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Part I
Methods

1 Preliminaries

1.1 How to download the free software R

In the following it is described how the basis package of R for windows computers (e.g. Windows
NT or Windows 98, 2000, XP) can be downloaded. The process is similar for other computers.
In particular the R versions for other operating systems can be found under the same internet
address. The internet addess is http://cran.r-project.org/. For windows computers, you use
at first the button Windows (95 and later) and then base. Then save R-2.5.1-win32.exe (or
a newer version) in a directory of your computer which shall contain the R program code. For
installing, activate R-2.5.1-win32.exe. Then R will be installed in subdirectories of the chosen
directory. Afterwards you can start R. For working with R, it is of great advantage to link the R
with a own working directory. Otherwise all files produced by R are saved in the program directory.
It is always good to have program directories and working directories clearly separated. In the
directory \rw2001\doc\manual (rw2001 may be substitued by a newer version) you will find the file
R-intro.pdf which includes a detailed introduction to R in English.

Please note that currently new versions of R appear. Hence differences in the output can be due to
different versions.

1.2 Installing and activating the R Package agricolae

The R package agricolae contains special R functions for agricultural statistics and some agri-
cultural data sets. You will find on the website http://cran.r-project.org/ on the lefthand site
the button Packages. This buttom provides a list with over 700 Packages ordered alphabetically.
There you find the package agricolae. On its site you will find a ZIP file and a PDF file for
downloading. The best is to download the ZIP-file in the working directory of your R. When you
have started R, then you choose the button Packages (Pakete in German version) and there the
button for installing the package from a local ZIP file (in German: Installiere Paket(e) aus
lokalen ZIP-Dateien). Activating the agricolae ZIP file installs this package on your computer.

If you have a older version of R, then do not worry about warning messages. They concern missing
libraries which are only needed for special routines of the agricolae package, we do not need.
However, sometimes the R package combinat is needed which shall be downloaded like the pack-
age agricolae. Also other packages which are used here only in very special situations can be
downloaded like the package agricolae.

To activate the library agricolae for your R session, you need for every new session to type
> library(agricolae)

in the R command window. To test whether the package is available, type for example
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> 7design.lsd

Then in a new window you will find the description of the R routine for generating Latin Squares
Designs. The activating of other packages is the same.

Note, that always the help function is activated with ? and provides the description of the R
functions.

1.3 Transferring data into R

If you want to use the data sets from a package, then you must load the data set with the R function
data. For example the data set trees from the agricolae package:

1.3.1 Data Set (TREES)
> library(agricolae)
> data(trees)

Then the data set trees is avalaible. To see how it looks like, type:
> trees

Then you get the whole data set:

place species diameter
1 1 LAUREL 18.4
2 2 LAUREL 19.1
3 3 LAUREL NA
4 4 LAUREL 14.4
5 5 LAUREL 12.9
6 6 LAUREL 14.4
7 1 GUABA 14.3
8 2 GUABA 12.9
9 3 GUABA 15.0
10 4 GUABA 14.6
11 5 GUABA 14.6
12 6 GUABA 12.4
13 1 ROBLE 21.0
14 2 ROBLE 19.7
15 3 ROBLE 13.2
16 4 ROBLE 13.2
17 5 ROBLE 16.8
18 6 ROBLE 14.0
19 1 TERMINALIA 20.9
20 2 TERMINALIA 18.2
21 3 TERMINALIA 19.2
22 4 TERMINALIA 21.7
23 5 TERMINALIA 15.7
24 6 TERMINALIA 18.6
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It has three variables, one which describes the place, where the tree was measured, one for the tree
species and one for the tree height.

To get a data set from a R package is the most convenient way. But usually the data are given in
another form. You can transfer many data data formats into R as those from SAS or SPSS. But
the simplest format is the ASCII format. This is only explained here.

