 1− Φ(0) =

1

2
.

Using this in equation (5.9) leads to

P (W (x) > c) =

∫ x

0
P (W (x− z) > y − c) fXc(z) dz =

∫ x

0

1

2
fXc(z) dz =

1

2
FXc(x)

which provides with (5.11) the assertion. �
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Obviously, the function FXc is strictly increasing with

lim
x→∞

FXc(x) = lim
x→∞

2

(
1− Φ

(
c

σ
√
x

))
= 2(1− Φ(0)) = 1

and

lim
x↓0

FXc(x) = lim
x↓0

2

(
1− Φ

(
c

σ
√
x

))
= 2

(
1− lim

z→∞
Φ(z)

)
= 0.

Hence FXc is indeed a cumulative distribution function, the cumulative distribution function of
a special Lévy distribution and a special Inverse Gamma distribution. It is also the limiting case
of the inverse Gaussian distribution with mean parameter µ → ∞.

5.4.5 Definition (Lévy distribution)
T has a Lévy distribution, shortly T ∼ L(µ, λ), with mean parameter µ ≥ 0 and shape parameter
λ > 0 if the density fT is given by

fT (t) =

√
λ

2π(t− µ)3
exp

(
− λ

2(t− µ)

)

for t > µ.

5.4.6 Definition (Inverse Gaussian distribution / Wald distribution, see e.g. Kahle et al. 2016,
p. 16)
T has a inverse Gaussian distribution or Wald distribution, shortly T ∼ IN (µ, λ), with mean
parameter µ > 0 and shape parameter λ > 0 if the density fT is given by

fT (t) =

√
λ

2πt3
exp

(−λ(t− µ)2

2µ2t

)
=

√
λ

2πt3
exp



−λ
(

t
µ − 1

)2

2t




for t > 0.

The expectation and variance of a random variable T with a inverse Gaussian distribution can
be given explicitly and are simple as those of the Birnbaum-Saunders distribution, see Kahle and
Liebscher (2013).
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5.4.7 Theorem (See Kahle et al. 2016, p. 16)
If W = {W (x); x ≥ 0} is a Wiener process with drift µ and volatility σ2, then the density fXc

of the first passage time Xc of the value c is given for any x ≥ 0 by

fXc(x) =
c√

2πσ2x3
exp

(
−(c− µx)2

2σ2x

)
=

c
σ√
2πx3

exp

(
−

c2

σ2

(
1− µ

cx
)2

2x

)
,

i.e. Xc ∼ IN
(

c
µ ,

c2

σ2

)
.

Proof. We have to show that fXc satisfies the equation (5.10) given by

fW (x)(y) =

∫ x

0
fW (x−z)(y − c) fXc(z) dz.

Since W (x) ∼ N (µx, σ2x) according to Lemma 5.4.3, equation (5.10) has the form

1√
2πσ2x

exp

(
−(y − µx)2

2σ2x

)

=

∫ x

0

1√
2πσ2(x− z)

exp

(
−(y − c− µ(x− z))2

2σ2(x− z)

)
· c√

2πσ2z3
exp

(
−(c− µz)2

2σ2z

)
dz.

Dividing this equation by the left-hand side leads to

1 =

∫ x

0

1√
2πσ2

c
√
x√

(x− z)z3
· exp

(
− 1

2σ2
·A(z)

)
dz, (5.12)

where

A(z) := −(y − µx)2

x
+

(y − c− µ(x− z))2

x− z
+

(c− µz)2

z

=
−z(x− z)(y − µx)2 + xz(y − µx− (c− µz))2 + x(x− z)(c− µz)2

xz(x− z)

=
−z(x− z)(y − µx)2 + xz((y − µx)2 − 2(y − µx)(c− µz) + (c− µz)2) + x(x− z)(c − µz)2

xz(x− z)

=
z2(y − µx)2 − 2xz(y − µx)(c− µz) + x2(c− µz)2

xz(x− z)

=
(zy − µxz)2 − 2(zy − µxz)(xc− µxz) + (xc− µxz)2

xz(x− z)

=
(zy − µxz − xc+ µxz)2

xz(x− z)
=

(zy − xc)2

xz(x− z)
=

(zy − zc+ zc− xc)2

xz(x− z)

=
(z(y − c)− (x− z)c)2

xz(x− z)
=

( z
x−z (y − c)− c)2

x z
x−z

.
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Now we use the substitution u = z
x−z leading to z = ux

1+u =: ϕ(u) with ϕ(0) = 0, limu→∞ ϕ(u) =
x,

ϕ′(u) =
(1 + u)x− ux

(1 + u)2
=

x

(1 + u)2
,

and

x− z = x− ux

1 + u
=

x+ xu− ux

1 + u
=

x

1 + u
.

The substitution rule

∫ ϕ(b)

ϕ(a)
g(z) dz =

∫ b

a
g(ϕ(u))ϕ′(u) du

provides then for the right-hand side of equation (5.12)

∫ x

0

1√
2πσ2

c
√
x√

(x− z)z3
· exp

(
− 1

2σ2
· A(z)

)
dz

=

∫ x

0

1√
2πσ2

c
√
x√

(x− z)4
(

z
x−z

)3 · exp
(
− 1

2σ2
· A(z)

)
dz

=

∫ ∞

0

1√
2πσ2

c
√
x√(

x
1+u

)4
u3

· exp
(
− 1

2σ2
· (u(y − c)− c)2

xu

)
x

(1 + u)2
du

=

∫ ∞

0

c√
2πσ2xu3

· exp


−

(y−c
c

)2
c2
(
u− c

y−c

)2

2σ2xu


 du.

This integral equals to one since it is the integral of the density of the inverse Gaussian distri-
bution with mean c

y−c and shape c2

σ2x . Hence the equation (5.10) holds. For the proof that fXc

is the unique solution of (5.10) see Kahle et al. (2016), p. 17/18. �

Up to here, we have assumed that the stochastic process Y starts at x0 = 0 with Y (0) = 0.
However, the first passage time of the value c can be also of interest when the Wiener process
starts at x0 > 0 with W (x0) = w0. Then we define the first passage time Xc as

Xc := inf{x ≥ x0; Y (x) ≥ c}

and have a similar result about its distribution as for the Wiener process.
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5.4.8 Definition (Shifted inverse Gaussian distribution)
T has a shifted inverse Gaussian distribution, shortly T ∼ SIN (µ, λ, t0), with mean parameter
µ > 0, shape parameter λ > 0, and shift t0 > 0 if the density fT is given by

fT (t) =

√
λ

2π(t− t0)3
exp

(−λ(t− t0 − µ)2

2µ2(t− t0)

)
=

√
λ

2π(t− t0)3
exp



−λ
(
(t−t0)

µ − 1
)2

2(t− t0)




for t > t0.

5.4.9 Theorem (See Kahle et al. 2016, p. 16)
If W = {W (x); x ≥ x0} is a Wiener process with drift µ and volatility σ2 starting at W (x0) = w0,
then the density fXc of the first passage time Xc of the value c is given for any x ≥ x0 by

fXc(x) =
c− w0√

2πσ2(x− x0)3
exp

(
−(c− w0 − µ(x− x0))

2

2σ2(x− x0)

)

=
c−w0
σ√

2π(x− x0)3
exp


−

(c−w0)2

σ2

(
1− µ

c−w0
(x− x0)

)2

2(x− x0)


 ,

i.e. Xc ∼ SIN
(
c−w0
µ , (c−w0)2

σ2 , x0

)
.

Proof. See Kahle et al. 2016, p. 16/17. �
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5.5 Statistical inference for Wiener processes

Although the path (realization) of a Wiener process w = {w(x); x ≥ x0} is a continuous
function w : [0,∞) → R it can be observed only at given points x1 < . . . < xI so that we
have only observations w(x1), . . . , w(xI). To be more general, we assume that eventually several
processes, J processes, are observed, eventually at different time points x1,j < . . . < xIj ,j for

j = 1, . . . , J . Then the available observations are w(j)(x1,j), . . . , w
(j)(xIj ,j) with j = 1, . . . , J .

w(j)(x1,j), . . . , w
(j)(xIj ,j) are realizations of W (j)(x1,j), . . . ,W

(j)(xIj ,j) for j = 1, . . . , J . We

assume here again x0,j = 0 and W (j)(x0,j) = 0 for simplicity. Set

si,j = xi,j − xi−1,j

for i = 1, . . . , Ij , j = 1, . . . , J . Then the increments

yi,j = w(j)(xi,j)− w(j)(xi−1,j)

are realizations of independent variables

Yi,j = W (j)(xi,j)−W (j)(xi−1,j) ∼ N (µ(xi,j − xi−1,j), σ
2(xi,j − xi−1,j)) = N (µ si,j, σ

2 si,j)

for i = 1, . . . , Ij , j = 1, . . . , J according to Lemma 5.4.3. Set

W∗ := (W (1)(x1,1), . . . ,W
(1)(xI1,1), . . . ,W

(J)(x1,J), . . . ,W
(J)(xIJ ,J))

⊤,

with realization

w∗ := (w(1)(x1,1), . . . , w
(1)(xI1,1), . . . , w

(J)(x1,J), . . . , w
(J)(xIJ ,J))

⊤.

Then according to Lemma 5.4.3, the likelihood function for the data set w∗ is given by

l(µ, σ2|w∗) =
J∏

j=1

Ij∏

i=1

1√
2πσ2si,j

exp

(
−(yi,j − µsi,j)

2

2σ2si,j

)
.
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5.5.1 Theorem (See Kahle et al. 2016, p. 27)
Set N =

∑J
j=1 Ij . Then the maximum likelihood estimator (µ̂, σ̂2) for (µ, σ2) based on w∗ is

given by

µ̂ =

∑J
j=1

∑Ij
i=1 yi,j∑J

j=1

∑Ij
i=1 si,j

=

∑J
j=1w

(j)
Ij ,j∑J

j=1 xIj ,j
,

σ̂2 =
1

N

J∑

j=1

Ij∑

i=1

(yi,j − µ̂si,j)
2

si,j
.

Proof. The loglikelihood function is

L(µ, σ2|w∗) =
J∑

j=1

Ij∑

i=1

(
−1

2
ln(2πσ2si,j)−

(yi,j − µsi,j)
2

2σ2si,j

)
.

Hence we get

∂

∂µ
L(µ, σ2|w∗) =

J∑

j=1

Ij∑

i=1

2(yi,j − µsi,j)si,j
2σ2si,j

=

J∑

j=1

Ij∑

i=1

yi,j − µsi,j
σ2

= 0

⇐⇒
J∑

j=1

Ij∑

i=1

yi,j = µ

J∑

j=1

Ij∑

i=1

si,j ⇐⇒ µ =

∑J
j=1

∑Ij
i=1 yi,j∑J

j=1

∑Ij
i=1 si,j

and

∂

∂σ2
L(µ, σ2|w∗) =

J∑

j=1

Ij∑

i=1

(
−1

2

1

σ2
+

(yi,j − µsi,j)
2

2σ4si,j

)

⇐⇒ Nσ2 =

J∑

j=1

Ij∑

i=1

(yi,j − µsi,j)
2

si,j
⇐⇒ σ2 =

1

N

J∑

j=1

Ij∑

i=1

(yi,j − µ̂si,j)
2

si,j
.

That the maximum is attained at (µ̂, σ̂2) follows as usually for the normal distribution. �
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5.5.2 Theorem
The information matrix for a single increment Yi,j is

I(µ,σ2)(Yi,j) =

(
si,j
σ2 0

0 1
2σ4

)

and the information matrix for the whole data set W∗, setting N =
∑J

j=1 Ij , is

I(µ,σ2)(W∗) =




∑J
j=1

∑Ij
i=1 si,j

σ2 0

0 N
2σ4


 =




∑J
j=1 xIj ,j

σ2 0

0 N
2σ4


 .

Proof. The proof of Theorem 5.5.1 provides

∂

∂µ
ln fµ,σ2(yi,j) =

yi,j − µsi,j
σ2

and

∂

∂σ2
ln fµ,σ2(yi,j) = −1

2

1

σ2
+

(yi,j − µsi,j)
2

2σ4si,j

so that

E(µ,σ2)

([
∂

∂µ
ln fµ,σ2(Yi,j)

]2)
= E(µ,σ2)

([
Yi,j − µsi,j

σ2

]2)
=

σ2si,j
σ4

=
si,j
σ2

,

E(µ,σ2)

([
∂

∂µ
ln fµ,σ2(Yi,j)

] [
∂

∂σ2
ln fµ,σ2(Yi,j)

])

= E(µ,σ2)

([
Yi,j − µsi,j

σ2

] [
−1

2

1

σ2
+

(Yi,j − µsi,j)
2

2σ4si,j

])

= E(µ,σ2)

(
−(Yi,j − µsi,j)

2σ4
+

(Yi,j − µsi,j)
3

2σ6si,j

)
= 0,

E(µ,σ2)

([
∂

∂σ2
ln fµ,σ2(Yi,j)

]2)
= E(µ,σ2)

([
−1

2

1

σ2
+

(Yi,j − µsi,j)
2

2σ4si,j

]2)

= E(µ,σ2)

(
1

4σ4
− (Yi,j − µsi,j)

2

2σ6si,j
+

(Yi,j − µsi,j)
4

4σ8s2i,j

)

=
1

4σ4
− σ2si,j

2σ6si,j
+

3σ4s2i,j
4σ8s2i,j

=
1

2σ4
.
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The form of I(µ,σ2)(W∗) follows from the fact that

I(µ,σ2)(W∗) =
J∑

j=1

Ij∑

i=1

I(µ,σ2)(Yi,j)

because of the independence of the Yi,j. �

Kahle et al. (2016) also consider the situation that x0,j > 0 and w(j)(x0,j) are unknown nui-
sance parameters for j = 1, . . . , J . In such case, the maximum likelihood estimators and the
information matrix are more complicated.

5.5.3 Theorem (Compare Kahle et al. 2016, p. 27)
If limN→∞ 1

N

∑J
j=1 xIj ,j = M > 0 and (µ̂, σ̂2) is the maximum likelihood estimator for (µ, σ2)

then CN given by

CN (w∗) =



(µ, σ2);

(µ̂ − µ)2

σ2

J∑

j=1

xIj ,j +
(σ̂2 − σ2)2

2σ4
N ≤ χ2

2;1−α





or

CN (w∗) =



(µ, σ2);

(µ̂ − µ)2

σ̂2

J∑

j=1

xIj ,j +
(σ̂2 − σ2)2

2σ̂4
N ≤ χ2

2;1−α





are asymptotic (1− α)-confidence sets for (µ, σ2).

5.5.4 Remark
Note that N =

∑J
j=1 Ij → ∞ means J → ∞ or Ij → ∞, compare Kahle et al. (2016), p. 24/25.

However the second case implies 1
J

∑J
j=1 xIj ,j → ∞ since limN→∞ 1

N

∑J
j=1 xIj ,j = M . Hence the

second case is usually not satisfied for degradation processes,

Proof. Because of limN→∞ 1
N

∑J
j=1 xIj ,j = M > 0 we have

lim
N→∞

1

N
I(µ,σ2)(W∗) =

(
M
σ2 0

0 1
2σ4

)
=: I(µ,σ2) (5.13)

so that

√
N

((
µ̂

σ̂2

)
−
(

µ

σ2

))
D−→ N (02, I

−1
(µ,σ2)

)

implying

√
NI

1/2
(µ,σ2)

((
µ̂

σ̂2

)
−
(

µ

σ2

))
D−→ N (02, I2×2)
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or with (5.13) and the Lemma of Slutzky

(
I(µ,σ2)(W∗)

)1/2
((

µ̂

σ̂2

)
−
(

µ

σ2

))

=

(
1

N
I(µ,σ2)(W∗)

)1/2 √
N

((
µ̂

σ̂2

)
−
(

µ

σ2

))
D−→ N (02, I2×2).

Hence we have

((
µ̂

σ̂2

)
−
(

µ

σ2

))⊤

I(µ,σ2)(W∗)

((
µ̂

σ̂2

)
−
(

µ

σ2

))
D−→ χ2

2

or using again the Lemma of Slutzky and the convergence of maximum likelihood estimators

((
µ̂

σ̂2

)
−
(

µ

σ2

))⊤

I(µ̂,σ̂2)(W∗)

((
µ̂

σ̂2

)
−
(

µ

σ2

))
D−→ χ2

2

which provides the assertion. �

Now we want to determine a prediction interval for the first passage time X
(1)
c . In particular, we

want to determine this if the first process satisfies v := max{w(1)(xi,1); i = 1, . . . , I1} < c so that

we want to determine a prediction interval for the first passage time X
(1)
c of c after x0 := xI1,1.

5.5.5 Theorem
If w0 := w(1)(xI1,1), qα(µ, λ, t0) is the α-quantile of the shifted inverse Gaussian distribution with
mean µ, shape λ, and shift t0, 0 ≤ η1 < η2 ≤ 1 with η2 − η1 = 1 − α1, CN is an asymptotic
(1− α2)-confidence set for (µ, σ2) then PN given by

PN (w∗) =

{ ⋃
(µ,σ)∈C(w∗)

[
qη1

(
c−w0
µ , (c−w0)2

σ2 , x0

)
, qη2

(
c−w0
µ , (c−w0)2

σ2 , x0

)]
, if v < c

[xi0−1,1, xi0,1] with i0 = argmin{i; w(1)(xi,1) ≥ c}, if v ≥ c,

is an asymptotic (1 − α1 − α2)-prediction interval for the first passage time X
(1)
c of c of the

process W (1) which is observed until x0 = xI1,1 with w(1)(x0) = w0.

5.5.6 Remark
Note that here the level of the prediction interval is (1 − α1 − α2) instead of (1 − α1)(1 − α2)

as we had before. This is due to the fact that X
(1)
c depends on W (1)(x1,1), . . . ,W

(1)(xI1,1) and
thus on W∗. Note also that nothing is to predict if v ≥ c.

Proof. Set V := max{W (1)(xi,1); i = 1, . . . , I1}, W0 = W (1)(x0), and

qηi(µ, σ
2, w0) := qηi

(
c− w0

µ
,
(c−w0)

2

σ2
, x0

)
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for i = 1, 2. In particular V < c implies W0 < c. Then we have

P(µ∗,σ2
∗
)

(
X(1)

c /∈ PN (W∗)
)

= P(µ∗,σ2
∗
)

(
X(1)

c /∈ PN (W∗), V ≥ c
)
+ P(µ∗ ,σ2

∗
)

(
X(1)

c /∈ PN (W∗), V < c
)

= P(µ∗,σ2
∗
)


X(1)

c /∈
⋃

(µ,σ)∈CN (W∗)

[
qη1(µ, σ

2,W0), qη2(µ, σ
2,W0)

]
, V < c


+ 0

= P(µ∗,σ2
∗
)


X(1)

c /∈
⋃

(µ,σ)∈CN (W∗)

[
qη1(µ, σ

2,W0), qη2(µ, σ
2,W0)

]
,

(µ∗, σ2
∗) ∈ CN (W∗), V < c

)

+ P(µ∗,σ2
∗
)


X(1)

c /∈
⋃

(µ,σ)∈CN (W∗)

[
qη1(µ, σ

2,W0), qη2(µ, σ
2,W0)

]
,

(µ∗, σ2
∗) /∈ CN (W∗), V < c

)

≤ P(µ∗,σ2
∗
)

(
X(1)

c /∈
[
qη1(µ∗, σ

2
∗ ,W0), qη2(µ∗, σ

2
∗ ,W0)

]
, V < c

)

+ P(µ∗,σ2
∗
)

(
(µ∗, σ2

∗) /∈ CN (W∗)
)
.