1.3.2 Data Set (DARWIN)

> read.table ("DARWIN2.DAT" ,header=T)
Pair Cross.fertilized Self.fertilized

1 1 23.5 17.4
2 2 12.0 20.4
3 3 21.0 20.0
4 4 22.0 20.0
5 5 19.1 18.4
6 6 21.5 18.6
7 7 22.1 18.6
8 8 20.4 15.3
9 9 18.3 16.5
10 10 21.6 18.0
11 11 23.3 16.3
12 12 21.0 18.0
13 13 22.1 12.8
14 14 23.0 15.5
15 15 12.0 18.0

The argument header=T (T=TRUE) provides that the first line of the data file is read as header line.
Note that Cross-fertilized and Self-fertilized in the data file is converted to Cross.fertilized and
Self.fertilized, since the hyphen is not a allowed character in R.

Explanation of the data set: “These data are from Charles Darwin’s study of cross- and self-
fertilization. Pairs of seedlings of the same age, one produced by cross-fertilization and the other by
self-fertilization, were grown together so that members of each pair were reared under nearly identical
conditions. The aim was to demonstrate the greater vigour of the cross-fertilized plants. The data
are the final heights of each plant after a fixed period of time. Darwin consulted Galton about the
analysis of these data, and they were discussed further in Fisher’s Design of Experiments.”(Hand et
al. 1996, P. 2)

1.4 Transforming data sets

Data are often not in the form which is needed for the analysis in R. Hence after reading the data,
the data must be transformed in a appropriate form. The form of a data set which can be easily
analyzed in R is always a table with several rows and columns as follows:
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Data tables

Every row belongs to an experimental unit (individual, case, field unit).
Every column belongs to a variable observed, measured, or registered at the experimental
units. Variable are usually measurements, treatments, and blocking numbers.

It is sometimes not easy to decide, what the experimental unit is. In the data set 1.3.2 as presented
above, the experimental units are the pairs of seedlings. Hence we have three variables: The number
of the pairs, the measurement for cross-fertilization, the measurement for self-fertilization. But we
will see later that it is sometimes more convenient to regard each seedling as experimental unit.
Then we have again three variables: the pair number, the fertilization type, and the final height.

> darwin

Pair Height Fertilization
1 1 23.5 Cross
2 2 12.0 Cross
3 3 21.0 Cross
4 4 22.0 Cross
5 5 19.1 Cross
6 6 21.5 Cross
7 7 22.1 Cross
8 8 20.4 Cross
9 9 18.3 Cross
10 10 21.6 Cross
11 11 23.3 Cross
12 12 21.0 Cross
13 13 22.1 Cross
14 14 23.0 Cross
15 15 12.0 Cross
16 1 17 .4 Self
17 2 20.4 Self
18 3 20.0 Self
19 4 20.0 Self
20 5 18.4 Self
21 6 18.6 Self
22 7 18.6 Self
23 8 15.3 Self
24 9 16.5 Self
25 10 18.0 Self
26 11 16.3 Self
27 12 18.0 Self
28 13 12.8 Self
29 14 15.5 Self
30 15 18.0 Self

To achieve this form of the data set, type:

> darwinO<-read.table ("DARWIN2.DAT" ,header=T)
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darwinC<-cbind(darwinO[,c(1,2)],"Cross")
darwinS<-cbind(darwinO[,c(1,3)],"Self")

names (darwinC)<-c("Pair","Height","Fertilization")
names (darwinS)<-c("Pair","Height","Fertilization")
darwin<-rbind(darwinC,darwinS)

row.names (darwin)<-1:30

vV V V V V V

The first two columns from the data set darwin are selected with darwin[,c(1,2)]. With
cbind(darwin[,c(1,2)],"Cross"), a third column which contains everywhere as entry "Cross" is
added to the two columns so that we then have three columns. With
names (darwinC)<-c("Pair","Height","Fertilization"), the three columns get the names
"Pair","Height","Fertilization". The same is done after selecting the first and third column
with darwin[,c(1,3)]. Then darwinC and darwinS are two data tables with three columns and
15 rows. These two data tables are put together with rbind(darwinC,darwinS). If we do not use
row.names (darwin2)<-1:30, then the row names are strange (you can check this by looking at
darwin2 before using this command).

The variables of a data table are vectors. There are several possibilities in R to generate and combine
vectors:

Generation of vectors

3%

Combination with c: E.g.: ¢(1,3,4,2) for numbers or c(‘‘self’’,”’cross’’,”’cross”’) for
character strings or c¢(T,T,F) for logical values.