Since V depends only on W
(1)
x≤x0

, we obtain with the tower rule

lim
N→∞

P(µ∗,σ2
∗
)

(
X(1)

c /∈ PN(W∗)
)

≤ lim
N→∞

P(µ∗,σ2
∗
)

(
X(1)

c /∈
[
qη1(µ∗, σ

2
∗ ,W0), qη2(µ∗, σ

2
∗ ,W0)

]
, V < c

)
+ α2

= lim
N→∞

E(µ∗,σ2
∗
)

(
1I{X(1)

c /∈
[
qη1(µ∗, σ2

∗ ,W0), qη2(µ∗, σ2
∗ ,W0)

]
} · 1I{V < c}

)
+ α2

= lim
N→∞

E(µ∗,σ2
∗
)

(
E(µ∗,σ2

∗
)

(
1I{X(1)

c /∈
[
qη1(µ∗, σ

2
∗ ,W0), qη2(µ∗, σ

2
∗ ,W0)

]
}

·1I{V < c}
∣∣W (1)(x)x≤x0

))
+ α2

= lim
N→∞

E(µ∗,σ2
∗
)

(
E(µ∗,σ2

∗
)

(
1I{X(1)

c /∈
[
qη1(µ∗, σ

2
∗ ,W0), qη2(µ∗, σ

2
∗ ,W0)

]
}
∣∣W (1)(x)x≤x0

)

·1I{V < c}) + α2

(∗)
≤ E(µ∗, σ2

∗) (α1 · 1I{V < c}) + α2 ≤ α1 + α2.

Thereby (∗) follows from Theorem 5.4.9 and the fact that the stochastic part of W (1) given

W (1)(x)x≤x0 = w(1)(x)x≤x0 is a Wiener process W̃ starting at x0 with W̃ (x0) = w(1)(x0) = w0.
�
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5.6 Gamma processes for modeling degradation processes

Although the Wiener process tends to increase for µ > 0, it is not strictly increasing. A strictly
increasing stochastic process is given by the gamma process. It bases on the gamma distribution
so that we give at first some properties of the Gamma distribution. These can be shown easily by
the Laplace transform (also called moment-generating function) of a real-valued random variable
which provides a unique characterization of the distribution.

5.6.1 Definition
If T : Ω → R is a random variable then L : R → R is a Laplace transform of T if

LT (s) = E(e−sT )

for all s ∈ R.

5.6.2 Lemma
If T ∼ G(λ, β) then the Laplace transform of T for s ≥ 0 is given by

LT (s) =

(
λ

λ+ s

)β

.

Proof.

LT (s) =

∫ ∞

0
e−st λ

β tβ−1

Γ(β)
e−λt dt =

λβ

(λ+ s)β

∫ ∞

0

(λ+ s)β tβ−1

Γ(β)
e−(λ+s)t dt =

λβ

(λ+ s)β
. �

5.6.3 Corollary
If T1, . . . , TN are independent with Tn ∼ G(λ, βn) for n = 1, . . . , N then

∑N
n=1 Tn ∼ G(λ,∑N

n=1 βn).

Proof. The independence of T1, . . . , TN implies

L∑N
n=1 Tn

(s) = E
(
e−s

∑N
n=1 Tn

)

= E

(
N∏

n=1

e−s Tn

)
=

N∏

n=1

E
(
e−s Tn

)
=

N∏

n=1

(
λ

λ+ s

)βn

=

(
λ

λ+ s

)∑N
n=1 βn

which is the Laplace transform of a random variable with G(λ,∑N
n=1 βn) distribution. �

5.6.4 Corollary
If T ∼ G(λ, β) and c > 0 then cT ∼ G

(
λ
c , β
)
.
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Proof.

LcT (s) = E
(
e−scT

)
=

(
λ

λ+ sc

)β

=

(
λ
c

λ
c + s

)β

which is the Laplace transform of a random variable with G
(
λ
c , β
)

distribution. �

5.6.5 Definition (Gamma process, see Kahle et al. 2016, p. 68)
Let B : R+ → R

+ be a non-decreasing and right-continous function with B(0) = 0 and λ > 0. A
real valued stochastic process Y = {Y (x); x ≥ 0} is called a Gamma process with shape function
B and rate λ, shortly Y ∼ GP(λ,B), if

(i) Y (0) = 0,

(ii) Y (x2)− Y (x1) ∼ G(λ,B(x2)−B(x1)) for all 0 ≤ x1 ≤ x2,

(iii) the increments Y (xi+1) − Y (xi), i = 1, . . . , n, are independent for all n ∈ IN, n > 1,
and 0 ≤ x1 < x2 < . . . < xn+1.

5.6.6 Lemma
Y ∼ GP(λ,B) has the following properties:

(i) cY ∼ GP
(
λ
c , B

)
for all c > 0.

(ii) Y (x3) − Y (x1) = Y (x3) − Y (x2) + Y (x2) − Y (x1) ∼ G(λ,B(x3) − B(x2) + B(x2) − B(x1))
for all x3 > x2 > x1 ≥ 0.

(iii) Y (x2) ≥ Y (x1) for all x2 > x1 ≥ 0.

(iv) Y (x) ∼ G(λ,B(x)) for all x ≥ 0.

(v) If B satisfies B(x) = bx for all x ≥ 0 then Y (x2)− Y (x1) ∼ Y (x2 − x1) for all x2 > x1 ≥ 0,
which means that it has stationary increments.

Proof. (i) follows from Corollary 5.6.4 and (ii) from Corollary 5.6.3. Property (iii) follows from
(ii) which implies Y (x2) − Y (x1) ≥ 0. Because of Y (x) = Y (x) − Y (0) ∼ G(λ,B(x) − B(0)) =
G(λ,B(x)), the property (iv) holds. For (v) note that

Y (x2)− Y (x1) ∼ G(λ,B(x2)−B(x1))

= G(λ, b(x2 − x1)) = G(λ,B(x2 − x1)−B(0)) ∼ Y (x2 − x1)− Y (0). �

If B is a continuous function then, according to Lemma 5.6.6 (ii), a Gamma process Y ∼ GP(λ,B)
satisfies

Y (x) =

I∑

i=1

(
Y

(
i

I
x

)
− Y

(
i− 1

I
x

))
.
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However, a path (realization) y of a Gamma process is a pure jump process with infinite countable
jumps in a bounded interval. In particular,

Y (x) =

∞∑

n=1

Vn11[0,t](Un)

where M =
∑∞

n=1 e(Un,Vn) is a Poisson (counting) random measure on R
2
+ with intensity measure

ν(du, dv) = ϕ(du)
e−v

v
dv

where ϕ is the measure on R+ with ϕ([0, x]) = B(x) for all x ≥ 0, see Kahle et al. (2016), p.
71-74.

A path (realization) y of a Gamma process Y ∼ GP(λ,B) on [0, ξ] can be simulated with the
following algorithm (see Kahle et al. 2016, p. 81): Divide the interval [0, ξ] into a grid such that
0 = x0 < x1 < x2 < . . . < xI−1 < xI = ξ and set Y (0) = Y (x0) = 0 and i = 1. Iterate then the
following steps:

1. i = i+ 1.

2. Generate a random number z from G(λ,B(xi)−B(xi−1)).

3. Set y(xi) = y(xi−1) + z.

4. If i < I, go to step 1.

The simulated process will approach a realization of the Gamma process the better the smaller
max{xi − xi−1; i = 1, . . . , I} is.

The points y(0), y(x1), . . . , y(xI) can be interpolated to get the complete path. However, since
the path of a Gamma process is a pure jump process, a better approximations are

y(I−)(x) :=

I∑

i=1

y(xi−1)11[xi−1,xi)(x)

or

y(I+)(x) :=

I∑

i=1

y(xi)11(xi−1,xi](x)

so that y(I−)(x) ≤ y(x) ≤ y(I+)(x). Since these approximations are piecewise constant, it is
difficult to determine first passage times. Therefore Kahle et al. (2016) provides improved
approximations on the Pages 84-89.

Since the Gamma process is nondecreasing, the distribution of the first passage time Xc of a
critical c is easy to obtain.
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5.6.7 Theorem
The survival function FXc of the first passage time Xc of a Gamma process Y ∼ GP(λ,B) is
given by

FXc(x) = FG(λ,B(x))(c),

where FG(λ,B(x)) is the cumulative distribution function of the G(λ,B(x))-distribution.

Proof. Since Xc := inf{x; Y (x) ≥ c}, it holds

FXc(x) = P (Xc > x) = P (Y (x) < c) = P (Y (x) ≤ c) = FG(λ,B(x))(c)

because of Y (x) ∼ G(λ,B(x)) according to Lemma 5.6.6 (iv). �

The distribution of Xc has no nice form. However, an α-quantile can be easily calculated using
the fact that the cumulative distribution function FXc(x) = 1 − FXc(x) = 1 − FG(λ,B(x))(c) is
strictly increasing in x. The following algorithm with an given small ǫ > 0 can be used:
Set x0 = 0 and x1 > 0 arbitrary.
While FXc(x1) < α set x0 = x1 and x1 = 2x1.
While |FXc(x1)− α| > ǫ do:

if FXc

(
x0+x1

2

)
< α set x0 =

x0+x1
2 ,

if FXc

(
x0+x1

2

)
> α set x1 =

x0+x1
2 .

For the statistical inference, again the path (realization) of a Gamma process y = {y(x); x ≥
x0} can be observed only at given points x1 < . . . < xI so that we have only observations
y(x1), . . . , y(xI). To be more general, we assume here aigain that eventually several processes,
J processes, are observed, eventually at different time points x1,j < . . . < xIj ,j for j = 1, . . . , J .

Then the available observations are y(j)(x1,j), . . . , y
(j)(xIj ,j) which are realizations of Y (j)(x1,j),

. . . , Y (j)(xIj ,j) for j = 1, . . . , J . We assume here again x0,j = 0 and Y (j)(x0,j) = 0 for simplicity.
Then the increments

zi,j = y(j)(xi,j)− y(j)(xi−1,j)

are realizations of independent variables

Zi,j = Y (j)(xi,j)− Y (j)(xi−1,j) ∼ G(λ,B(xi,j)−B(xi−1,j))

for i = 1, . . . , Ij , j = 1, . . . , J . Set

Y∗ := (Y (1)(x1,1), . . . , Y
(1)(xI1,1), . . . , Y

(J)(x1,J), . . . , Y
(J)(xIJ ,J))

⊤,

with realization

y∗ := (y(1)(x1,1), . . . , y
(1)(xI1,1), . . . , y

(J)(x1,J), . . . , y
(J)(xIJ ,J))

⊤.
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Then the likelihood function for the data set w∗ is given by

l(λ,B|y∗) =
J∏

j=1

Ij∏

i=1

λB(xi,j )−B(xi−1,j )z
B(xi,j )−B(xi−1,j )−1
i,j e−λzi,j

Γ(B(xi,j)−B(xi−1,j))
.

Maximum likelihood estimators can be only obtained if the function B : [0,∞) → [0,∞) is given
by a parametric function B(θ) with θ ∈ R

p. The simplest function is given by B(t) = bt so that
θ = b ∈ R. With

vi,j := xi,j − xi−1,j

for i = 1, . . . , Ij , j = 1, . . . , J we get then

l(λ, b|y∗) =
J∏

j=1

Ij∏

i=1

λbvi,jz
bvi,j−1
i,j e−λzi,j

Γ(bvi,j)
.

However, also in this case, the maximum likelihood estimator has no simple form and must be
calculated numerically. Also the information matrix is complicated. Therefore we present here
only the naive (plug-in) prediction interval. For more explicit forms of the maximum likelihood
estimator and the information matrix, see Kahle et al. (2016), p.113-117.

5.6.8 Theorem (Naive (plug-in) prediction interval)

If qα(λ, θ) is the α-quantile of the first passage time X
(0)
c of c of the process Y (0) ∼ GP(λ,B(θ)),

0 ≤ η1 < η2 ≤ 1 with η2 − η1 = 1− α, and (λ̂, θ̂) is a consistent estimator for (λ, θ) based on y∗
then P given by

P(y∗) =
[
qη1

(
λ̂, θ̂
)
, qη2

(
λ̂, θ̂
)]

is an asymptotic (1 − α)-prediction interval for the first passage time X
(0)
c of c of the process

Y (0).

5.6.9 Remark
If a Gamma process Y starts at x0 > 0 with Y (x0) = y0, i.e. only (i) of Definition 5.6.5 is not
necessarily satisfied, then the process Y0 with Y0(x) = Y (x + x0) − y0 is a Gamma process in
the sense of Definition 5.6.5 with B0 given by B0(x) = B(x)−B(x0). In particular, for the first
passage time, we have Xc := inf{x ≥ x0; Y (x) ≥ c} and

FXc(x) = P (Xc > x) = P (Y (x) < c) = P (Y (x)− y0 < c− y0)

= P (Y (x)− y0 ≤ c− y0) = P (Y0(x− x0) ≤ c− y0) = FG(λ,B0(x−x0))(c− y0).

Hence also prediction intervals for the first passage time of c > y0 of the process Y (1) can be
constructed if the process is observed already until y(1)(x0) = y0.
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5.7 Crack growth via stochastic differential equations

The Paris-Erdogan law describes crack growth by the differential equation

dl

dt
= θ1l

θ2 .

5.7.1 Lemma
The differential equation given by the Paris-Erdogan law has a solution for θ2 6= 1 given by

l = l(t) = α1(s(t− α0))
sα2 (5.14)

with s = sign(1− θ2), sα0 < s t, α1 = (θ1[s(1− θ2)])
1

1−θ2 , α2 =
1

s(1−θ2)
> 0.

Proof. Since

sα2 − 1

sα2
=

1
1−θ2

− 1
1

1−θ2

= θ2 and
1

sα2
= 1− θ2

we get

l′(t) = sα2α1(s(t− α0))
sα2−1 s = α2α

1
sα2
1 α

sα2−1
sα2

1 [(s(t− α0))
sα2 ]

sα2−1
sα2 = α2α

1
sα2
1 l(t)θ2

=
1

s(1− θ2)
(θ1[s(1− θ2)])

1
1−θ2

(1−θ2)l(t)θ2 = θ1l(t)
θ2 . �

5.7.2 Lemma
(i) The inverse form of the solution (5.14) is

t = t(l) = β0 + β1 l
β2

with β0 = α0, β1 = s
(

1
α1

) s
α2 , β2 =

s
α2

.

(ii) The function t is then a solution of the differential equation

dt

dl
= θ1(s(t− θ0))

θ2

with s = sign(β1) = sign(β2), θ0 = β0, θ1 = s β2(s β1)
1
β2 > 0, θ2 = 1− 1

β2
.

Proof. We prove only (ii) for s = −1 since the case s = 1 is an exercise. For s = −1, we get

dt

dl
= β1 β2 l

β2−1 = −(−β1)β2

(
lβ2

)β2−1
β2 = −(−β1)

1
β2 (−β1)

1− 1
β2 β2

(
lβ2

)1− 1
β2

= −(−β1)
1
β2 β2

(
β0 − β0 − β1 l

β2

)1− 1
β2 = −(−β1)

1
β2 β2 (β0 − t)

1− 1
β2

= θ1 (−(t− θ0))
θ2 . �
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Hence we have in both cases a deterministic differential equation of the form

dy

dx
= θ1(s(y − θ0))

θ2 , s ∈ {−1, 1},

where y = l, x = t in the original form and y = t, x = l in the inverse form.

We obtain a stochastic differential equation (SDE) if we add to the deterministic differential
equation an error term

dY (x) = θ1(s(Y (x)− θ0))
θ2dx+ σθ3(x, Y (x)) dE(x). (5.15)

Often E(x) = B(x) is the Brownian motion. However, it could be also the Gamma process or
some other stochastic process. Then the process given by Y = {Y (x); x ≥ 0} is also a stochastic
process.

The process given by (5.15) with E(x) = B(x) is a special case of a diffusion process.

5.7.3 Definition (Diffusion process, see e.g. Iacus 2008, p. 33)
A real valued stochastic process Y = {Y (x); x ≥ 0} is called a diffusion process if

dY (x) = b(x, Y (x)) dx + σ(x, Y (x)) dB(x), (5.16)

with drift b : R+ × R → R, diffusion σ : R+ ×R → R and initial value Y (0).

Hence the drift and diffusion of the process given by (5.15) are given by

b(x, y) = θ1(s(y − θ0))
θ2 , σ(x, y) = σθ3(x, y).

Special cases are the Ornstein-Uhlenbeck (Vasicek) process, the Black-Scholes-Merton process
(geometric Brownian motion), and the Cox-Ingersoll-Ross process.
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5.7.4 Definition (Ornstein-Uhlenbeck / Vasicek process, Black-Scholes-Merton process / geo-
metric Brownian motion, Cox-Ingersoll-Ross process, see e.g. Iacus 2008, p. 43-48)
A diffusion process Y = {Y (x); x ≥ 0} is a

1. Ornstein-Uhlenbeck / Vasicek process if

dY (x) = (β1 − β2Y (x)) dx+ β3 dB(x), (5.17)

i.e. b(x, y) = β1 − β2 y, σ(x, y) = β3,

2. Black-Scholes-Merton process / geometric Brownian motion if

dY (x) = −β2Y (x) dx+ β3 Y (x) dB(x), (5.18)

i.e. b(x, y) = −β2 y, σ(x, y) = β3 y,

3. Cox-Ingersoll-Ross process if

dY (x) = (β1 − β2Y (x)) dx+ β3
√

Y (x) dB(x), (5.19)

i.e. b(x, y) = β1 − β2 y, σ(x, y) = β3
√
y.

The stoachastic differential equation (5.16) is interpreted as

Y (x) = Y (0) +

∫ x

0
b(u, Y (u)) du+

∫ x

0
σ(u, Y (u)) dB(u). (5.20)

The first ingral is the usual Riemann integral, only applied to a random function so that this
integral is a random variable in R. Its realization is the Riemann integral of

∫ x
0 b(u, Y (u)(ω)) du.

The second integral is a stochastic integral.

5.7.5 Definition (Stochastic integral / Itô integral, see e.g. Iacus 2008, p. 30, 31)
Let Πn([a, b])n∈IN be a sequence of partitions of [a, b] ⊂ R such that Πn([a, b]) = (xn0 , x

n
1 , . . . , x

n
n),

a = xn0 < xn1 < . . . , xnn−1 < xnn = b and limn→∞max{xnj+1 − xnj ; j = 0, 1, . . . , n − 1} = 0. If

Z : Ω → R
[a,b] is a stochastic process on [a, b], then the stochastic integral

I(Z) =

∫ b

a
Z(u) dB(u)

with respect to the Brownian motion is defined as the limit in quadratic mean of I(Z(n)), where
Z(n) is a simplified process of Z defined by

Z(n)(x)(ω) := Z(xnj )(ω), for xnj ≤ x < xnj+1,

and

I(Z(n)) :=

n−1∑

j=0

Z(n)(xnj ) {B(xnj+1)−B(xnj )} =

n−1∑

j=0

Z(xnj ) {B(xnj+1)−B(xnj )}.

The convergence I(Z(n)) → I(Z) is not in the usual sense since B has no finite variation.
However, I(Z(n)) and I(Z) are random variables so that E

(
[I(Z(n))− I(Z)]2

)
→ 0 must be
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satisfied. If this is satisfied, then Z is called Itô integrable. Necessary for this is that

∫ b

a
E(Z(u)2) du < ∞ (5.21)

is satisfied and that

Z is a stochastic process adapted to the natural filtration of the Brownian motion (5.22)

which means that Z(xnj ) and B(xnj+1)−B(xnj ) are independet for all j and n. This a reason why

the step function Z(n)(·)(ω) is defined via the values of Z(·)(ω) at the beginning of the intervals
of [xnj , x

n
j+1) and not in the middle of these intervals.

5.7.6 Lemma (See e.g. Iacus 2008, p. 31-33)
If (5.21) and (5.22) are satisfied so that the stochastic process Z : Ω → R

[a,b] is Itô integrable,
then

a) E

(
[I(Z(n))]2

)
=

n−1∑

j=0

E

(
[Z(n)(xnj )]

2
)
(xnj+1 − xnj ),

b) E

(∫ b

a
Z(u) dB(u)

)
= 0,

c) var

(∫ b

a
Z(u) dB(u)

)
=

∫ b

a
E
(
Z(u)2

)
du (Itô isometry).

Proof.

a) Property (5.22), E

(
B(xnj+1)−B(xnj )

)
= 0, and E

([
B(xnj+1)−B(xnj )

]2)
= xnj+1 − xnj yield

E

(
[I(Z(n))]2

)
= E






n−1∑

j=0

Z(n)(xnj ) {B(xnj+1)−B(xnj )}




2


(5.22)
= 2

n−1∑

j=0

n−1∑

l=j+1

E

(
Z(n)(xnj ) Z

(n)(xnl ) {B(xnj+1)−B(xnj )
)
· E
(
B(xnl+1)−B(xnl )

)

+

n−1∑

j=0

E

(
Z(n)(xnj )

2
)
· E
([

B(xnj+1)−B(xnj )
]2)

=
n−1∑

j=0

E

(
[Z(n)(xnj )]

2
)
(xnj+1 − xnj ).

b) The assertion follows from

E (I(Z)) = lim
n→∞

E

(
I(Z(n))

)
(5.22)
= lim

n→∞

n−1∑

j=0

E(Z(xnj )) E
(
B(xnj+1)−B(xnj )

)
= 0.
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c) The assertion follows from a) and b) using Riemann integration in the last step

var (I(Z))
(b))
= E

(
I(Z)2

)
= lim

n→∞
E

(
I(Z(n))2

)

(a))
= lim

n→∞
E

(
[Z(n)(xnj )]

2
)
(xnj+1 − xnj ) =

∫ b

a
E
(
Z(u)2

)
du. �

5.7.7 Lemma (See e.g. Iacus 2008, p. 33)
If Y : Ω → R

[a,b] and Z : Ω → R
[a,b] are Itô integrable stochastic processes and k, l ∈ R, then

∫ b

a
(k Y (x) + l Z(x)) dB(x) = k

∫ b

a
Y (x) dB(x) + l

∫ b

a
Z(x) dB(x).

5.7.8 Lemma (See e.g. Iacus 2008, p. 33)
If a, ξ ∈ R then

a)

∫ ξ

0
a dB(x) = a

∫ ξ

0
dB(x) = aB(ξ),

b)

∫ ξ

0
B(x) dB(x) =

1

2
B(ξ)2 − 1

2
ξ.

Using the Itô formula, the process given by (5.16) or (5.20), respectively, can be given more
explicitely for special diffusion processes.

5.7.9 Lemma (Itô formula, see e.g. Iacus 2008, p. 38)
Let be Y : Ω → R

[a,b] a stochastic process and f : R+ × R ∋ (x, y) → f(x, y) ∈ R a twice
differentiable function on both x and y with

fx(x, y)) :=
∂f(x, y)

∂x
, fy(x, y)) :=

∂f(x, y)

∂y
, fyy(x, y)) :=

∂2f(x, y)

∂y∂y
.

Then

f(x, Y (x)) = f(0, Y (0))+

∫ x

0
fx(u, Y (u)) du+

∫ x

0
fy(u, Y (u)) dY (u)+

1

2

∫ x

0
fyy(u, Y (u)) (dY (u))2

or in differential form

df(x, Y (x)) = fx(x, Y (x)) du+ fy(x, Y (x)) dY (x) +
1

2
fyy(x, Y (x)) (dY (x))2.

Integrals with respect to dY (u) are defined as for the Brownian motion. However integrals with
respect to (dY (u))2 are more complicated. But (dB(u))2 can be treated like du. Moreover terms
of the form (du · dB(u)) and (du)2 are of order o(du) so that they can be neglected.
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5.7.10 Lemma (Black-Scholes-Merton process / geometric Brownian motion, see e.g. Iacus
2008, p. 39,40)
The SDE given by (5.18) has the solution

Y (x) = Y (0) exp

{(
−β2 −

β2
3

2

)
x+ β3 B(x)

}

for x > 0.

Proof. Set

f(x, y) = Y (0) exp

{(
−β2 −

β2
3

2

)
x+ β3 y

}
.

Thus, f(x,B(x)) = Y (x) and

fx(x, y)) =

(
−β2 −

β2
3

2

)
f(x, y), fy(x, y)) = β3 f(x, y), fyy(x, y)) = β2

3 f(x, y).

The Itô formula yields

dY (x) = df(x,B(x)) =

(
fx(x,B(x)) +

1

2
fyy(x,B(x))

)
dx+ fy(x,B(x)) dB(x)

=

((
−β2 −

β2
3

2

)
Y (x) +

1

2
β2
3 Y (x)

)
dx+ β3 Y (x) dB(x) = −β2 Y (x) dx+ β3 Y (x) dB(x),

which is (5.18). �

This result is a special case of a more general result which is obtained by using f(x, y) = log(y)
in the Itô formula, namely that

Y (x) = Y (0) exp

{∫ x

0

(
b1(u)−

1

2
σ1(u)

2

)
du+

∫ x

0
σ1(u) dB(u)

}

is the solution of the SDE

dY (x) = b1(x)Y (x) dx+ σ1(x)Y (x) dB(x),

see Iacus (2008), p. 39.
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5.7.11 Lemma (Ornstein-Uhlenbeck / Vasicek process, Cox-Ingersoll-Ross process, see e.g.
Iacus 2008, p. 44 and 47)
The SDE given by

dY (x) = (β1 − β2Y (x)) dx+ β3 Y (x)γ dB(x),

with γ ∈ R has the solution

Y (x) =
β1
β2

+

(
Y (0)− β1

β2

)
e−β2 x + β3

∫ x

0
e−β2(x−u) Y (u)γ dB(u) (5.23)

for x > 0. In particular the SDE given by (5.17) has the solution

Y (x) =
β1
β2

+

(
Y (0)− β1

β2

)
e−β2 x + β3

∫ x

0
e−β2(x−u) dB(u)

and the the SDE given by (5.19) has the solution

Y (x) =
β1
β2

+

(
Y (0)− β1

β2

)
e−β2 x + β3

∫ x

0
e−β2(x−u)

√
Y (u) dB(u)

for x > 0.

Proof. Set

f(x, y) = y eβ2 x.

Then

fx(x, y)) = β2 f(x, y), fy(x, y)) = eβ2 x, fyy(x, y) = 0,

so that the Itô formula provides

Y (x) eβ2 x = f(x, Y (x)) = f(0, Y (0)) +

∫ x

0
β2 Y (u) eβ2 u du+

∫ x

0
eβ2 u d(Y (u))

= Y (0) +

∫ x

0
β2 Y (u) eβ2 u du+

∫ x

0
eβ2 u (β1 − β2Y (u)) du +

∫ x

0
eβ2 u β3 Y (u)γ dB(u)

= Y (0) +
β1
β2

(
eβ2 x − 1

)
+ β3

∫ x

0
eβ2 u Y (u)γ dB(u)

=
β1
β2

eβ2 x + Y (0)− β1
β2

+ β3

∫ x

0
eβ2 u Y (u)γ dB(u).

Multiplying by e−β2 x yields the assertion. �

The simulation of the Black-Scholes-Merton process (geometric Brownian motion) is easy ac-
cording to Lemma 5.7.10: as soon as the Brownian motion has been simulated, it can be directly
used to get the Black-Scholes-Merton process (geometric Brownian motion) (see Iacus 2008, p.
25). For the simulation of the Ornstein-Uhlenbeck / Vasicek process and the Cox-Ingersoll-Ross
process, also a Brownian motion must be simulated, but then it must be used in the Itô integrals
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appearing in Lemma 5.7.11. This is done by using the approximation of the Itô integral given
by Definition 5.7.5, see Iacus (2008), p.45.

Hence to simulate the solution Y (x) given by (5.23) use a fine partition 0 = xn0 < xn1 <
. . . , xnn−1 < xnn = x and calculate

Y (xj+1) =
β1
β2

+

(
Y (xj)−

β1
β2

)
e−β2 xj+1 + β3

∫ xj+1

xj

e−β2(xj+1−u) Y (u)γ dB(u)

≈ β1
β2

+

(
Y (0) − β1

β2

)
e−β2 xj+1 + β3e

−β2xj+1

j∑

i=1

eβ2 xj Y (xi)
γZi

(∗)
=

β1
β2

+

(
Y (xj)−

β1
β2

)
e−β2 (xj+1−xj) + β3e

−β2(xj+1−xj)Y (xj)
γZj.

Thereby (*) follows by the recursion

Y (xj+1) =
β1
β2

+

(
Y (xj)−

β1
β2

)
e−β2 (xj+1−xj) + β3e

−β2(xj+1−xj)Y (xj)
γZj

=
β1
β2

+

[
β1
β2

+

(
Y (xj−1)−

β1
β2

)
e−β2 (xj−xj−1) + β3e

−β2(xj−xj−1)Y (xj−1)
γZj−1

− β1
β2

]
e−β2 (xj+1−xj) + β3e

−β2(xj+1−xj)Y (xj)
γZj

=
β1
β2

+

(
Y (xj−1)−

β1
β2

)
e−β2 (xj+1−xj−1)

+ β3e
−β2(xj+1−xj−1)Y (xj−1)

γZj−1 + β3e
−β2(xj+1−xj)Y (xj)

γZj .

However, the solution of a diffusion process given by a stochastic differential equation is not
always known. Then a solution can be simulated by the Euler-Maruyama approximation of the
SDE. It uses the approximations of the integrals in the interpretation of the SDE in (5.20) via a
stochastic integral.

5.7.12 Definition (Euler-Maruyama approximation, Iacus 2008, p.62)
Let Y be a diffusion process given by

dY (x) = b(x, Y (x)) dx + σ(x, Y (x)) dB(x)

and 0 = x0 < x1 < . . . < xN−1 < xN = ξ a partition of [0, ξ]. Then the Euler-Maruyama
approximation of Y on [0, ξ] is given by

Y (xi+1) ≈ Y (xi) + b(xi, Y (xi)) (xi+1 − xi) + σ(xi, Y (xi)) (B(xi+1)−B(xi))

for i = 0, 1, . . . , N − 1.

The Euler-Maruyama approximation is the better the smaller the step lengths xi+1 − xi are.
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5.8 Crack growth prediction via stochastic differential equations

Assume that a diffucion process Y is observed at points 0 = x0 < x1 < . . . < xN−1 < xN = ξ
so that yn := y(xn) for n = 0, . . . , N are the observations. The observations yn := y(xn) are
realizations of Yn := Y (xn) for n = 0, . . . , N . The aim is to predict YF := Y (xF ) with xF > xN .

If a diffusion process has a explicit solution with known conditional distributions, then an un-
known parameter θ can be estimated by maximum likelihood estimation. This is the case for the
Black-Scholes-Merton process / geometric Brownian motion, the Ornstein-Uhlenbeck / Vasicek
process and the Cox-Ingersoll-Ross process.

5.8.1 Lemma (Ornstein-Uhlenbeck / Vasicek process, see e.g. Iacus 2008, p. 45)
If Y (x) is the solution of the SDE given by (5.17) then its conditional distribution given Y (0) =
y(0) is a normal distribution with

E(Y (x)|Y (0) = y(0)) =
β1
β2

+

(
y(0)− β1

β2

)
e−β2 x, var(Y (x)|Y (0) = y(0)) =

β2
3

(
1− e−2β2 x

)

2β2
.

Proof. This follows from Lemma 5.7.6 b) and c) using the explicit solution of the process given
in Lemma 5.7.11. In particular, we have with 5.7.6 b)

E

(∫ x

0
e−β2(x−u) dB(u)

)
= 0

and with 5.7.6 c)

var

(∫ x

0
e−β2(x−u) dB(u)

)
=

∫ x

0

(
e−β2(x−u)

)2
du

= e−2β2 x

∫ x

0
e2β2udu = e−2β2 x 1

2β2
e2β2u

∣∣∣∣
x

0

=
e−2β2 x

2β2

(
e2β2 x − 1

)
=

1− e−2β2 x

2β2
. �

5.8.2 Lemma (Black-Scholes-Merton process / geometric Brownian motion, see e.g. Iacus 2008,
p. 39,40)
If Y (x) is the solution of the SDE given by (5.18) then its conditional distribution given Y (0) =
y(0) is a lognormal distribution with

E(ln(Y (x))|Y (0) = y(0)) = ln(y(0)) +

(
β1 −

1

2
β2
2

)
x, var(ln(Y (x))|Y (0) = y(0)) = β2

2x.

Proof. The assertion follows at once from the logarithm of the explicit solution given by Lemma
5.7.10

ln(Y (x)) = ln(Y (0)) +

(
β1 −

β2
2

2

)
x+ β2 B(x)

and B(x) ∼ N (0, x). �
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The conditional distribution for the Cox-Ingersoll-Ross process is more complicated and can be
found for example in Iacus (2008), p.47/48.

5.8.3 Definition (Maximum likelihood estimation, see e.g. Iacus 2008, p. 111)
If fθ,Yn|Yn−1=yn−1

is the density of the conditional distribution of Yn given Yn−1 for n = 1, . . . , N ,
then the maximum likelihood estimator for θ based on the oberservations y0, y1, . . . , yN is given
by

θ̂ ∈ argmax

N∏

n=1

fθ,Yn|Yn−1=yn−1
(yn).

5.8.4 Definition (Point prediction for SDEs)
If fθ,YF |YN=yN is the density of the conditional distribution of YF given YN and θ̂ is an estimator
for θ, then the point predictor for the expectation Eθ(YF |YN ) of the process at future time
xF > xN is given by

E
θ̂
(YF |YN ) =

∫
y f

θ̂,YF |YN=yN
(y)dy.

It is more difficult to find prediction intervals. Moreover, the conditional distribution of Yn given
Yn−1 is only known in rar cases. Therefore we use now an appromiation strategy for SDEs of
the form

dY (x) = b(θ, Y (x)) dx+ σ b̃(θ, Y (x)) dE(x) (5.24)

with θ = (θ0, θ1, θ2)
⊤ and a process with independent increments, i.e. E(x2) − E(x1) and

E(x4)− E(x3) are independent for all (x1, x2), (x3, t4) with 0 ≤ x1 ≤ x2 ≤ x3 ≤ x4. This could
be the Brownian motion but other processes are also possible.

In particular, b(θ, y) = b̃(θ, y) is possible. This process makes sense if the volatility increases
proportional to the drift term. It has the advantage that it has only a four-dimensional unknown
parameter vector ζ, namely ζ = (θ0, θ1, θ2, σ).

5.8.5 Theorem (Prediction intervals based on confidence sets for dependent observations)
If the distributions of Y1, . . . , YN , YF are continuous and only dependening on an unknown param-
eter ζ, FYF ,ζ is the cumulative distribution function of YF , 0 ≤ η1 < η2 ≤ 1 with η2−η1 = 1−α1,
and C given by C(y1, . . . , yN ) is a (1−α2)-confidence set function for ζ based on y1, . . . , yN , then
P given by

P(y1, . . . , yN ) =
⋃

ζ∈C(y1,...,yN )

[
F−1
YF ,ζ(η1), F

−1
YF ,ζ(η2)

]

is a (1− α1 − α2)-prediction interval function for YF .

Proof. At first note that for any underlying parameter ζ∗

Pζ∗

(
YF ∈

[
F−1
YF ,ζ∗

(η1), F
−1
YF ,ζ∗

(η2)
])

= FYF ,ζ∗

(
F−1
YF ,ζ∗

(η2)
)
− FYF ,ζ∗

(
F−1
YF ,ζ∗

(η1)
)
= η2 − η1 = 1− α1
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is satisfied. Then we obtain for any ζ∗:

Pζ∗(YF /∈ P(Y1, . . . , YN )) = Pζ∗


YF /∈

⋃

ζ∈C(Y1,...,YN )

[
F−1
YF ,ζ(η1), F

−1
YF ,ζ(η2)

]



= Pζ∗


YF /∈

⋃

ζ∈C(Y1,...,YN )

[
F−1
YF ,ζ(η1), F

−1
YF ,ζ(η2)

]
, ζ∗ ∈ C(Y1, . . . , YN )




+ Pζ∗


YF /∈

⋃

ζ∈C(Y1,...,YN )

[
F−1
YF ,ζ(η1), F

−1
YF ,ζ(η2)

]
, ζ∗ /∈ C(Y1, . . . , YN )




≤ Pζ∗

(
YF /∈

[
F−1
YF ,ζ∗

(η1), F
−1
YF ,ζ∗

(η2)
])

+ Pζ∗ (ζ∗ /∈ C(Y1, . . . , YN )) ≤ α1 + α2. �

5.8.6 Remark
If Y1, . . . , YN , YF are independent distributed, then P given by Theorem 5.8.5 is a (1−α1)(1−α2)-
prediction interval function for YF according to Theorem 2.7.6. However, the independence not
given here.

Strategy for calculating an approximative (1 − 2α)-prediction interval for YF based
on y1, . . . , yN :

1) Find a (1− α)-confidence set CSDE(y1, . . . , yN ) for ζ = (θ0, θ1, θ2, σ)
⊤ by grid search.

2) Fix a number M of simulations.

3) For each ζ ∈ CSDE(y1, . . . , yN ):
3.1) simulate paths y(ζ, xN ) = yN , ym(ζ, xN+1), . . . , y

m(ζ, xF ) of the SDE
for m = 1, . . . ,M ,

3.2) calculate the median q(0.5, ζ), the α/2-quantile q(α/2, ζ),
and (1− α/2)-quantile q(1− α/2, ζ) of {y1(ζ, xF ), . . . , yM (ζ, xF )}.

3) Prediction of YF : median of {q(0.5, ζ); ζ ∈ CSDE(y1, . . . , yN )}.

4) Prediction interval: PSDE(y1, . . . , yN ) =
⋃

ζ∈CSDE(y1,...,yN )[q(α/2, ζ), q(1 − α/2, ζ)].

Construction of the confidence set
For the construction of the confidence set, we use the duality between statistical tests and
confidence sets, i.e. the (1 − α)-confidence set CSDE for ζ = (θ0, θ1, θ2, σ)

⊤ is the set all ζ∗ so
that a α-test for H0 : ζ = ζ∗ is not rejected.