/////////

/////////

Combining vectors and data tables

Combination columnwise with cbind and rowwise with rbind.

The columns and rows, respectively, must have the same length. However, a vector or data set
can be combined with a single value, because then the single value is automatically repeated
adequately.

data.frame can be used instead of cbind if the result should be a data table with different types
of columns.

There are also several possibilities to select from a vector or from a data set:

Selection from a vector x, eg. = = (10,13,21,45,62)

By components: E.g. x[2,5,1] provides 13,62,10

By naming components which should be not used by negative numbers: E.g.
x[c(-1,-4)] provides 13,21,45.

By names of the components if available: E.g. x[c("two","five","one")] provides
13,62,10 if the names coincides with the component numbers.

By logical values: E.g. x[c(T,T,F,T,F)] provides 10,13,45.
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Selection from a data table or matrix, e.g. darwin

Selection of rows by specifying the first components: E.g. darwin[c(2,5,1),]
Selection of columns by specifying the second components: E.g. darwin[,c(3,1)]
The selection can be done also by negative components, names, and logical values as for vectors.
Additional selection of columns by names for data tables by $: E.g. darwin$Height
provides the same as darwin[, "Height"].

Producing logical values

a<b less than,

a<=b less than or equal,

a==b equal (2 equality signs!),
a!=b not equal,

a>b greater than,

a>=b greater than or equal.
Logical values are combinded by
& and

| or

according to the rules of logics.
! is the negation.

For example, if all seedlings from the self-fertilization with height less than 18cm should be selected,
then we type:

> darwin[darwin$Height<18 & darwin2[,"Fertilization"]=="Self",]
Pair Height Fertilization

16 1 17.4 Self
23 8 15.3 Self
24 9 16.5 Self
26 11 16.3 Self
28 13 12.8 Self
29 14 15.5 Self

1.4.1 Exercise (CHICKEN)

The data file CHICKENS.DAT contains the data of a randomized blocks experiment. This experiment
“was carried out to investigate a drug added to the feed of chickens in an attempt to promote growth.
The comparison is between three treatments: standard feed (control), standard feed plus low dose
of drug, standard feed plus high dose of drug. The experimental unit is a group of chicks, reared and
fed together in the birdhouse. The experimental units are grouped three to a block, with physically
adjacent units going to the same block. The response is the average weight per bird at maturity for
the group of birds in each experiment.” (Hand et al. 1996, P. 7/8)

The four columns of the data file CHICKENS.DAT have the following titles: Block, Control, Low dose,
High dose. The average weights of the birds is given in pounds.

Read the data and transform the data to the following form:
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> chicken
Block Weight Feed

1 1 3.93 Control
2 2 3.78 Control
3 3 3.88 Control
4 4 3.93 Control
5 5 3.84 Control
6 6 3.75 Control
7 7 3.98 Control
8 8 3.84 Control
9 1 3.99 Low
10 2 3.96 Low
11 3 3.96 Low
12 4 4.03 Low
13 5 4.10 Low
14 6 4.02 Low
15 7 4.06 Low
16 8 3.92 Low
17 1 3.96 High
18 2 3.94 High
19 3 4.02 High
20 4 4.06 High
21 5 3.94 High
22 6 4.09 High
23 7T 4.17 High
24 8 4.12 High

1.4.2 Data Set (MUSTARD=Ackersenf)

The data in MUSTARD.DAT “come from an experiment to investigate the effect of light on root growth
in mustard seedlings. Two groups of seedlings were grown in identical conditions, except that one
was kept in the dark while the other had daylight during the day. After germination the stems were
cut off some of the seedlings, to allow for the possibility that light affected the vigor of the whole
plant through the stem and leaves. Later the root lengths (in mm) of all seedlings were measured.
Does light affect root growth; and does this effect depend on whether the stem is cut?” (Hand et
al. 1996, P. 74,75).