Define the following residuals

Resn(ζ∗) :=
Yn − Yn−1 − b(θ∗, Yn−1) (xn − xn−1)√

(xn − xn−1) σ∗ b̃(θ∗, Yn−1)
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and the following sums

S1(ζ∗) =
1√

N − 1

N∑

n=2

Resn(ζ∗),

S2(ζ∗) =
1√

N − 1
√
3− 1

N∑

n=2

(Resn(ζ∗)2 − 1),

S3(ζ∗) =
1√

N − 1
√
15

N∑

n=2

Resn(ζ∗)
3,

S4(ζ∗) =
1√

N − 1
√
105 − 32

N∑

n=2

(Resn(ζ∗)4 − 3).

5.8.7 Definition (Residual-Moment-Test (ResMom-Test))
Reject H0 : ζ = ζ∗ if

there exists j = 1, 2, 3, 4 with |Sj(ζ∗)| > qN (0,1),1−α/8.

5.8.8 Theorem
Let be En = E(xn). If En − En−1 ∼ E0 for all n = 1, . . . , N , E(E0) = 0, E(E2

0) = 1, E(E3
0 ) = 0,

E(E4
0) = 3, E(E6

0 ) = 15, E(E8
0) = 105 then the residual-moment-test is an asymptotic α-level

test.

Proof. The Euler-Maruyama approximation (see Definition 5.7.12) provides

Yn − Yn−1 ≈ b(θ, Yn−1) (xn − xn−1) + σ b̃(θ, Yn−1) (En − En−1)

so that it holds approximately

Resn(ζ∗) =
Yn − Yn−1 − b(θ∗, Yn−1) (xn − xn−1)√

(xn − xn−1) σ∗ b̃(θ∗, Yn−1)

≈ 1√
(xn − xn−1)

(En − En−1) ∼ E0

and Res2(ζ∗), . . . , ResN (ζ∗) are independent. The central limit theorem applied to Res2(ζ∗)j,
. . . , ResN (ζ∗)j provides

Sj(ζ∗) −→ N (0, 1)

for N → ∞ and j = 1, 2, 3, 4 and thus the assertion using Bonferroni adjustment. �

The assumptions of Theorem 5.8.8 are in particular satisfied if the error process E is the Brownian
motion B.

To reduce the moment conditions for E0 used in Theorem 5.8.8 and the number of test statistics,
we can regard also test statistics based on data depth. Kustosz et al. (2015) have shown that
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data depth reduces in many cases to alternating signs of residuals. Since the signs of residuals
are only important we can regard

Rn(θ) = Yn − Yn−1 − b(θ, Yn−1) (xn − xn−1).

Then the depth of θ in the data Y1, . . . , YN with respect to the SDE (5.24) can be measured by

d3(θ, Y0, Y1, . . . , YN )

=
1(N
3

)
∑

1≤n1<n2<n3≤N

(1I{Rn1(θ) > 0, Rn2(θ) < 0, Rn3(θ) > 0}

+1I{Rn1(θ) < 0, Rn2(θ) > 0, Rn3(θ) < 0})

or

d4(θ, Y0, Y1, . . . , YN )

=
1

N − 4

N−3∑

n=2

(1I{Rn(θ) > 0, Rn+1(θ) < 0, Rn+2(θ) > 0, Rn+3(θ) < 0}

+1I{Rn(θ) < 0, Rn+1(θ) > 0, Rn+2(θ) < 0, Rn+3(θ) > 0}) .

Kustosz, Müller and Wendler (2016) showed that a depth measure with K + 1 residuals should
be used for a K-dimensional parameter θ so that only d4 will be appropriate here since θ is
three-dimensional. However it turned out that the depth measure d3 works also very good for
parameters of dimension higher than 2. The reason is that d3 is based on much more subsets
than d4, namely on

(N
3

)
subsets instead of N − 4 subsets. However, the computation of d3 takes

much more time. The R Package GSignTest of Melanie Horn provides in the function calcDepth

a fast algorithm to compute K-depth. However, this package needs Rtools so that the newest
Rtools should be implemented.

> library(devtools)

> devtools::install$\underline{\mbox{ }}$github("melaniehorn/GSignTest")

> library(GSignTest)}

For example, the depth d3 of a residual vector (1,−1, 1,−1, 1)⊤ is then calculated by

> calcDepth(resy=c(1,-1,1,-1,1),K=3)

[1] 0.5

Define the following statistics

S∗
2(ζ∗) = S2(ζ∗) =

1√
N − 1

√
3− 1

N∑

n=2

(Resn(ζ∗)2 − 1).

S∗
3(ζ∗) = N

(
d3(θ∗, Y1, . . . , YN )− 1

4

)
.

S∗
4(ζ∗) =

√
N − 4√
15/64

(
d4(θ∗, Y1, . . . , YN )− 1

8

)
. (5.25)
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While the data depths and thus S∗
3(ζ∗) and S∗

4(ζ∗) are outlier robust, this is not the case for
S∗
2(ζ∗) given by (5.25). Hence it would make sense to replace S∗

2(ζ∗) by an outlier robust version.

5.8.9 Definition (Depth-Test 1)
Reject H0 : ζ = ζ∗ if

|S∗
2(ζ∗)| > qN (0,1),1−α/4 or S∗

4(ζ∗) < qN (0,1),α/2.

5.8.10 Theorem
If En−En−1 ∼ E0 for all n = 1, . . . , N , med(E0) = 0, E(E2

0) = 1, E(E4
0) = 3 then the Depth-Test

1 is an asymptotic α-level test.

Note the conditions E(E2
0) = 1, E(E4

0) = 3 are only necessary because of the use of the nonrobust
statistic S∗

2(ζ∗) given by (5.25).

Proof of Theorem 5.8.10. In Kustosz, Müller and Wendler (2016) it is shown S∗
4(ζ∗) −→

N (0, 1) for N → ∞. Moreover the test statistic S∗
4(ζ∗) indicates against the null hypothesis if

it is too small, i.e. the depth of the parameter θ in the data set is too small. The convergence
S∗
2(ζ∗) −→ N (0, 1) follows as in the proof of Theorem 5.8.8. �

The asymptotic distribution of S∗
3(ζ∗) follows from the result of Kustosz, Leucht and Müller

(2016) which was shown for an AR(1) process. Since the proof bases only on the independence
and identical distribution of the residuals, the result holds for any i.i.d. residuals. In particular,
the asymptotic distribution is not a normal distribution. The α-quantiles of this distribution can
be obtained via the rexpar package. For example, the α-quantiles for α = 0.05, 0.01, 0.001 can
be obtained as follows:

> SimQuants[round(SimQuants[, 1], digits = 3) == round((0.05), digits = 3), 2]

qvals

-1.254541

> SimQuants[round(SimQuants[, 1], digits = 3) == round((0.01), digits = 3), 2]

qvals

-2.240396

> SimQuants[round(SimQuants[, 1], digits = 3) == round((0.001), digits = 3), 2]

qvals

-3.71403

5.8.11 Definition (Depth-Test 2)
Reject H0 : ζ = ζ∗ if

|S∗
2(ζ∗)| > qN (0,1),1−α/4 or S∗

3(ζ∗) < q∗α/2,

where q∗α is the α-quantile of the asymptotic distribution of S∗
3(ζ∗).
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5.8.12 Theorem
If En−En−1 ∼ E0 for all n = 1, . . . , N , med(E0) = 0, E(E2

0) = 1, E(E4
0) = 3 then the Depth-Test

2 is an asymptotic α-level test.

Having an α-level test for H0 : ζ = ζ∗, then, by the well known relationship between tests and
confidence sets, a (1− α)-confidence set for ζ can be constructed by

C(y1, . . . , yn) := {ζ∗; H0 : ζ = ζ∗ is not rejected}.

Prediction intervals for YF at xF > xN can be constructed by simulating the stochastic processes
ym1 (ζ), . . . , ymL (ζ) with Euler-Maruyama approximation at L points xN < x∗1 < x∗2 < . . . < x∗L =
xF using ζ ∈ C(y1, . . . , yn) and setting ym0 (ζ) = yN for m = 1, . . . ,M . Let q̂Mα (ζ) be the α-
quantile of the simulated observations y1L(ζ), . . . , y

M
L (ζ). If M is large enough and C(y1, . . . , yn)

is a (1− α2)-confidence set then

P(y1, . . . , yn) :=
⋃

ζ∈C(y1,...,yN )

[
q̂Mη1 (ζ), q̂

M
η2 (ζ)

]

with 0 ≤ η1 < η2 ≤ 1 and η2 − η1 = 1 − α1 is an approximate (1 − α1 − α2)-prediction interval
for YF at xF .

Some prediction intervals for α1 = α2 = α/2 and η1 = α/4, η2 = 1− α/4 based on the residual-
moment-test and the Depth-Test 1 using b(θ, y) = b̃(θ, y) = θ1(θ0− y)θ2 are shown in Figure 5.3.
Figure 5.4 provides a comparison of the treated prediction intervals using 34 series of the data
of Virkler et al. (1979). However, these prediction intervals were calculated by an old method
which provides smaller prediction intervals. Hence it would be good to repeat the calculation as
described above!
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Figure 5.3: Prediction intervals for the Virkler data with the residual-momemt-test and the
depth-test
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Figure 5.4: Comparison of prediction intervals using 34 series of the Virkler data
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Chapter 6

Reliability of systems

6.1 Types of systems

We assume that a system has I components. Let T∗ the lifetime of the system, the time up to
failure of the system. The lifetimes of the components are denoted by Ti, i = 1, . . . , I. Of special
interest is often the availability of the system at some time t∗.

6.1.1 Definition (Availability of a system and of components)
The availability of a system with lifetime T∗ at time t∗ is given by the random variable

Z∗ := 11(t∗ ,∞)(T∗)

with realization z∗ and the corresponding event is denoted by

D∗ := {T∗ > t∗} = {Z∗ = 1}.

The availability of a component i ∈ {1, . . . , I} with lifetime Ti at time t∗ is given by the random
variable

Zi := 11(t∗ ,∞)(Ti)

with realization zi and the corresponding event is denoted by

Di := {Ti > t∗} = {Zi = 1}.

A system with components in series connection is available at time t∗ if all components are
available at time t∗.
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6.1.2 Definition (Series system)
A system is called a system with components in series connection at time t∗ if

D∗ =
I⋂

i=1

Di or Z∗ =
I∏

i=1

Zi,

respectively. A system with components in series connection at any time t∗ ≥ 0 is called a series
system.

A system with components in parallel connection is available at time t∗ if at least one of the
components is available at time t∗.

6.1.3 Definition (Parallel system)
A system is called a system with components in parallel connection at time t∗ if

D∗ =
I⋃

i=1

Di or Z∗ = 1−
I∏

i=1

(1− Zi),

respectively. A system with components in parallel connection at any time t∗ ≥ 0 is called a
parallel system.

A system may be available at time t∗ if at least K of the components is available at time t∗.
These system are usually called k-out-of-n systems, see e.g. Kahle and Liebscher (2013), since
often the number of components is denoted by n. However, here we will call them K-out-of-I
systems.

6.1.4 Definition (K-out-of-I system)
A system is called a K-out-of-I system at time t∗ if

D∗ =
⋃

1≤i1<i2<...<iK≤I

K⋂

k=1

Dik or Z∗ = 1−
∏

1≤i1<i2<...<iK≤I

(1−
K∏

k=1

Zik),

respectively. If this holds for any time t∗ ≥ 0 then the system is called K-out-of-I system.

6.1.5 Example
A more complex system with 6 components is for example given by

D∗ = (D1 ∩ (D2 ∪D6) ∩D3) ∪ (D1 ∩D4) ∪ (D3 ∩D5).

Then Z∗ has the form

Z∗ = 1− [1− Z1 · (1− (1− Z2) · (1− Z6)) · Z3] [1− Z1 · Z4] [1− Z3 · Z5].
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More complex system are also possible. In particular, complex systems are given by a function
ϕ : {0, 1}I −→ {0, 1} so that z∗ = ϕ(z1, . . . , zI) for all (z1, . . . , zI)

⊤ ∈ {0, 1}I . Define ϕi :
{0, 1}I+1 −→ {0, 1} by

ϕi(y, z1, . . . , zI) := ϕ(z1, . . . , zi−1, y, zi+1, . . . , zI)

for i = 1, . . . , I.

6.1.6 Definition (Irrelevant component)
A component i ∈ {1, . . . , I} is called irrelevant in the system given by ϕ : {0, 1}I −→ {0, 1} if

ϕi(0, z1, . . . , zI) = ϕi(1, z1, . . . , zI)

for all (z1, . . . , zI)
⊤ ∈ {0, 1}I .

6.1.7 Definition (Coherent system)
A system given by ϕ : {0, 1}I −→ {0, 1} is coherent if
(i) Each component i ∈ {1, . . . , I} is not irrelevant.
(ii) ϕi(0, z1, . . . , zI) ≤ ϕi(1, z1, . . . , zI) for all i ∈ {1, . . . , I} and all (z1, . . . , zI)

⊤ ∈ {0, 1}I .

6.1.8 Example
Consider the system given by D∗ = D1 ∪ (D2 ∩ D4) with I = 4 components. Then we have
Z∗ = 1− [1− Z1] · [1− Z2 · Z4] and

ϕ(z1, z2, z3, z4) = 1− [1− z1] · [1− z2 · z4],
ϕ1(0, z1, z2, z3, z4) = 1− [1− 0] · [1− z2 · z4] = z2 · z4,
ϕ1(1, z1, z2, z3, z4) = 1− [1− 1] · [1− z2 · z4] = 1 ≥ ϕ1(0, z1, z2, z3, z4),

ϕ2(0, z1, z2, z3, z4) = 1− [1− z1] = z1,

ϕ2(1, z1, z2, z3, z4) = 1− [1− z1] · [1− z4] ≥ ϕ2(0, z1, z2, z3, z4),

ϕ3(0, z1, z2, z3, z4) = ϕ3(1, z1, z2, z3, z4),

ϕ4(0, z1, z2, z3, z4) = 1− [1− z1] = z1,

ϕ4(1, z1, z2, z3, z4) = 1− [1− z1] · [1− z2] ≥ ϕ4(0, z1, z2, z3, z4).

Hence the system given by ϕ is not coherent. However it would be coherent if the component
given by Z3 is excluded.

6.1.9 Example
A system given by

ϕ(z1, z2, z3) = 1− z1(1− z2 · z3)

is not coherent since ϕ1(0, z1, z2, z3) = 1 > 0 = z2 · z3 = ϕ1(1, z1, z2, z3) if z2 = 0 or z3 = 0.
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6.2 Systems with independent components

In this section we assume that the lifetimes T1 . . . , TI of the components of a system are inde-
pendent. Let the cumulative distribution function and the survival function of the lifetime of
component i be Fθi,i and F θi,i, respectively, for i = 1, . . . , I.

6.2.1 Theorem (Lifetime of series systems)
If the lifetimes T1 . . . , TI are independent, then the survival function F θ1,...,θI and the cumulative
distribution function Fθ1,...,θI of a series system at t∗ are given by

F θ1,...,θI (t∗) =
I∏

i=1

F θi,i(t∗) and Fθ1,...,θI (t∗) = 1−
I∏

i=1

(1− Fθi,i(t∗)) .

Proof. Because of the independence of T1 . . . , TI we get

F θ1,...,θI (t∗) = Pθ1,...,θI (T∗ > t∗) = Pθ1,...,θI (D∗)

= Pθ1,...,θI (
I⋂

i=1

Di) =
I∏

i=1

Pθ1,...,θI (Di) =
I∏

i=1

Pθ1,...,θI (Ti > t∗) =
I∏

i=1

F θi,i(t∗).

6.2.2 Corollary
If T1 ∼ E(λ1), . . . , TI ∼ E(λI) are independent, then the lifetime of a series system satisfies
T∗ ∼ E(∑I

i=1 λi).

6.2.3 Corollary
If the lifetimes T1 . . . , TI are i.i.d. with Fθ = Fθi,i and F θ = F θi,i for i = 1, . . . , I, then the
survival function F θ,∗ := F θ1,...,θI and the cumulative distribution function Fθ,∗ := Fθ1,...,θI of a
series system at t∗ are given by

F θ,∗(t∗) = F θ(t∗)
I and Fθ,∗(t∗) = 1− (1− Fθ(t∗))

I .
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6.2.4 Theorem (Lifetime of parallel systems)
If the lifetimes T1 . . . , TI are independent, then the survival function F θ1,...,θI and the cumulative
distribution function Fθ1,...,θI of a parallel system at t∗ are given by

F θ1,...,θI (t∗) = 1−
I∏

i=1

(
1− F θi,i(t∗)

)
and Fθ1,...,θI (t∗) =

I∏

i=1

Fθi,i(t∗).

Proof. Because of the independence of T1 . . . , TI we get

Fθ1,...,θI (t∗) = Pθ1,...,θI (T∗ ≤ t∗) = Pθ1,...,θI (D∗)

= Pθ1,...,θI (

I⋃

i=1

Di) == Pθ1,...,θI (

I⋂

i=1

Di) =

I∏

i=1

Pθ1,...,θI (Di) =

I∏

i=1

Pθ1,...,θI (Ti ≤ t∗) =
I∏

i=1

Fθi,i(t∗).

6.2.5 Corollary
If the lifetimes T1 . . . , TI are i.i.d. with Fθ = Fθi,i and F θ = F θi,i for i = 1, . . . , I, then the
survival function F θ,∗ := F θ1,...,θI and the cumulative distribution function Fθ,∗ := Fθ1,...,θI of a
parallel system at t∗ are given by

F θ,∗(t∗) = 1−
(
1− F θ(t∗)

)I
and Fθ,∗(t∗) = Fθ(t∗)

I .

6.2.6 Theorem (Lifetime of K-out-of-I systems)
If the lifetimes T1 . . . , TI are i.i.d. with Fθ = Fθi,i and F θ = F θi,i for i = 1, . . . , I, then the
survival function F θ,∗ := F θ1,...,θI and the cumulative distribution function Fθ,∗ := Fθ1,...,θI of a
K-out-of-I system at t∗ are given by

F θ,∗(t∗) =
I∑

i=K

(
I

i

)
F θ(t∗)

i
(
1− F θ(t∗)

)I−i
and Fθ,∗(t∗) = 1−

I∑

i=K

(
I

i

)
(1− Fθ(t∗))

i Fθ(t∗)
I−i.

Proof. It holds

D∗ = {T∗ > t∗} =

{
I∑

i=1

Zi ≥ K

}
= {Y ≥ K}

with Y :=
∑I

i=1 Zi. Since Zi = 11(t∗,∞)(Ti) ∼ Bin(1, p) with p := Pθ(Zi = 1) = Pθ(Ti > t∗) =
F θ(t∗) we have Y ∼ Bin(I, p) so that

F θ,∗(t∗) = Pθ(T∗ > t∗) = Pθ(Y ≥ K)

=

I∑

i=K

(
I

i

)
pi(1− p)I−i =

I∑

i=K

(
I

i

)
F θ(t∗)

i
(
1− F θ(t∗)

)I−i
.�
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6.2.7 Lemma
If limy→∞ y (1 − F (y)) = 0, then the expectation of a random variable Y with positive support
and cumulative distribution function F is given by

E(Y ) =

∫ ∞

0
(1− F (y)) dy.

Proof. With partial integration we get with f = F ′

∫ ∞

0
(1− F (y)) dy = y (1− F (y))

∣∣∞
0

−
∫ ∞

0
y (−f(y)) dy =

∫ ∞

0
y f(y) dy = E(Y ).

6.2.8 Theorem (See Kahle and Liebscher 2013, p. 191)
If T1 . . . , TI ∼ E(λ) are i.i.d., then the expected life time of a K-out-of-I system T∗ is given by

E(T∗) =
1

λ

I∑

i=K

1

i
.

Proof. The cumulative distribution function of T∗ is Fθ,∗ given by Theorem 6.2.6 with θ = λ
and this satisfied for the exponential distribution of the Ti’s

1− Fθ,∗(t) =
I∑

i=K

(
I

i

)
(1− Fθ(t))

i Fθ(t∗)
I−i =

I∑

i=K

(
I

i

)(
e−λt

)i (
1− e−λt

)I−i

=

I∑

i=K

(
I

i

)
e−iλt

I−i∑

l=0

(
I − i

l

)
1l
(
−e−λt

)I−i−l

=
I∑

i=K

(
I

i

)
e−iλt

I−i∑

l=0

(
I − i

l

)
(−1)I−i−le−(I−i−l)λt

=

I∑

i=K

(
I

i

) I−i∑

l=0

(
I − i

l

)
(−1)I−i−le−(I−l)λt.

Hence we have limt→∞ t(1− Fθ,∗(t)) = 0 so that we get with Lemma 6.2.7

E(T∗) =
∫ ∞

0
(1− Fθ,∗(t)) dt =

I∑

i=K

(
I

i

) I−i∑

l=0

(
I − i

l

)
(−1)I−i−l

∫ ∞

0
e−(I−l)λtdt

=

I∑

i=K

(
I

i

) I−i∑

l=0

(
I − i

l

)
(−1)I−i−l 1

(I − l)λ
=

1

λ

I∑

i=K

(
I

i

) I−i∑

l=0

(
I − i

l

)
(−1)I−i−l 1

(I − l)
.

Hence we have only to show that

(
I

i

) I−i∑

l=0

(
I − i

l

)
(−1)I−i−l 1

(I − l)
=

1

i
(6.1)
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holds for all I ∈ IN and all i ∈ {1, . . . , I}. We do an induction over m = I − i. The base case
with m = I − i = 0 ⇔ i = I is satisfies because of

(
I

i

) I−i∑

l=0

(
I − i

l

)
(−1)I−i−l 1

(I − l)
=

(
I

I

)(
0

0

)
(−1)0

1

(I − 0)
=

1

I
.

For the inductive step, we assume that (6.1) holds for all (i, I) with I − i ≤ m − 1 and prove
it for (i, I) with I − i = m. In particular (6.1) holds then for (i, I − 1) and (i + 1, I) since
(I − 1)− i = I − (i+ 1) = I − i− 1 = m− 1. With the binomial formula

(
n+ 1

k + 1

)
=

(
n

k

)
+

(
n

k + 1

)
,

we get

(
I

i

) I−i∑

l=0

(
I − i

l

)
(−1)I−i−l 1

(I − l)

=

(
I

i

)((
I − i

0

)
(−1)I−i−0 1

(I − 0)
+

I−i−1∑

l=1

((
I − i− 1

l − 1

)
+

(
I − i− 1

l

))
(−1)I−i−l 1

(I − l)

+

(
I − i

I − i

)
(−1)I−i−(I−i) 1

(I − (I − i))

)

=

(
I

i

)(
(−1)I−i 1

I
+

I−i−1∑

l=1

(
I − i− 1

l − 1

)
(−1)I−i−l 1

(I − l)

+

I−i−1∑

l=1

(
I − i− 1

l

)
(−1)I−i−l 1

(I − l)
+

1

i

)

=

(
I

i

)
(−1)I−i 1

I
+

(I−1)−i∑

l=1

(
(I − 1) − i

l − 1

)
(−1)(I−1)−i−(l−1) 1

(I − 1− (l − 1))

+

I−(i+1)∑

l=1

(
(I − (i+ 1)

l

)
(−1)I−(i+1)−l+1 1

(I − l)
+

1

i



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=

(
I

i

)
(−1)I−i 1

I
+

(I−1)−i−1∑

l=0

(
(I − 1)− i

l

)
(−1)(I−1)−i−l 1

(I − 1− l)

−
I−(i+1)∑

l=1

(
(I − (i+ 1)

l

)
(−1)I−(i+1)−l 1

(I − l)
+

1

i




=

(
I

i

)
(−1)I−i 1

I
+

(I−1)−i∑

l=0

(
(I − 1)− i

l

)
(−1)(I−1)−i−l 1

(I − 1− l)

−
(
(I − 1)− i

(I − 1)− i

)
(−1)(I−1)−i−((I−1)−i) 1

(I − 1− ((I − 1)− i))

−
I−(i+1)∑

l=0

(
(I − (i+ 1)

l

)
(−1)I−(i+1)−l 1

(I − l)
+

(
(I − (i+ 1)

0

)
(−1)I−(i+1)−0 1

(I − 0)
+

1

i




=

(
I

i

)

(
I − 1

i

)−1(I − 1

i

) (I−1)−i∑

l=0

(
(I − 1)− i

l

)
(−1)(I−1)−i−l 1

(I − 1− l)

−
(

I

i+ 1

)−1( I

i+ 1

) I−(i+1)∑

l=0

(
(I − (i+ 1)

l

)
(−1)I−(i+1)−l 1

(I − l)




Because (6.1) holds for (i, I − 1) and (i+ 1, I), we obtain

(
I

i

) I−i∑

l=0

(
I − i

l

)
(−1)I−i−l 1

(I − l)

=

(
I

i

)((
I − 1

i

)−1 1

i
−
(

I

i+ 1

)−1 1

i+ 1

)

=
I!

(I − i)! i!

(
(I − 1− i)! i!

(I − 1)!

1

i
− (I − (i+ 1))! (i+ 1)!

I!

1

i+ 1

)

=
I

(I − i) i
− 1

I − i
=

1

i
. �

If we observe the life times T∗,1, . . . , T∗,N of several i.i.d. systems with i.i.d. components, then
the unknown parameter θ can be estimated by the maximum likelihood method and confidence
sets can be obtained by the likelihood ratio tests. The densities which are necessary for the
maximum likelihood estimator and the confidence sets based on the likelihood ratio test can be
obtained by differentiation of the cumulative distribution function.
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6.3 Load sharing systems

Often the failures of the components in a system do not happen independently of the failure of the
other components. This happens in particular in systems sharing a common external load. As
soon as one component fails then the load has to be redistributed over the remaining components
so that the remaining components has to carry more load. In particular the lifetimes of the
components are not stochastically independent. Such systems are called load sharing systems.

6.3.1 Example
Example 1.0.1 shows the growth curve of the crack width of an initial crack in a prestressed
concrete beam. The jumps in the growth curve are caused by the breaking of the tension wires.
Since there are 35 tension wire, up to 35 jumps could be observed. However, usually a much
smaller number of breaks are observed since then the failure of the beam happens.

The jumps can be treated as outliers and the remaining process can be analyzed by models
derived from the Paris-Erdogan equation, see Capter 5. However, these jumps are innovation
outliers and the dynamic of this process is mainly caused by these jumps. Moreover, the time
points of these jumps can be detected quite exactly by acoustical measurements. Hence in this
chapter, we will consider only these time points of jumps. In particular, we have a load sharing
system where the component of the system are the 35 tension wires. As soon as one tension wire
breaks then the remaining tension wires has to carry a higher load.

The time points 0 = T0 < T1 < T2 < . . . < TI of failures of the components of a load sharing
system can be modelled by a one-dimensional simple point process as introduced in Section 4.2.
The one-dimensional versions of the Poisson point process and the Cox point process defined in
Definition 4.2.5 are the homogeneous and the inhomogeneous Poisson process.

6.3.2 Definition (Poisson process, see e.g. Jacobsen 2006, p. 19, or Krengel 1991, p. 222-225)
If d = 1, then the Cox point process is called inhomogeneous Poisson process and the Poisson
point process is called homogeneous Poisson process or shortly Poisson process.

The failures of the components are then the events of the point process. The time between events
is sometimes called interarrival time. However, we will call here the time between two events the
waiting time.

6.3.3 Theorem (See e.g. Krengel 1991, p. 225)
Let the homogeneous Poisson process with the parameter λ be given by the event times 0 =
T0 < T1 < T2 < . . .. Then the waiting times between the event times given by Wi = Ti+1 − Ti

for i ∈ N0 are independent and identically distributed and the distribution is the exponential
distribution with parameter λ.

Obviously, the waiting times of a load sharing system are not identically distributed since the
failure rate increases with time. This could be modeled by an inhomogeneous Poisson process
with increasing intensity function λ : [0,∞] → R like λ(t) = θ1t

θ2 . However, the waiting time
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between failure depends on the number of failures which has happened before. Hence there is no
continuous increase of the intensity function but a sudden change of the intensity as soon as an
event, the failure, happens. The failure will increase the load on the other remaining components.

6.3.4 Definition (State dependent point process, see e.g. Jacobsen 2006, Example 3.1.4)
a) A simple point process given by 0 = T0 < T1 < T2 < . . . is called state dependent, if the
waiting times Wi = Ti+1 − Ti for i ∈ N0 are independent but not identically distributed.
b) A state dependent point process is a (shifted) Birth process, if the waiting times Wi are
independent and have an exponential distribution with parameter λi for i ∈ N0.

The intensity parameter λi will not only depend on the number of failures but also on the initial
(external) load s exposed to the system. Hence we will make the following assumption.

Wi ∼ E(λθ(i, s)), i = 0, . . . , Iobs < I,

and W0, . . . ,WIobs are stochastically independent. Thereby I denotes the number of components
of the system and Iobs the observed number of failures of the system.

A simple assumption for λθ(i, s)) is

λθ(i, s) := hθ

(
s · I

I − i

)

for some function hθ depending on θ ∈ Θ. The term I
I−i reflects the increased internal load when

a failure has happened. In the beginning where no failure has occurred (i = 0), then the load
is only given by the initial load s of the system. If, for example, the half of the components are
failed (i = I

2 ) then the internal load is doubled. The system fails if all of the I components has
been failed so that I is maximum number of events. However, the system may also fail when a
critical number Ic < I of components has failed.

6.3.5 Example (Basquin link)
If we set

hθ(x) = exp(−gθ(x)) with gθ(x) = θ0 − θ1 ln(x)

then it is the Basquin link and we get

ln(E(Wi)) = ln

(
1

λθ(i, s)

)
= ln


 1

hθ

(
s · I

I−i

)


 = ln

(
exp

(
gθ

(
s · I

I − i

)))

= gθ

(
s · I

I − i

)
= θ0 − θ1 ln

(
s · I

I − i

)
.

6.3.6 Example
A further example for the function hθ is

hθ(x) := exp
(
−θ0 + θ1 · x− θ2 · x−θ3

)
= exp(−gθ(x))
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with θ = (θ0, θ1, θ2, θ3)
⊤ ∈ Θ = [0,∞)4 and gθ(x) = θ0 − θ1 · x+ θ2 · x−θ3 so that

ln(E(Wi)) = ln

(
1

λθ(i, s)

)
= θ0 − θ1 · s ·

I

I − i
+ θ2 ·

(
s · I

I − i

)−θ3

is strictly decreasing in s and i.

Further we assume that we have J repetitions of the process coming from J different systems
which were exposed to possibly different external load levels s1, . . . , sJ . I.e. we observe realisa-
tions wi,j, i = 0, . . . , Ij , j = 1, . . . , J , of

Wi,j ∼ E(λθ(i, sj)), i = 0, . . . , Ij < I, j = 1, . . . , J.

Additionally, we have realisations wi,0, i = 0, . . . , I0, of

Wi,0 ∼ E(λθ(i, s0)), i = 0, . . . , I0,

from a new system, where I0 is much smaller than I. We set I0 = −1 if no failure of the new
system was observed. Otherwise, we have I0 = 0, 1, . . .. We assume that Ic + 1 is a critical
number of failed components of the new system. The aim is now to predict

TIc+1,0 := w0,0 + . . .+ wI0,0 +WI0+1,0 + . . .WIc,0, I > Ic > I0, (6.2)

i.e. the time up to the (Ic + 1)’th failure of a component of the new system. If we can predict
the waiting time W := WI0+1,0 + . . .WIc,0, then we can of course predict also (6.2). Thereby Ic
could be I − 1 but also a smaller value.

The prediction interval for W can only be obtained approximately via an asymptotic law. There-
fore we need additional assumptions for the design of the stress levels.

Let dJ := (s1, . . . , sJ)
⊤ ∈ [0, smax]

J be the concrete design and δJ :=
∑J

j=1 esj the corresponding
design measure on [0, smax], where es denote the Dirac (one-point) measure on s. Then we assume

δJ −→ δ weakly for J −→ ∞. (6.3)

Additionally, set d̃J :=
(
(0, s0)

⊤, . . . , (I0, s0)⊤, (0, s1)⊤, . . . , (I1, s1)⊤, . . . , (0, sJ )⊤, . . . , (IJ , sJ)⊤
)⊤

with corresponding design measure δ̃J on {0, . . . , Imax}× [0, smax]. Since {0, . . . , I} is finite, the
assumption (6.3) implies at once

δ̃J −→ δ̃ weakly for J −→ ∞, (6.4)

where δ̃ is a design measure on {0, . . . , I} × [0, smax].
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6.4 Estimation for load sharing systems

Since W0,0, . . . ,WI0,0,W0,1, . . . ,WI1,1, . . . ,W0,J , . . . ,WIJ ,J are independent, we can easily esti-
mate θ by the maximum likelihood principle, i.e.

θ̂ ∈ argmax
θ∈Θ

J∏

j=0

Ij∏

i=0

fλθ(i,sj)(wi,j)

where fλ(w) = λe−λw is the density of the exponential distribution. The estimated expected
additional time Eθ(W ) until the (Ic + 1)’th failure is then

E
θ̂
(W ) = E

θ̂
(WI0+1,0 + . . . +WIc,0) =

1

λ
θ̂
(I0 + 1, s0)

+ . . .+
1

λ
θ̂
(Ic, s0)

= g(θ̂)

with

g(θ) := Eθ(W ) =
1

λθ(I0 + 1, s0)
+ . . . +

1

λθ(Ic, s0)
. (6.5)

Since w0,0, . . . , wI0,0 are already observed, we get at once that

w0,0 + . . .+ wI0,0 +
1

λ
θ̂
(I0 + 1, s0)

+ . . . +
1

λ
θ̂
(Ic, s0)

is the estimated expected time up to the (Ic + 1)’th failure.

6.5 Confidence interval for the expected waiting time in load
sharing systems

Of special interest is here the confidence interval for the expected waiting time g(θ) defined by
(6.5). However, in Section 6.6 confidence intervals of other aspects of θ are necessary. Therefore
let be g : Θ → ℜ any function of θ so that ġ(θ) := ∂

∂θg(θ) exists.

Property (6.4) implies the following central limit theorem for the maximum likelihood estimator
(see e.g. Schervish (1995), p. 421-428)

√
N(J) (θ̂ − θ) −→ N

(
0, Iθ(δ̃)

−1
)
,

where N(J) = I0+ I1+ . . .+ IJ +J+1 are the observed events/failures in the J +1 experiments
and

Iθ(δ̃) :=

∫
Eθ

(
∂

∂θ
ln fλθ(i,s)(W̃j,s)

(
∂

∂θ
ln fλθ(i,s)(W̃j,s)

)⊤)
δ̃(d(i, s))
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with W̃i,s ∼ Exp(λθ(i, s)) is the information matrix. Since we have exponential distribution, the
information matrix equals (see e.g. Müller 2013)

Iθ(δ̃) =

∫
1

λθ(i, s)2
λ̇θ(i, s) λ̇θ(i, s)

⊤ δ̃(d(i, s))

with λ̇θ(i, s) :=
∂
∂θλθ(i, s). The δ-method provides then

√
N(J) (g(θ̂)− g(θ)) −→ N

(
0, ġ(θ)⊤Iθ(δ̃)

−1 ġ(θ)
)

or, respectively,

√
N(J) (g(θ̂)− g(θ))√
ġ(θ)⊤Iθ(δ̃)−1 ġ(θ)

−→ N (0, 1).

Iθ(δ̃) is estimated by 1
N(J)I(θ̂), where

I(θ) :=
J∑

j=0

Ij∑

i=0

1

λθ(i, sj)2
λ̇θ(i, sj) λ̇θ(i, sj)

⊤.

Then we have

ġ(θ̂)⊤
(

1

N(J)
I(θ̂)

)−1

ġ(θ̂) −→ ġ(θ)⊤Iθ(δ̃)
−1 ġ(θ) in probability

for J → ∞ and Lemma of Slutzky provides

g(θ̂)− g(θ)√
ġ(θ̂)⊤I(θ̂)−1 ġ(θ̂)

=

√
N(J) (g(θ̂)− g(θ))√

ġ(θ̂)⊤
(

1
N(J)I(θ̂)

)−1
ġ(θ̂)

−→ N (0, 1).

Hence an approximate (1− α)-confidence interval for g(θ) is

[
g(θ̂)− q1−α/2

√
ġ(θ̂)⊤I(θ̂)−1 ġ(θ̂), g(θ̂) + q1−α/2

√
ġ(θ̂)⊤I(θ̂)−1 ġ(θ̂)

]
,

where qα is the α-quantil of the standard normal distribution.

6.6 Prediction interval for the waiting time in loadsharing sys-

tems

Here we are going to construct an interval P(W∗) based on

W∗ := (W0,0, . . . ,WI0,0,W0,1, . . . ,WI1,1, . . . ,W0,J , . . . ,WIJ ,J)
⊤
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so that

lim
J→∞

Pθ(WI0+1,0 + . . . WIc,0 ∈ P(W∗)) ≥ 1− α

for all θ ∈ Θ. For that we need the distribution of W := WI0+1,0 + . . . WIc,0.

Since λθ(I0 + 1, s0), . . . , λθ(Ic, s0) are pairwise different, the density of W is given by (see e.g.
https://en.wikipedia.org/wiki/Hypoexponential distribution),

fW,θ(w) :=

Ic∑

i=I0+1

λθ(i, s0) e
−w λθ(i,s0)

Ic∏

k=I0+1,k 6=i

λθ(k, s0)

λθ(k, s0)− λθ(i, s0)
(6.6)

=

Ic∑

i=I0+1

λθ(i, s0) e
−w λθ(i,s0) ai(θ)

with ai(θ) :=
∏Ic

k=I0+1,k 6=i
λθ(k,s0)

λθ(k,s0)−λθ(i,s0)
. Hence the cumulative distribution function is

FW,θ(w) :=

Ic∑

i=I0+1

ai(θ)
(
1− e−w λθ(i,s0)

)
. (6.7)

An α-quantile bα(θ) of this distribution can be given only implicitly, namely as

Hα(θ, bα(θ)) = 0

where

Hα(θ, b) :=

Ic∑

i=I0+1

ai(θ)
(
1− e−b λθ(i,s0)

)
− α.