21 271 22 21
39 21 16 39
31 26 20 20
13 12 14 24
52 11 32 20

39 8 28
55 36
50 41
29 17

17 22
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The first two columns concern the root length grown in the light, the first and third column concern
the root length where stems are cut. This data set cannot be readed by read.table because
read.table is expecting equal length of rows. To achieve equal length of rows, we can introduced
missing values:

21 27 22 21
39 21 16 39
31 26 20 20
13 12 14 24
52 11 32 20

39 8 28 -
55 - 36 -
50 - 41 -
29 - 17 -
17 - 22 -

The new data file is called MUSTARD2.DAT and can be read as follows where the argument
na.strings="-" tells R that the missing values are denoted by “™:

> mustardO<-read.table ("MUSTARD2.DAT" ,na.strings="-")
> mustard0O

Vi V2 V3 V4
21 27 22 21
39 21 16 39
31 26 20 20
13 12 14 24
52 11 32 20
39 8 28 NA
55 NA 36 NA
50 NA 41 NA
29 NA 17 NA
10 17 NA 22 NA

© 00 N O O b W N B+

Since the experimental unit is the root and we have 31 roots measures, we have 31 experimental
units. We obtain the correct data table with the following commands:

mustardl<-data.frame(mustardO[!is.na(mustardO[,1]),1],"light","cut")
mustard2<-data.frame (mustardO[!is.na(mustard0[,2]),2],"1light", "noncut")
mustard3<-data.frame(mustardO['is.na(mustard0[,3]),3],"dark","cut")
mustard4<-data.frame(mustardO['is.na(mustard0O[,4]),4],"dark", "noncut")
names (mustardl)<-c("length","grow.conditions","cutting")

names (mustard2)<-c("length","grow.conditions","cutting")

names (mustard3)<-c("length","grow.conditions","cutting")

names (mustard4)<-c("length","grow.conditions","cutting")
mustard<-rbind (mustardl,mustard2,mustard3,mustard4)

row.names (mustard)<-1:length(mustard$length)
mustard$length<-as.numeric(mustard$length)

V V V V V V V V V V V
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> mustard

length grow.conditions cutting
1 21 light cut
2 39 light cut
3 31 light cut
4 13 light cut
5 52 light cut
6 39 light cut
7 55 light cut
8 50 light cut
9 29 light cut
10 17 light cut
11 27 light noncut
12 21 light noncut
13 26 light noncut
14 12 light noncut
15 11 light noncut
16 8 light noncut
17 22 dark cut
18 16 dark cut
19 20 dark cut
20 14 dark cut
21 32 dark cut
22 28 dark cut
23 36 dark cut
24 41 dark cut
25 17 dark cut
26 22 dark cut
27 21 dark noncut
28 39 dark noncut
29 20 dark noncut
30 24 dark noncut
31 20 dark noncut

The R function is.na provides the logical value T (=TRUE) for a missing value. With the negation
given by !, it provides the logical value F (=FALSE) for the missing values so that they are not used.
Without the R function data.frame we would get a 31 x3 matrix of character strings. The command
data.frame (mustardO[...],...) 1is a short hand of cbind(data.frame(mustardO[...]),...).
The R function length provides length of a vector.

1.5 Data types in R

The structure of a data set can be obtained by the command str. For the MUSTARD data set you
can see very good with this command the differences between the different objects:

> str(cbind(mustardO[,1],"light","cut"))
Chr [1:10’ 1:3] II21II II39II II31II II13II II52II II39II II55II II50II II29II I|17II Illightll
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> str(cbind(data.frame(mustard0[,1]),"light","cut"))

‘data.frame’: 10 obs. of 3 variables:

$ mustard0...1.: int 21 39 31 13 52 39 55 50 29 17

$ "light" : Factor w/ 1 level "light": 1 111111 1

$ "cut" : Factor w/ 1 level "cut": 11111111

> str(data.frame(mustardO[,1],"light","cut"))

‘data.frame’: 10 obs. of 3 variables:

$ mustard0...1.: int 21 39 31 13 52 39 55 50 29 17

$ X.light. : Factor w/ 1 level "light": 1 111 1 1111

$ X.cut. : Factor w/ 1 level "cut": 1 11111 1

> str(mustard)

‘data.frame’: 31 obs. of 3 variables:

$ length :num 21 39 31 13 52 39 55 50 29 17 ...