An α-quantile can be easily calculated using the fact that the cumulative distribution function
is strictly increasing. The following algorithm with an given small ǫ > 0 can be used:
Set w0 = 0 and w1 > 0 arbitrary.
While FW,θ(w1) < α set w0 = w1 and w1 = 2w1.
While |FW,θ(w1)− α| > ǫ do:

if FW,θ

(
w0+w1

2

)
< α set w0 =

w0+w1
2 ,

if FW,θ

(
w0+w1

2

)
> α set w1 =

w0+w1
2 .

As for independent life times, the prediction intervals can be constructed with two general meth-
ods.
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6.6.1 Theorem (Prediction intervals based on confidence sets for θ)
If 0 ≤ η1 < η2 ≤ 1 with η2 − η1 = 1 − α1, bα(θ) is the α-quantile of the hypoexponential
distribution given in (6.6) or (6.7), and C(W∗) is a (1− α2)-confidence set for θ then

P(W∗) =:=
⋃

θ∈C(W∗)

[bη1(θ), bη2(θ)]

is a (1− α1)(1− α2) prediction interval for W = WI0+1,0 + . . .WIc,0.

The confidence sets for θ can be constructed as in Theorem 3.2.10 or via depth tests as mentioned
in Section 5.8 since the waiting times are independent.

As in Theorem 3.2.11, prediction intervals can be contructed with the δ-method for the quantiles
as well. For that, note that the implicit function theorem provides for the derivative ḃα(θ) :=
∂
∂θ bα(θ) of the quantile bα(θ)

ḃα(θ) = −
(

∂

∂b̃
Hα(θ̃, b̃)

∣∣∣∣
(θ̃,b̃)=(θ,bα(θ))

)−1
∂

∂θ̃
Hα(θ̃, b̃)

∣∣∣∣
(θ̃,b̃)=(θ,bα(θ))

,

which can be calculated explicitly. Setting g(θ) = bη1(θ) and g(θ) = bη2(θ), respectively, in
Section 6.5 provide that

[
bη1(θ̂)− q1−α2/2

√
ḃη1(θ̂)

⊤I(θ̂)−1 ḃη1(θ̂),∞
)

(6.8)

and

(
−∞, bη2(θ̂) + q1−α2/2

√
ḃη2(θ̂)

⊤I(θ̂)−1 ḃη2(θ̂)

]
(6.9)

are one-sided asymptotic 1− α2
2 -confidence intervals for bη1(θ) and bη2(θ), respectively.

6.6.2 Theorem
If 0 ≤ η1 < η2 ≤ 1 with η2 − η1 = 1− α1, then the interval P(W∗) given by

P(W∗) :=
[
bη1(θ̂)− v̂1, bη2(θ̂) + v̂2

]
,

where

v̂1 := q1−α2/2

√
ḃη1(θ̂)

⊤I(θ̂)−1 ḃη1(θ̂)

v̂2 := q1−α2/2

√
ḃη2(θ̂)

⊤I(θ̂)−1 ḃη2(θ̂),

is an asymptotic (1− α1)(1 − α2)-prediction interval for W = WI0+1,0 + . . .WIc,0.
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Proof. The one-sided confidence intervals given by (6.8) and (6.9) provide

Pθ

(
bη1(θ) < bη1(θ̂)− v̂1

)
≤ α

2

and

Pθ

(
bη2(θ) > bη2(θ̂) + v̂2

)
≤ α

2
.

Since W and θ̂ are independent, we obtain

lim
J→∞

Pθ(W ∈ P(W∗))

= lim
J→∞

Pθ

(
W ≥ bη1(θ̂)− v̂1 and W ≤ bη2(θ̂) + v̂2

)

≥ lim
J→∞

Pθ

(
W ≥ bη1(θ) and bη1(θ) ≥ bη1(θ̂)− v̂1 and

W ≤ bη2(θ) and bη2(θ) ≤ bη2(θ̂) + v̂2

)

= lim
J→∞

Pθ (bη1(θ) ≤ W ≤ bη2(θ))

·
(
1− Pθ

(
bη1(θ) < bη1(θ̂)− v̂1 or bη2(θ) > bη2(θ̂) + v̂2

))

≥ (η2 − η1) ·
(
1− α

2
− α

2

)
= (1− α1)(1 − α2).�

Note that bα(θ) can be explicitly given if Ic = I0 + 1. Then we have

bα(θ) = − ln(1− α)

λθ(I0 + 1, s0)
=

ln
(

1
1−α

)

λθ(I0 + 1, s0)
= ln

(
1

1− α

)
g(θ),

where g(θ) is the same as in (6.5) for the case Ic = I0 + 1. Setting

v̂ := q1−α2/2

√
ġ(θ̂)⊤I(θ̂)−1 ġ(θ̂),

the asymptotic (1− α1)(1 − α2)-prediction interval is then

P(W∗) =
[
ln

(
1

1− η1

) (
g(θ̂)− v̂

)
, ln

(
1

1− η2

) (
g(θ̂) + v̂

)]
.�

Calculation
To calculate the prediction interval, the follwoing steps are needed:
1) Calculation of the maximum likelihood estimate θ̂.
2) Calculation of I(θ̂)−1.
3) Calculation of bη1(θ̂) and bη2(θ̂) as solutions of Hη1(θ̂, bη1(θ̂)) = 0 and Hη2(θ̂, bη2(θ̂)) = 0,
respectively.
4) Calculation of ḃη1(θ̂) and ḃη2(θ̂).
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Figure 6.1: Logarithmic waiting times between the breaks of all experiments with pointwise
90%-prediction interval for the next wire break using data depth and the δ-method.

6.6.3 Example
Figure 6.1 shows the waiting times between two breaks of the I = 35 tension wires in 11 exper-
iments as that described in Example 1.0.1. It shows the logarithmic expected waiting time for
the next break given by

ln(E(Wi,j)) = ln

(
1

λθ(i, sj)

)
= θ1 − θ2 ln

(
sj ·

35

35− i

)

where

hθ(x) := exp (−θ1 + θ2 ln(x))

was used. It shows also the predictions intervals for Wi,j in the logarithmic scale.

6.6.4 Example
Figure 6.2 shows the predictions intervals obtained by the different methods for the 20th break
in the experiment SB04 using the 0, 1, . . . , 19 breaks observed in the same experiment and the
breaks of the other 9 experiments. The horizontal line is the realized number of load cycles before
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the 20th break. Here the link function is given by

log(E(Wi,j)) = log

(
1

λθ(i, sj)

)
= θ1 − θ2 · sj ·

35

35− i
+ θ3 ·

(
sj ·

35

35− i

)−θ4

with

hθ(x) := exp
(
−θ1 + θ2 · x− θ3 · x−1

)
.
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Figure 6.2: 90% Prediction intervals for the 20th break in Experiment SB04 with initial stress
of 80 MPa using the results of the other 9 experiments and the breaks 0, 1, 2, . . . , 19 of the
experiment SB04.

The lefthand side of Figure 6.3 shows the prediction interval for the first breaks in Experiment
SB06 with initial stress of 50 MPa using the results of the other 9 experiments with initial
stress of 60 to 455 MPa. Unfortunately the Experiment SB06 was stopped after approximately
6 months (marked by the arrow) so that only the first break was observed. This first break lay
in the prediction interval. After this, the experiment was continued with a stress of 120 MPa.
The righthand side of Figure 6.3 shows the prediction intervals calculated for 120 MPa. As
can be seen from this figure, the observed failure times are not lying in the prediction intervals.
The failures (breaks) happen earlier than predicted. This means that the first stress of 50 MPa
applied to the beam in experiment SB05 in the first half year causes already a damage to the
remaining 34 tension failures.
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Figure 6.3: Left: Prediction intervals for the first breaks in Experiment SB06 with initial stress
of 50 MPa using the results of the other 9 experiments with initial stress of 60 to 455 MPa.
Right: Prediction intervals for the first breaks in Experiment SB06a, where Experiment SB06
was continued with stress 120 MPa.
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6.7 Load sharing systems with damage accumulation

Again assume that there are J stochastically independent systems where the jth system has
Ij components. Moreover, the systems are observed up to different time points τj. Then the
failure times of the components of the jth system 0 < t1,j < . . . < tIj ,j are realizations of
T1,j < . . . < TIj ,j and thus are realizations of the point process Nj over [0, τj ] with Nj(τj) = Ij .
The point processes Nj are stochastically independent for j = 1, . . . , J . Additionally, the systems
are exposed to different initial stress sj for j = 1, . . . , J .

If the systems are load sharing systems, the following left-continuous conditional intensity func-
tion for the j’th system with Ij components and initial stress sj makes sense:

λj(t) = hθ

(
sj

Ij −Nj(t−)

)
, (6.10)

where hθ is an increasing function depending on a parameter vector θ. This means that for t

with Nj(t−) = 0, i.e. no failure is observed until t, we get λj(t) = hθ

(
sj
Ij

)
, i.e. the initial stress

is distributed equally over the Ij components, a reason why this model is called "equal load

sharing model". Moreover, for t with Nj(t−) =
Ij
2 , we get λj(t) = hθ

(
2 sj
Ij

)
. Hence, the stress is

doubled for each of the
Ij
2 components which has not failed.

In particular, model (6.10) means that the conditional intensities between events are constant.
Hence the interarrival times (waitung times) Wij = Ti,j−Ti−1,j have an exponential distribution

with parameter hθ

(
sj

Ij−(i−1)

)
.

A resonable function hθ is given by the model of Basquin (1910) who provided a link between
the stress σ and the lifetime y by

ln(y) = θ1 − θ2 ln(σ)

with θ ∈ R and θ2 ∈ [0,∞. Since
(
hθ

(
sj

Ij−(i−1)

))−1
is the expected waiting time E(Wij), the

function hθ given by

hθ(x) = exp(−θ1 + θ2 ln(x)) = exp(−θ1)x
θ2

with θ = (θ1, θ2)
⊤ corresponds to the Basquin link and is a link between the waiting time for

the next failure and the stress on the non-failed components.

Set

aj(t) :=
sj

Ij −Nj(t−)
and aij :=

sj
Ij −Nj(t−)

=
sj

Ij − (i− 1)
(6.11)

for Nj(t−) = i − 1. In particular, aj(t) and aij might be replaced by other types of stress
ãj(Nj(t−)) and ãij which differ from the equal load sharing model given by (6.11). However,
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the Basquin link will be kept here. Hence the Basquin load sharing model without damage
accumulation is given by

λ̃W
j (t) := exp(−θ1)aj(t)

θ2 . (6.12)

To get a scale invariant estimator in this model, it is approriate to divide the intensity by e.g.

τ :=
1

J

J∑

j=1

τj

so that one should use

λW
j (t) :=

1

τ
exp(−θ1)aj(t)

θ2 . (6.13)

One could use also 1
τj
exp(−θ1)aj(t)

θ2 . However then experiments with short test duration will

get too large weights. To extend this model to a load sharing model with damage accumulation,
at first not that

Aj(t) :=
1

τ

∫ t

0
aj(x)dx =

1

τ


aj(t)


t−

Nj(t−)∑

k=1

Wkj


+

Nj(t−)∑

k=1

akjWkj




accumulates the stress aj(x) until time t in the sense of load sharing. To avoid the dependence of
the intensity function on the mean test duration τ , one can use also a fixed value τ0 > 0 leading
to

Ãj(t) :=
1

τ0

∫ t

0
aj(x)dx =

1

τ0


aj(t)


t−

Nj(t−)∑

k=1

Wkj


+

Nj(t−)∑

k=1

akjWkj


 .

In particular Ãj(t) and Aj(t) take into account how long the stress was distributed over the
remaining components. Thereby, the factors 1

τ0
and 1

τ are not necessary. However, they prevent
too different summands in the load sharing model with additive damage accumulation given
below. Moreover, a scale invariant estimator is only possible with τ .

One could use Ãj(t) and Aj(t) inside the Basquin link. However, then the pure load sharing
model given by (6.12) is not a sepcial case of it. Two models are considered as real extensions of
the load sharing model (6.12):
load sharing with multiplicative damage accumulation given by

λ̃M
j (t) :=

1

τ0
exp(−θ1)aj(t)

θ2Ã(t)θ3 , (6.14)
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and load sharing with additive damage accumulation given by

λ̃A
j (t) :=

1

τ0
exp(−θ1)

(
aj(t) + θ3Ã(t)

)θ2
. (6.15)

In both models, the pure load sharing model (6.12) is obtained by setting θ3 = 0. However, to
get scale invariant estimators, it is more appropriate to use

λM
j (t) :=

1

τ
exp(−θ1)aj(t)

θ2A(t)θ3 , (6.16)

and

λA
j (t) :==

1

τ
exp(−θ1) (aj(t) + θ3A(t))

θ2 (6.17)

instead of the intensity functions given by (6.14) and (6.15), respectively.
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6.8 Likelihood function for the load sharing model with damage
accumulation

At first we derive the general likelihood function of a point process where t1 < t2 < . . . with
ti ∈< (0,∞) are the realizations of T1 < T2 < . . . of the point process and N given by

N(t) := N(t, ω) :=

∞∑

i=1

1I(0,t](ti)

is the realization of the corresponding count process. We follow here the approach for point
processes as given by Daley and Vere-Jones (2003). Thereby a count process N is also called
a point process, and it is called regular if it has absolute continuous densities on all bounded
subsets of (0,∞). Hence, let N be a regular point process on [0, τ ] for some finite τ > 0, and let
t1 < t2 < . . . < tN(τ) denote a realization of N over [0, τ ]. Let fi(t|t1, . . . , ti−1) be the conditional
density function for an event after the event ti−1 and

Si(t|t1, . . . , ti−1) := 1−
∫ t

ti−1

fi(u|t1, . . . , ti−1)du

the associated survival function. The corresponding hazard functions are given by

hi(t|t1, . . . , ti−1) :=
fi(t|t1, . . . , ti−1)

Si(t|t1, . . . , ti−1)

so that

fi(t|t1, . . . , ti−1) = hi(t|t1, . . . , ti−1) exp

(
−
∫ t

ti−1

hi(u|t1, . . . , ti−1)du

)
.

The conditional intensity function is then defined by

λ∗(t) :=

{
h1(t), 0 < t ≤ t1,

hi(t|t1, . . . , ti−1), ti−1 < t ≤ ti, i ≥ 2.

Since densities are not unique on subsets with Lebesgue measure equal to zero, they are also not
necessarily left-continuous. Therefore, let be λ(t) the left-continuous modification of λ∗(t), i.e.
λ(t) = λ∗(t−). Then λ(t)t>0 is a Ht− predictable process where Ht− is the σ-algebra of events
at times up to but not including t. Especially, it holds λ(t)dt ≈ E[N(dt)|Ht−].

Then the likelihood L of t1, . . . , tN(τ) is given by

L =



N(τ)∏

i=1

λ(ti)


 exp

(
−
∫ τ

0
λ(u)du

)
, (6.18)
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see Daley and Vere-Jones (2003) Prop. 7.2.III, p. 232.

For the load sharing system with damage accumulation, we present everything for the factor τ
of mean test duration. However, the same holds for a fixed value τ0 if τ is replaced by τ0.

Set W(Ij+1)j := τj−tIj ,j, j = 1, . . . , J , although it is no waiting time (interarrival time). However,
then

Cj(0) := 0, Cj(i) :=

i∑

k=1

akjWkj, i = 1, . . . , Ij + 1,

can be defined as cumulutative stress for j = 1, . . . , J .

6.8.1 Theorem

Let LM and LA be the loglikelihood function for the load sharing model with multiplicative and
additive damage accumulation given by (6.16) and (6.17), respectively. Then it holds

ln(LM ((θ1, θ2, θ3)
⊤)) (6.19)

=

J∑

j=1





Ij∑

i=1

[
−θ1 + θ2 ln(aij) + θ3 ln

(
1

τ
Cj(i)

)
− ln(τ)

]

− exp(−θ1)

θ3 + 1



Ij+1∑

i=1

aθ2−1
ij

((
1

τ
Cj(i)

)θ3+1

−
(
1

τ
Cj(i− 1)

)θ3+1
)





and

ln(LA((θ1, θ2, θ3)
⊤)) (6.20)

=

J∑

j=1





Ij∑

i=1

[
−θ1 + θ2 ln

(
aij + θ3

1

τ
Cj(i)

)
− ln(τ)

]

− exp(−θ1)

θ3(θ2 + 1)



Ij+1∑

i=1

1

aij

((
aij + θ3

1

τ
Cj(i)

)θ2+1

−
(
aij + θ3

1

τ
Cj(i− 1)

)θ2+1
)



 .

Proof. According to (6.18), the likelihood function of realizations t1, . . . , tN(τ) of a point process
N on [0, τ ] with left-continuous conditional intensity function λ : [0, T ] → R is given by

L =



N(τ)∏

i=1

λ(ti)


 exp

(
−
∫ τ

0
λ(t)dt

)
. (6.21)

At first, we calculate the term
∫ τ
0 λ(t)dt for the intensity functions of the two load sharing models
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with damage accumulation. For this, note that it holds for c > 0 and v ≥ 0

∫ b

a
(ct+ d)vdt =

1

c(v + 1)
(ct+ d)v+1

∣∣∣
b

a
.

Set t0,j = 0 for j = 1, . . . , J and recall Nj(τj) = Ij .

For the load sharing model with multiplicative damage accumulation we get

∫ τj

0
λM
j (t)dt =

∫ τj

0

1

τ
exp(−θ1)aj(t)

θ2A(t)θ3 dt

=

Ij∑

i=1

∫ ti,j

ti−1,j

exp(−θ1)

τ
aθ2ijA(t)

θ3 dt+

∫ τj

t
Ij ,j

exp(−θ1)

τ
aθ2
(Ij+1)j

A(t)θ3 dt

=
exp(−θ1)

τ




Ij∑

i=1

aθ2ij
1

τ

θ3
∫ ti,j

ti−1,j

(
aij

(
t−

i−1∑

k=1

Wkj

)
+

i−1∑

k=1

akjWkj

)θ3

dt

+ aθ2
(Ij+1)j

1

τ θ3

∫ τj

t
Ij ,j


a(Ij+1)j


t−

Ij∑

k=1

Wkj


+

Ij∑

k=1

akjWkj




θ3

dt




=
exp(−θ1)

τ




Ij∑

i=1

aθ2ij
1

τ θ3 aij(θ3 + 1)

(
aij

(
t−

i−1∑

k=1

Wkj

)
+

i−1∑

k=1

akjWkj

)θ3+1
∣∣∣∣∣∣

ti,j

ti−1,j

+ aθ2
(Ij+1)j

1

τ θ3 a(Ij+1)j(θ3 + 1)


a(Ij+1)j


t−

Ij∑

k=1

Wkj


+

Ij∑

k=1

akjWkj




θ3+1
∣∣∣∣∣∣∣

τj

t
Ij ,j




=
exp(−θ1)

τ θ3+1(θ3 + 1)




Ij∑

i=1

aθ2−1
ij



(

i∑

k=1

akjWkj

)θ3+1

−
(

i−1∑

k=1

akjWkj

)θ3+1



+ aθ2−1
(Ij+1)j





a(Ij+1)j


τj −

Ij∑

k=1

Wkj


+

Ij∑

k=1

akjWkj




θ3+1

−




Ij∑

k=1

akjWkj




θ3+1






=
exp(−θ1)

τ θ3+1(θ3 + 1)



Ij+1∑

i=1

aθ2−1
ij

(
Cj(i)

θ3+1 − Cj(i− 1)θ3+1
)



with W(Ij+1)j := τj − tIj ,j and Cj(i) =
∑i

k=1 akjWkj for i = 1, . . . , Ij + 1.
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Fo the load sharing model with additive damage accumulation, it holds

∫ τj

0
λA
j (t)dt =

∫ τj

0

1

τ
exp(−θ1) (aj(t) + θ3A(t))

θ2 dt

=
Ij∑

i=1

∫ ti,j

ti−1,j

exp(−θ1)

τ
(aij + θ3A(t))

θ2 dt+

∫ τj

t
Ij ,j

exp(−θ1)

τ

(
a(Ij+1)j + θ3A(t)

)θ2 dt

=
exp(−θ1)

τ




Ij∑

i=1

∫ ti,j

ti−1,j

(
aij + θ3

1

τ

[
aij

(
t−

i−1∑

k=1

Wkj

)
+

i−1∑

k=1

akjWkj

])θ2

dt

+

∫ τj

t
Ij ,j


a(Ij+1)j + θ3

1

τ


a(Ij+1)j


t−

Ij∑

k=1

Wkj


+

Ij∑

k=1

akjWkj






θ2

dt




=
exp(−θ1) τ

τ θ3(θ2 + 1)




Ij∑

i=1

1

aij

(
aij + θ3

1

τ

[
aij

(
t−

i−1∑

k=1

Wkj

)
+

i−1∑

k=1

akjWkj

])θ2+1
∣∣∣∣∣∣

ti,j

ti−1,j

+
1

a(Ij+1)j


a(Ij+1)j + θ3

1

τ


a(Ij+1)j


t−

Ij∑

k=1

Wkj


+

Ij∑

k=1

akjWkj






θ2+1
∣∣∣∣∣∣∣

τj

t
Ij ,j




=
exp(−θ1)

θ3(θ2 + 1)



Ij+1∑

i=1

1

aij

((
aij + θ3

1

τ
Cj(i)

)θ2+1

−
(
aij + θ3

1

τ
Cj(i− 1)

)θ2+1
)


with W(Ij+1)j := τj − tIj ,j and Cj(i) =
∑i

k=1 akjWkj for i = 1, . . . , Ij + 1.

To calculate the likelihood function, note that A(ti,j) = 1
τCj(i) holds for i = 1, . . . , Ij . Hence

for the load sharing model with multiplicative damage accumulation, we get

λM
j (ti,j) =

1

τ
exp(−θ1)a

θ2
ij

(
1

τ
Cj(i)

)θ3

,

and for the load sharing model with additive damage accumulation, we have

λA
j (ti,j) =

1

τ
exp(−θ1)

(
aij + θ3

1

τ
Cj(i)

)θ2

.

This completes the proof using the form (6.21) for a likelihood function of a point process and
using the fact that the point processes from the J systems are stochastically independent. �

6.8.2 Corollary
Let LD = LM or LD = LA, respectively, be the likelihood function for the load sharing model
with multiplicative or additive damage accumulation and θ̂D ∈ R

3 the corresponding maximum
likelihood estimate, let LW be the likelihood function for the load sharing model without damage
accumulation and θ̂W ∈ R

2 the corresponding maximum likelihood estimate, and let χ2
1,1−α be

the (1− α) quantile of the χ2 distribution with one degree of freedom. Then the decision rule
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reject H0 : θ3 = 0 if −2
(
ln(LW (θ̂W ))− ln(LD(θ̂D))

)
> χ2

1,1−α,

provides an asymptotically α level test for H0 : θ3 = 0.

Table 6.1 provides p-values of the likelihood ratio test for the effect θ3 for damage accumulation.
It shows that the effect θ3 indeed differs significantly from 0. However, it seems that there is a
problem with the scale dependent version for the additive damage accumulation.

Table 6.1: P-values of the likelihood ratio tests given by Corollary 6.8.2 based on the scale
dependent ML estimators and the scale invariant ML estimators using τ0 = 1000 for the scale
dependent version.

Model scale dependent ML scale invariant ML

multiplicative damage accumulation 2.46e-06 2.46e-06

additive damage accumulation 1 1.39e-04.
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6.9 Systems with repair

This section deals with systems where components which are failed are substituted by a new one.
Thereby, it does not matter how many components the system has. In particular, the system
can consist of only one component so that the failure of the component is also the failure of the
system. The simplest case is a system where the repair happens immediately after failure. Then
the time points 0 = T0 < T1 < T2 < . . . of failures of the components of a system with immediate
repair can be modelled by a renewal process.

6.9.1 Definition
The point process given by the event times 0 = T0 < T1 < T2 < . . . is called a renewal process if
the waiting times between the event times given by Wi = Ti+1 − Ti for i ∈ N0 are independent
and identically distributed.

According to Theorem 6.3.3, the Poisson process is a special renewal process, namely a renewal
process where Wi has an exponential distribution.

Define again the corresponding counting process N = (Nt)t≥0 = (N(t))t≥0 by

N(t) :=

∞∑

i=1

11[0,t](Ti).

6.9.2 Definition
The function H given by H(t) = E(N(t)) (the expected number of failures up to time t) is called
the renewal function.

6.9.3 Theorem (See Kahle and Liebscher 2013, p. 57)
The renewal function H is the unique solution of the integral equation

H(t) = F (t) +

∫ t

0
H(t− u) f(u) du (6.22)

if Wi has cumulative distribution function F and density f .

Proof. Set

F ∗i(t) := P (Ti ≤ t), f∗i(t) :=
∂

∂t
F ∗i(t).

Since Ti = Ti−1 +Wi−1 and Ti−1 and Wi−1 are independent, it holds

f∗i(s) =
∫ ∞

−∞
f∗(i−1)(s− u) f(u) du =

∫ s

0
f∗(i−1)(s− u) f(u) du
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so that with Fubini’s theorem

F ∗i(t) =
∫ t

0
f∗i(s) ds =

∫ t

−∞

∫ ∞

−∞
f∗(i−1)(s− u) f(u) du ds

=

∫ ∞

−∞

∫ t

−∞
f∗(i−1)(s− u) ds f(u) du =

∫ ∞

−∞

∫ t−u

−∞
f∗(i−1)(s) ds f(u) du

=

∫ ∞

−∞
F ∗(i−1)(t− u) f(u) du =

∫ t

0
F ∗(i−1)(t− u) f(u) du.

This implies with F ∗1(t) = P (T1 ≤ t) = P (W0 ≤ t) = F (t) and

H(t) = E(N(t)) = E

( ∞∑

i=1

11[0,t](Ti)

)
=

∞∑

i=1

P (Ti ≤ t) =

∞∑

i=1

F ∗i(t)

the integral equation

H(t) = F (t) +

∞∑

i=2

∫ t

0
F ∗(i−1)(t− u) f(u) du

= F (t) +

∫ t

0

∞∑

i=2

F ∗(i−1)(t− u) f(u) du = F (t) +

∫ t

0

∞∑

i=1

F ∗i(t− u) f(u) du

= F (t) +

∫ t

0
H(t− u) f(u) du.

Thereby, the exchange of the infinite sum and the integral is possible according to the monotone
convergence theorem of Henri Lebesgue and Beppo Levi since all integrands are nonnegative. For
the uniqueness of H as solution of the integral equation (6.22) see Kahle and Liebscher (2013).
�

6.9.4 Lemma
If Wi ∼ E(λ) for i ∈ IN0 then H(t) = λ t for t ≥ 0.

Proof. We start with the righthand side of the integral equation (6.22) and get with partial
integration

F (t) +

∫ t

0
H(t− u) f(u) du = 1− e−λt +

∫ t

0
λ (t− u)λ e−λ u du

= 1− e−λt + λ t

∫ t

0
λ e−λu du− λ2

∫ t

0
u e−λu du

= 1− e−λt + λ t
(
1− e−λt

)
− λ2

[
u
−1

λ
e−λ u

∣∣∣
t

0
−
∫ t

0

−1

λ
e−λu du

]

= 1− e−λt + λ t− λ t e−λt + λ t e−λ t −
(
1− e−λt

)

= λ t = H(t).
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Hence H is a solution of (6.22). Since the solution is unique, H is the renewal function according
to Theorem 6.9.3. �

If Wi for i = 1, . . . , I is distributed according to a distribution with unknown parameter θ then
estimators and confidence sets for θ can be obtained as in Chapter 2. If the repair times Wi,j for
i = 1, . . . , Ij of several systems j = 1, . . . , J are observed under possibly different stress levels
s1, . . . , sJ and the distribution of Wi,j is given by a link function gθ(sj) so that θ is the only
unknown parameter then estimators and confidence sets for θ can be obtained as in Chapter 3.

For further results about systems with repair see Kahle and Liebscher (2013).
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Chapter 7

Bayesian inference

7.1 Foundations

The idea of Bayesian estimation is, unlike the frequentist point of view, that θ is not a fixed,
but unknown, value, but a random variable with an unknown distribution to be estimated. If
some (expert) knowledge about this distribution is given, this goes in for the so-called prior
distribution p(θ). The estimated distribution p(θ|Y1, ..., YN ) is called posterior distribution.
It can be calculated by the following theorem.

7.1.1 Theorem (Theorem of Bayes)
Let θ be a random variable with prior distribution p(θ). It is

p(θ|Y1, ..., YN ) =
p(Y1, ..., YN |θ)p(θ)

p(Y1, ..., YN )
(7.1)

∝ p(Y1, ..., YN |θ)p(θ),

where ∝ means proportional up to a constant.

In many cases, the posterior distribution p(θ|Y1, ..., YN ) cannot be calculated explicitly. But in
some cases, a calculation is possible and the posterior distribution belongs to a known distribution
family.

7.1.2 Definition (Conjugate prior)
If p(θ|Y1, ..., YN ) is analytically available and belongs to the same distribution family as p(θ),
this prior distribution is called conjugate for the likelihood p(Y1, ..., YN |θ).

7.1.3 Example
Let Y1, ..., YN be independent and identical E(θ) distributed. Then, θ ∼ G(α, β) is conjugate to
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the likelihood. This can be seen as follows:

p(θ|Y1, ..., YN ) · p(Y1, ..., YN |θ) = βα

Γ(α)
θα−1 exp(−βθ) ·

N∏

n=1

θ · exp(−θYn)

∝ θα+N−1 exp(−(β +

N∑

n=1

Yn) · θ).

The posterior distribution is given by θ|Y1, ..., YN ∼ G(α +N,β +
∑N

n=1 Yn).

In many cases, the posterior distribution cannot be calculated. In these cases, it is simulated
through a sampling algorithm. Very popular is the class of Markov chain Monte Carlo (MCMC)
algorithms.

For a low dimensional vector, the following algorithm is suitable.

7.1.4 Algorithm (Metropolis Hastings (MH))
We want to sample from the posterior distribution

p(θ|Y1, ..., YN ) ∝ p(Y1, ..., YN |θ) · p(θ).

At first, choose a proper proposal density q(θ∗|θ). A minimal necessary condition is that
⋃

θ ∈ supp p(·|Y1,...,YN)

supp q(·|θ) ⊃ supp p(·|Y1, ..., YN )

with supp denoting the support of a function. In words, each point of the posterior’s support has
to be available by the Markov chain based on that proposal density. This would also be true for
the density of the dirac measure at θ∗. Therefore, this is only the minimal necessary condition,
the proposal density has to be chosen wisely.

At second, choose a starting value θ0 with p(θ0|Y1, ..., YN ) > 0. For k = 1, ...,K draw θ∗ ∼
q(·|θk−1) and set θk = θ∗ with acceptance probability

ρ(θ∗, θk−1) = min

{
p(Y1, ..., YN |θ∗) · p(θ∗)

p(Y1, ..., YN |θk−1) · p(θk−1)
· q(θk−1|θ∗)
q(θ∗|θk−1)

, 1

}

and θ∗k = θk−1 with probability 1−ρ(θ∗, θk−1). For further details see Robert and Casella (2004).

7.1.5 Lemma
The stationary distribution of the Markov chain {θk, k = 1, ...,K} resulting from the MH
algorithm is equal to the posterior p(θ|Y1, ..., YN ).

7.1.6 Lemma
If the detailed balance condition

p(θk|θk−1)p(θk−1|Y1, ..., YN ) = p(θk−1|θk)p(θk|Y1, ..., YN )

is satisfied, the chain has stationary distribution p(θ|Y(n)). For the proof, see Robert and Casella
(2004), p. 230, Definition 6.45 and Theorem 6.46.
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Proof of Lemma 7.1.5
We have a Markov chain with transition density p(θk|θk−1) = ρ(θk, θk−1) · q(θk|θk−1).
It is

p(θk|θk−1)p(θk−1|Y1, ..., YN ) =ρ(θk, θk−1)q(θk|θk−1)p(θk−1|Y1, ..., YN )

=
p(θk|Y1, ..., YN )

p(θk−1|Y1, ..., YN )
· q(θk−1|θk)
q(θk|θk−1)

· q(θk|θk−1)p(θk−1|Y1, ..., YN )

=p(θk|Y1, ..., YN )q(θk−1|θk).

This means, the detailed balance condition is satisfied and with Lemma 7.1.6 the assumption
holds. Compare Theorem 7.2 on p. 272 in Robert and Casella (2004).

7.1.7 Remark

(i) In the special case of a symmetric proposal density, i.e. q(θ∗|θk−1) = q(θk−1|θ∗) the accep-
tance probability reduces to

ρ(θ∗, θk−1) = min

{
p(Y1, ..., YN |θ∗) · p(θ∗)

p(Y1, ..., YN |θk−1) · p(θk−1)
, 1

}
.

One example is the density of the N (θk−1, sd
2) distribution with mean equal to the last

iteration step θk−1 and a fixed standard deviation sd. This is also known as symmetric
random walk, see Robert and Casella (2004) p. 206.

(ii) Crucial step of the algorithm is the choice of the proposal density. Theoretically, the
assumption given above suffices. But in practice, a good approximation of the posterior
density is of interest. If the acceptance probability ρ(θ∗, θk−1) is large, many samples are
accepted, but the new one only moves little from the old iteration step and the support
of the distribution will be filled slowly. On the other hand, if the acceptance probability
is small, only few candidates are accepted, which is also not suitable for a continuous
distribution. Rosenthal (2011) calculated an optimal acceptance rate of the MH algorithm,
which is 0.234. To reach this, an adaptive algorithm might be a solution, also presented in
Rosenthal (2011).

(iii) The number of iterations, before the chain has reached the stationary distribution, is called
burn-in phase, which is dependent on the starting value and the proposal density. To
simulate independence of the samples, in many cases, not every chain iteration is taken
as random sample of the posterior, because they are very dependent. In particular, if
the mixing is bad or the acceptance rate small, this leads to a bad approximation of the
posterior. In this case, the chain is thinned, which means, a certain amount of iterations
are skipped, called thinning rate.

7.1.8 Definition
For parameter vector θ = (θ1, ..., θd), in some cases, a full conditional posterior density
p(θj|Y1, ..., YN , θ1, ..., θj−1, θj+1, ..., θd) can be calculated.

7.1.9 Algorithm (Gibbs sampler)
For a high dimensional parameter vector θ = (θ1, ..., θd), where each θj, j = 1, .., d, can be also a
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vector itself, the idea is to sample iteratively from the full conditional posterior distributions of
the components p(θj |Y1, ..., YN , θ1, ..., θj−1, θj+1, ..., θd), j = 1, ..., d.

Choose starting values θ2,0, ..., θd,0 and for k = 1, ...,K draw

θ1,k ∼ p(θ1|Y1, ..., YN , θ2,k−1, ..., θd,k−1),

θ2,k ∼ p(θ2|Y1, ..., YN , θ1,k, θ3,k−1, ..., θd,k−1),

...

θd−1,k ∼ p(θd−1|Y1, ..., YN , θ1,k, ..., θd−2,k, θd,k−1),

θd,k ∼ p(θd|Y1, ..., YN , θ1,k, ..., θd−1,k).

7.1.10 Lemma
The resulting Markov chain {(θ1,k, ..., θd,k), k = 1, ...,K} = {θk, k = 1, ...,K} of the Gibbs
sampler has stationary distribution p(θ|Y1, ..., YN ), see for the proof Robert and Casella (2004)
p. 372.

7.1.11 Algorithm (Metropolis-within-Gibbs sampler)
In the case of not explicitly available full conditional posteriors, one step of the Gibbs sampler
can be conducted by a MH algorithm. The original work of Metropolis et al. (1953) introduced
what we now call Metropolis within Gibbs algorithm. We restrict here to the case of only one
component θj, j ∈ {1, ..., d} to be sampled by an MH step. Of course, this can be done for
several components. In addition, for notation simplicity, we assume the jth component to be
independent from the others in their prior distribution. This means p(θ) = p(θj)p(θ−j). We
choose a proper proposal density q(·|θ1,k, ..., θj−1,k, θj,k−1, ..., θd,k−1) for θj similar to the MH
algorithm and starting values θ2,0, ..., θd,0, if j = 1 also θ1,0. For k = 1, ...,K draw

θ1,k ∼ p(θ1|Y1, ..., YN , θ2,k−1, ..., θd,k−1),

...

θj−1,k ∼ p(θj−1|Y1, ..., YN , θ1,k, ..., θj−2,k, θj,k−1, ..., θd,k−1),

θ∗j ∼ q(θj|θ1,k, ..., θj−1,k, θj,k−1, ..., θd,k−1) and accept θj,k = θ∗j with probability

ρ(θ∗j , θj,k−1) =min

{
1,

p(Y1, ..., YN |θ1,k, ..., θj−1,k, θ
∗
j , θj+1,k−1, ..., θd,k−1) · p(θ∗j )

p(Y1, ..., YN |θ1,k, ..., θj−1,k, θj,k−1, ..., θd,k−1) · p(θj,k−1)

·
q(θj,k−1|θ1,k, ..., θj−1,k, θ

∗
j , θj+1,k−1, ..., θd,k−1)

q(θ∗j |θ1,k, ..., θj−1,k, θj,k−1, ..., θd,k−1)

}

and θj,k = θj,k−1 with probability 1− ρ(θ∗j , θj,k−1),

θj+1,k ∼ p(θj+1|Y1, ..., YN , θ1,k, ..., θj,k, θj+2,k−1, ..., θd,k−1),

...

θd,k ∼ p(θd|Y1, ..., YN , θ1,k, ..., θd−1,k).
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See for further details Robert and Casella (2004), Section 10.3.3, p. 392.
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7.2 Bayesian Prediction

7.2.1 Definition (Predictive distribution)
The predictive distribution of Y ∗, given Y1, ..., YN , is given by

p(Y ∗|Y1, ..., YN ).

7.2.2 Lemma
Let Y1, ..., YN be independent and identical distributed. The predictive distribution of Y ∗, inde-
pendent and identical distributed as Y1, ..., YN , is given by

p(Y ∗|Y1, ..., YN ) =

∫
p(Y ∗|θ)p(θ|Y1, ..., YN ) dθ.

In addition, let Y1, ..., YN stem from a Markov process seen in Section 5, and Y ∗ be the observation
variable in t∗ > tN . Then

p(Y ∗|Y1, ..., YN ) =

∫
p(Y ∗|YN , θ)p(θ|Y1, ..., YN ) dθ.