$ grow.conditions: Factor w/ 2 levels "light","dark": 1 1 111111
$ cutting : Factor w/ 2 levels "cut","noncut": 1 1 111111

Look also at the data set TREES:

> str(trees)

‘data.frame’: 24 obs. of 3 variables:

$ place :int 1234561234 ...

$ species : Factor w/ 4 levels "GUABA","LAUREL",..: 2222221111
$ diameter: num 18.4 19.1 NA 14.4 12.9 14.4 14.3 12.9 15 14.6 ...

This data set has three different types of variables: place has integer type, species is a factor,
diameter is numeric. For the statistical analysis it is very important to distinguish between the
different types.

Data types in R

integer: for integers as counts, sometimes a numeration
numeric: for the results of quantitative measurements
factor: for treatments, blocks

Very important for the experimental design is the type factor. The type factor is used for nominal
values and has a finite number of levels. The levels are obtained by character sequences like "GUABA".
As soon as the values of a variable are given by character sequences, they are interpreted as factors.
However, R uses internally integers for the levels where by default the integers are ordered in
alphabetical order: 1 for "GUABA", 2 for "LAUREL", 3 for "ROBLE", 4 for "TERMINALIA". This can be
also seen by converting the factor variable species into an integer variable. For that we create a
new dummy variable speciesI:

> speciesI<-as.integer(trees$species)
> speciesl
[11 2222221111113333334444414
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The symbol $ means that a special variable of the data set trees is used, namely here the variable
species. The symbol <- means that the content of the dummy variable on the right hand side is
assigned to the dummy variable at the left hand side. To see the difference between the two dummy

variables speciesI and trees$species type:

> attributes(trees$species)
$levels
[1] "GUABA" "LAUREL" "ROBLE"

$class
[1] "factor"

> attributes(speciesI)
NULL

By the conversion to an integer variables, all factor attributes are lost. What can we do when the
tree species are only given by the numbers 1,2,3,47 We always can convert a integer variable (even
a numeric variable but this makes less sense) into a factor variable by the command as.factor:

> speciesF<-as.factor(speciesI)
> attributes(speciesF)

$levels

[1] II1II II2II II3II II4II

$class
[1] "factor"

If we want names for the levels, then type:

"TERMINALTA"

> levels(speciesF)<-c("GAUBA","LAUREL","ROBLE","TERMINALA")

> attributes(speciesF)
$levels
[1] "GAUBA" "LAUREL" "ROBLE"

$class
[1] "factor"

> str(fspecies)

Factor w/ 4 levels "GAUBA","LAUREL",..:

> str(trees$species)

Factor w/ 4 levels "GUABA","LAUREL",..:

Hence we have created from the integer variable speciesI a factor variable of the same structure

"TERMINALA"

2222221111

2222221111

and content as the originally variable trees$species

1.5.1 Exercise (SPLIT)

The data file SPLIT.DAT contains “a classic data set involving an experiment to investigate the
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effect of manure (nitrogen) on the yield of barley (Gerste). Six blocks of three whole plots were
used along with three varieties of barley, each whole plot being devoted to one variety only. The
whole blocks were each divided into 4 subplots to cater four levels of manure (0,0.01,0.02,and 0.04
tons per acre).”(Hand et al. 1996, P. 253)

The 8 columns of the data file SPLIT.DAT have the following names: Block, Variety, Manure, Yield,
Block, Variety, Manure, Yield.

Create a data table (data frame) with different rows for different experimental units and columns
of correct data type. Use for the variable manure the numeric data type as well as the factor data
type. Why make this sense?

1.5.2 Exercise (Pepper)
“An experiment was carried over a two-year period to find the best treatment for growing peppers
in glashouses. Three factors were investigated, each at two levels:
Heating: standard (0) or supplementary (1)
Lighting: standard (0) or supplementary (1) FEach treatment combination requires a glasshouse
Carbon dioxid: control (0) or added COq (1)
compartment, and 12 compartments, divided into blocks of 6 are available. In the first year of
the experiment, all 8 treatment combinations were used. In the second year, the 5 most successful
treatments from the first year were retained, and one treatment was replicated in each block.