Proof In the first case, Y ∗ and Y1, ..., YN are independent. Therefore, it is
∫

p(Y ∗|θ)p(θ|Y1, ..., YN ) dθ =

∫
p(Y ∗|θ, Y1, ..., YN )p(θ|Y1, ..., YN ) dθ

=

∫
p(Y ∗, θ, Y1, ..., YN )

p(θ, Y1, ..., YN )

p(θ, Y1, ..., YN )

p(Y1, ..., YN )
dθ =

∫
p(Y ∗, θ, Y1, ..., YN )

p(Y1, ..., YN )
dθ

=

∫
p(Y ∗, θ|Y1, ..., YN ) dθ = p(Y ∗|Y1, ..., YN ).

The second case follows analogously.

In many cases, the predictive distribution can not be calculated explicitly. It is common practice
to approximate p(Y ∗|Y1, ..., YN ) by

p(Y ∗|Y1, ..., YN ) =

∫
p(Y ∗|θ)p(θ|Y1, ..., YN ) dθ ≈ 1

K

K∑

k=1

p(Y ∗|θk). (7.2)

This can be seen by the approximation of the posterior density

p(θ|Y1, ..., YN ) ≈ 1

K

K∑

k=1

11{θ = θk}.

7.2.3 Algorithm (Inversion sampling method)
Beside MCMC sampling methods there is another possibility to draw random samples from a
continuous distribution with distribution function F (y) =

∫ y
−∞ p(z) dz. For U ∼ U(0, 1), the

random variable F−1(U) has the distribution of interest. In many cases, this inverse function
F−1 is not calculable. However, there is one possibility to fix an interval [yl, yu] and to choose
a vector of points yl = y1 < y2 < ... < yC = yu. Then, one calculates F (y1), ..., F (yC ) and for
a realization u from the uniform distribution, min{y ∈ {y1, ..., yC}|F (y) ≥ u} can be seen as a
sample from F .
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The inversion method can be very suitable for the predictive distribution, if it is not analytically
available and has to be approximated by (7.2).
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7.3 Bayesian prediction of crack growth with non-linear regres-
sion models

Remember Section 5.2, where non-linear models are introduced. We here consider a general
regression function f(θ, x). This means, we consider the Bayes model

Yn = f(θ, xn) + En,

En ∼ N (0, σ2), n = 1, ..., N,

θ ∼ p(θ),

1

σ2
∼ G(α, β).

For example, model (5.7) would be nested with f(θ, x) = θ0 + θ1x
θ2 .
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7.4 Bayesian prediction for the state dependent point process

Remember the state dependent point process from Chapter 6

Wi,j ∼ Exp(λθ(i, sj)), i = 0, . . . , Ij < Imax, j = 1, ..., J,

stochastically independent and

λθ(i, s) := hθ

(
s · Imax

Imax − i

)

for some function hθ. The likelihood is given by

p({Wi,j}i=0,...,Ij<Imax,j=1,...,J|θ) =
J∏

j=1

Ij∏

i=0

λθ(i, sj) exp (λθ(i, sj)Wi,j) .

– references:

Robert, Christian, and George Casella. Monte Carlo statistical methods. Springer Science &
Business Media, 2004.

Rosenthal, Jeffrey S. "Optimal proposal distributions and adaptive MCMC." Handbook of
Markov Chain Monte Carlo (2011): 93-112.

Carlin, Bradley P., and Thomas A. Louis. Bayesian methods for data analysis. CRC Press, 2009.

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller (1953). "Equa-
tion of State Calculations by Fast Computing Machines". The Journal of Chemical Physics 21,
pp. 1087–1092.
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Chapter 8

Experimental design

In accelerated lifetime experiments as treated in Chapter 3, the interesting life times are for low
stress levels. Since experiments at low stress levels last long, most experiments are done under
much higher stress level than are of interest. However, observations at too high stress levels are
less informative for the main aim. The question is how many observations should be made at low
stress levels and how many at high stress levels to obtain the best estimate or best prediction
interval of the lifetime at certain low stress level.

We consider here lifetime experiments with exponential distribution as treated in Section 3.3.
The problem is to construct optimal designs of the stress levels for the maximum likelihood
estimator of θ

θ̂ := arg max
θ

Lθ(y∗, d∗, s∗)

and for maximum likeihood estimators ϕ(θ̂) of the nonlinear aspects ϕ(θ) = λ−1
θ (k) which provide

the maximum stress level, where the expected life time is greater than 1/k. Section 8.1 deals then
with the optimal designs for λθ given by λθ(s) = θs and Section 8.2 with the locally D-optimal
designs for λθ given by λθ(s) = exp(θ0 + θ1s).

8.1 Optimal Designs if λθ(s) = θs

Here the information is

Iθ(δ) =

∫
1

θ2

(
1− e−θsc

)
δ(ds).

Since 1 − e−θsc is strictly increasing in s, the information is maximized if the design puts all
its mass on the largest possible value for the stress, i.e. the optimal design on a design region
S = [Sl, Su] uses only the upper value Su. However, as soon as there is no censoring, i.e. c = ∞,
then it does not matter which stress levels are used.
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8.2 D-Optimal Designs if λθ(s) = exp(θ0 + θ1s)

At first we consider here the existence of a maximum likelihood estimators if λθ(s) = exp(θ0+θ1s)
is the link funktion.

8.2.1 Theorem
The maximum likelihood estimator exists at (y∗, d∗, s∗) and is unique if and only if there exists
at least one uncensored observation and n 6= m with sn 6= sm.

. Proof. A necessary condition for the maximum likelihood estimator θ̂ = θ̂(y∗, d∗, s∗) is

0 =

N∑

n=1

l̇(θ̂, tn, sn)

=
N∑

n=1

∂

∂θ
λθ(sn)

∣∣∣∣
θ=θ̂

[(
1

λ
θ̂
(sn)

− tn

)
1[0,c](tn)− c 1(c,∞)(tn)

]

=
∑

tn≤c

(
1− exp(θ̂0 + θ̂1 sn) tn

) ( 1

sn

)
−
∑

tn>c

exp(θ̂0 + θ̂1 sn) c

(
1

sn

)
.

In particular, we have
(

♯{n; tn ≤ c}∑
tn≤c sn

)
=
∑

tn≤c

exp(θ̂0 + θ̂1 sn) tn

(
1

sn

)
+
∑

tn>c

exp(θ̂0 + θ̂1 sn) c

(
1

sn

)

so that at least one observation must be uncensored. The second derivative at θ̂ is

N∑

n=1

l̈(θ̂, tn, sn)

=
∑

tn≤c

− exp(θ̂0 + θ̂1 sn) tn

(
1

sn

)
(1, sn)−

∑

tn>c

exp(θ̂0 + θ̂1 sn) c

(
1

sn

)
(1, sn)

= −
( ∑N

n=1 an
∑N

n=1 an sn∑N
n=1 an sn

∑N
n=1 an s

2
n

)

with

an = exp(θ̂0 + θ̂1 sn) tn 1[0,c](tn) + exp(θ̂0 + θ̂1 sn) c 1(c,∞)(tn).

The Hölder inequality provides with P ({sn}) = pn = an∑N
n=1 an

∑N
n=1 an sn∑N
n=1 an

=

N∑

n=1

snpn =

∫
1 · s dP ≤

√∫
12 dP

∫
s2 dP

=

√√√√(

N∑

n=1

pn) (

N∑

n=1

s2n pn) =

√∑N
n=1 an∑N
n=1 an

∑N
n=1 an s

2
n∑N

n=1 an
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so that

(
N∑

n=1

an sn

)2

≤
(

N∑

n=1

an

) (
N∑

n=1

an s
2
n

)
.

This means

det

(
N∑

n=1

l̈(θ̂, tn, sn)

)
≤ 0

and
∑N

n=1 l̈(θ̂, tn, sn) is negative definite if and only if there exists n 6= m with sn 6= sm.

Setting

xθ(s) :=
√

1− e− exp(θ0+θ1 s) c

(
1

s

)
=
√

1− e−k exp(θ1 s)

(
1

s

)

with k := c exp(θ0), the information matrix can be expressed here by

Iθ(δ) =

∫ (
1− e−k exp(θ1 s)

)( 1 s

s s2

)
δ(ds) =

∫
xθ(s)xθ(s)

⊤δ(ds).

To derive locally D-optimal two-point designs on [0, Su], let be 0 ≤ s1 < s2 ≤ Su and set

Xθ :=

(
xθ(s1)

⊤

xθ(s2)
⊤

)
. Then δs1,s2 :=

1
2es1+

1
2es2 , where es is the Dirac measure on s, is D-optimal

within all designs with support s1 and s2 since with the equivalence theorem of D-optimality
(see Kiefer and Wolfowitz 1960) we have

xθ(si)
⊤Iθ(δs1,s2)

−1xθ(si) = u⊤i Xθ

(
1

2
X⊤

θ Xθ

)−1

X⊤
θ ui = 2

for i = 1, 2 (here ui denotes the i’th unit vector in ℜ2). The determinant of the information
matrix of a design δs1,s2 is given by the following lemma.

8.2.2 Lemma

det(Iθ(δs1,s2)) =
1

4

(
1− e−k exp(θ1 s1)

)(
1− e−k exp(θ1 s2)

)
[s2 − s1]

2.

Proof. Set a := 1
2

(
1− e−k exp(θ1 s1)

)
, b := 1

2

(
1− e−k exp(θ1 s2)

)
. Then we have

Iθ(δs1,s2) =
1

2

(
1− e−k exp(θ1 s1)

)( 1 s1

s1 s21

)
+

1

2

(
1− e−k exp(θ1 s2)

)( 1 s2

s2 s22

)

=

(
a+ b a s1 + b s2

a s1 + b s2 a s21 + b s22

)
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so that

det(Iθ(δs1,s2)) = (a+ b)(a s21 + b s22)− (a s1 + b s2)
2

= a2 s21 + ab s22 + abs21 + b2s22 − a2 s21 − 2ab s1 s2 − b2 s22

= a b [s22 − 2s1s2 + s21] = a b [s2 − s1]
2.

8.2.3 Theorem
Let be k := c exp(θ0) > 0. Then δ0,Su = 1

2e0 +
1
2eSu is the D-optimal design within all two-point

designs on S = [0, Su] if and only if θ1 ≤ 2
k Su

(ek − 1).

Proof. Since 1− e−k exp(θ1 s) is strictly increasing in s, det(Iθ(δs1,s2)) is maximized with respect
to s2 ∈ (s1, Su] for any given s1 ∈ [0, Su] if and only if s2 = Su. Therefore we have only to
determine s ∈ [0, Su] so that det(Iθ(δs,Su)) is maximized. This is equivalent of maximizing

g(s) =
(
1− e−k exp(θ1s)

)
[Su − s]2.

Since we have

g′(s) = e−k exp(θ1s) k θ1 exp(θ1 s)[Su − s]2 − 2
(
1− e−k exp(θ1s)

)
[Su − s],

δ0,Su can be only D-optimal if

0 ≥ g′(0) = e−k k θ1 S
2
u − 2

(
1− e−k

)
Su ⇐⇒ e−k k θ1 Su ≤ 2

(
1− e−k

)
.

This is equivalent with θ1 ≤ 2
k Su

ek
(
1− e−k

)
= 2

k Su
(ek−1). Hence δ0,Su is not D-optimal if θ1 >

2
k Su

(ek − 1). To prove that δ0,Su is indeed the D-optimal two-point design for θ1 ≤ 2
k Su

(ek − 1),
it is sufficient to prove that g is strictly decreasing on [0, Su]. This property is given by the
following Lemma.

8.2.4 Lemma
If θ1 ≤ 2

k Su
(ek − 1) and k > 0, then g : [0, Su] → ℜ given by

g(s) =
(
1− e−k exp(θ1s)

)
[Su − s]2 is strictly decreasing.

Proof. To show g′(s) < 0, we need the monotonicity of some auxiliary functions.
a) We have for h1(k) := 1− ek + k ek − k2 ek

h′1(k) = −ek + ek + k ek − 2 k ek − k2 ek = −k ek − k2 ek < 0

so that h1 is strictly decreasing for k > 0. Since obviously h1(0) = 0, it holds h1(k) < 0 for all
k > 0.
b) Now consider h2(k) :=

2
k (e

k − 1)− 1− 2ek. The rule of L’Hospital provides

lim
k↓0

2(ek − 1)

k
= lim

k↓0
2ek

1
= 2
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so that limk↓0 h2(k) = −1. Then h2(k) < 0 for all k ≥ 0 follows with a) from

h′2(k) = − 2

k2
(ek − 1) +

2

k
ek − 2 ek = 2 k2 h1(k) < 0.

c) θ1 ≤ 2
k Su

(ek − 1) and b) imply for g1(s) := θ1[Su − s]− 1− 2ek exp(θ1s)

g1(0) = θ1 Su − 1− 2 ek

≤ 2

k Su
(ek − 1)Su − 1− 2 ek =

2

k
(ek − 1)− 1− 2ek = h2(k) < 0

for all k ≥ 0. Because of

g′1(s) = −θ1 − 2 ek exp(θ1s) k θ1 exp(θ1s) < 0,

we have g1(s) < 0 for all k ≥ 0, s ≥ 0.
d) θ1 ≤ 2

k Su
(ek − 1) implies for g2(s) := k θ1 exp(θ1 s)[Su − s] + 2− 2 ek exp(θ1s)

g2(0) = k θ1 Su + 2− 2 ek ≤ k
2

k Su
(ek − 1)Su + 2− 2 ek = 2 ek − 2 + 2− 2 ek = 0.

Moreover, with c) we obtain

g′2(s) = k θ21 exp(θ1 s)[Su − s]− k θ1 exp(θ1 s)− 2 ek exp(θ1s) k θ1 exp(θ1s)

= k θ1 exp(θ1 s)
[
θ1 [Su − s]− 1− 2 ek exp(θ1s)

]
= k θ1 exp(θ1 s) g1(s) < 0

so that g2 is strictly decreasing from a value g2(0) ≤ 0 which implies g2(s) < 0 for all k > 0,
s > 0.
e) Finally, we have

g′(s) = e−k exp(θ1s) k θ1 exp(θ1 s)[Su − s]2 − 2
(
1− e−k exp(θ1s)

)
[Su − s]

= [Su − s] e−k exp(θ1s) [k θ1 exp(θ1 s)[Su − s] + 2]− 2 [Su − s] < 0

⇐⇒
e−k exp(θ1s) [k θ1 exp(θ1 s)[Su − s] + 2] < 2

⇐⇒
k θ1 exp(θ1 s)[Su − s] + 2 < 2 ek exp(θ1s)

⇐⇒
g2(s) < 0

so that d) provides the assertion.

8.2.5 Lemma

xθ(s)
⊤Iθ(δ0,Su)

−1xθ(s) =
2

S2
u

(
1− e−k exp(θ1s)

) ((Su − s)2

1− e−k
+

s2

1− e−k exp(θ1 Su)

)
.
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Proof. With s1 = 0 and s2 = Su we obtain (see the proof of Lemma 8.2.2)

Iθ(δ0,Su) =

(
a+ b b Su

b Su b S2
u

)

with a := 1
2

(
1− e−k

)
, b := 1

2

(
1− e−k exp(θ1 Su)

)
. Then we have

Iθ(δ0,Su)
−1 =

1

a b S2
u

(
b S2

u −b Su

−b Su a+ b

)

so that

xθ(s)
⊤Iθ(δ0,Su)

−1xθ(s)

=
1− e−k exp(θ1s)

a b S2
u

(1, s)

(
b S2

u −b Su

−b Su a+ b

)(
1

s

)
=

1− e−k exp(θ1s)

a b S2
u

(1, s)

(
b S2

u − b Su s

−b Su + (a+ b) s

)

=
1− e−k exp(θ1s)

a b S2
u

(b S2
u − b Su s− b Su s+ (a+ b) s2) =

1− e−k exp(θ1s)

a b S2
u

(b (Su − s)2 + a s2).

To prove that δ0,Su is D-optimal within all designs on S = [0, Su], the property

2 ≥ xθ(s)
⊤Iθ(δ0,Su)

−1xθ(s) (8.1)

=
2

S2
u

(
1− e−k exp(θ1s)

) ((Su − s)2

1− e−k
+

s2

1− e−k exp(θ1 Su)

)

must be shown for all s ∈ [0, Su] according to Kiefer and Wolfowitz (1960) where equality holds
only for s = 0 and s = Su. The equality is indeed always satisfied for s = 0 and s = Su. Set

q(s) :=
(
1− e−k exp(θ1s)

) ((Su − s)2

1− e−k
+

s2

1− e−k exp(θ1 Su)

)
.

A necessary condition for the D-optimality of δ0,Su is then q′(0) ≤ 0.

8.2.6 Lemma
q′(0) ≤ 0 if and only if θ1 ≤ 2

k Su
(ek − 1).

Proof.

q′(s) = e−k exp(θ1s) k θ1 exp(θ1s)

(
(Su − s)2

1− e−k
+

s2

1− e−k exp(θ1 Su)

)

+
(
1− e−k exp(θ1s)

) (−2(Su − s)

1− e−k
+

2s

1− e−k exp(θ1 Su)

)
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so that

0 ≥ q′(0) = e−k k θ1
S2
u

1− e−k
−
(
1− e−k

) 2Su

1− e−k

⇐⇒ k θ1 Su ≤ ek 2 (1− e−k) ⇐⇒ θ1 ≤
2

k Su
(ek − 1).

Hence the condition θ1 ≤ 2
k Su

(ek − 1) implies not only that δ0,Su is the locally D-optimal
design within all two-point designs on [0, Su] but also the necessary condition for D-optimality
of δ0,Su within all designs on [0, 1]. Several plots of q(s) for different values of θ1 and k with
θ1 ≤ 2

k Su
(ek − 1) showed that q is first decreasing and then increasing on [0, Su] so that (8.1)

should be satisfied.
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Figure 8.1: Lower points s(θ1, k) of the D-optimal two-point designs on [0,1].

As soon as θ1 > 2
k Su

(ek − 1) holds then the locally D-optimal two-point design is of the form
δs(θ1,k),Su

with 0 < s(θ1, k) < Su. The lower points s(θ1, k) depending on θ1 are shown in Fig.

8.1 for k = 0.5, 1, 2, 3 and Su = 1. The condition θ1 > 2
k Su

(ek − 1) is in particular satisfied
if k is small. The quantity k := c exp(θ0) is small if the censoring variable c or the regression
parameter θ0 is small. A small θ0 means a high expected lifetime at s = 0 which provides a high
probability of censoring. Then it is reasonable to make the observations at higher stress levels
s(θ1, k) > 0 so that the probability of censoring is smaller. But since 2

k Su
(ek − 1) ≥ 2

Su
for all

k ≥ 0, the censoring variable as well as θ0 have no influence on the D-optimal design as soon as
θ1 ≤ 2

Su
. The condition θ1 >

2
k Su

(ek − 1) is also satisfied if θ1 is large. In this case, the expected
lifetime decreases so rapidly with growing stress that observations at s(θ1, k) > 0 provide more
information than at 0 where observations are censored with higher probability.

8.2.7 Lemma
It holds ek−1

k ≥ 1 for all k ≥ 0.
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Proof.

ek − 1

k
≥ 1 ⇐⇒ ek − 1 ≥ k ⇐⇒ h(k) := ek − 1− k ≥ 0,

But h(k) := ek − 1− k ≥ 0 is satisfied since h(0) = 0 and h′(k) = ek − 1 ≥ 0 for all k ≥ 0.
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