The response was a measure of the excess of yield over costs.”
Heating 0 0 0 0 1 1 1 1

Lighting 0 0 11 0 0 1 1
CO2 0 1 0 1 0 1 0 1

Yearl Block 1 11.4 13.2 104 - 137 - 12,0 125
Year 1 Block 2 - 84 65 6.1 108 94 - 91
Year 2 Block 1 - 137 - - 146 165 128 129
15.4
Year 2 Block 2 - 107 - - 109 109 9.0 10.2
10.1

(Hand et al. 1996, P. 22,23)

The data are given in the data file PEPPERS2.DAT. What are the experimental units and the variables
here and of which type are the variables? Prepare the data file so that it can be read with R and
transform the data to a data table so that different rows belong to different experimental units and
the columns are the variables. The creation of the data table is a more difficult task.

1.6 Saving data sets and self-defined functions

If we have manipulated the data sets it will be good to save the resulting data sets. This can be
done with the R function dump.

>dump (c("chicken","chickenQ","darwin","darwinO", "mustard","mustard0"),
+ "all_data.asc")



Christine Miiller Universitat Kassel, WS 2007/2008
Manuscript Linear Models and Ezperimental Design 17

Then the data sets are saved in the ASCII file all data.asc in your working directory of R. The
data sets can be reloaded in another R session by

> source("all_data.asc")

If the list of the data sets is too long it is better to write a self-defined function for saving which
also includes this function. Functions in R have always the form

function(arguments) {function body with R commands}

They can be created in the R command window or in an additional editor window. For creating
the saving function in the command window, type for example

dump.data<-function (){dump(c("dump.data","chicken","chickenO","darwin","darwinO",
+ "mustard","mustardO","pepper","pepper0","split","split0"),"all_data.asc")}

To create the function in the additional editor window, type
> fix(dump.data)
Then the additional window appears where you can write:

function ()

{

dump (c("dump.data","chicken","chicken0","darwin","darwin0", "mustard",
"mustardO","pepper","pepper0",'"split","splitO"),"all_data.asc")

}

After saving this window the function dump.data is available and can be used by

> dump.data()

By typing
> 1s(0)

you see list of all data sets and the function dump.data. Data sets and functions are R objects listed
by the function 1s. It has no arguments like dump.data. To remove R objects, type for example
for deleting the data set chickenO

> rm(chickenO)

You will find the file all data.asc also on the homepage of this lecture. It includes all data sets
used in this lecture. If you have problems to create a data set, then you can load it from the file
all data.asc. But you should try to create the data sets by yourself because this is a qualification
you need in practice.

You can use also self-defined functions for saving several R comands for example some R commands
for creating a special data set.
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1.7 Descriptive Statistics
The main location estimators are easiliy obtained by the R function summary:

> str(chicken0)

‘data.frame’: 8 obs. of 4 variables:

$ Vi: int 12345678

$ V2: num 3.93 3.78 3.88 3.93 3.84 3.75 3.98 3.84
$ V3: num 3.99 3.96 3.96 4.03 4.1 4.02 4.06 3.92
$ V4: num 3.96 3.94 4.02 4.06 3.94 4.09 4.17 4.12

> summary(chickenO)

Vi V2 V3 L
Min. :1.00 Min. :3.750  Min. :3.920  Min. :3.940
1st Qu.:2.75 1st Qu.:3.825 1st Qu.:3.960 1st Qu.:3.955
Median :4.50 Median :3.860 Median :4.005 Median :4.040
Mean :4.50 Mean :3.866 Mean :4.005 Mean 14,037
3rd Qu.:6.25 3rd Qu.:3.930 3rd Qu.:4.037 3rd Qu.:4.098
Max. :8.00 Max. :3.980 Max. :4.100 Max. :4.170

We see that also for the block numbers the location parameters are calculated, which makes no
sense. Using the data table chicken, we obtain:

> str(chicken)
‘data.frame’: 24 obs. of 3 variables:
$ Block : int 1234567812 ...
$ Weight: num 3.93 3.78 3.88 3.93 3.84 3.75 3.98 3.84 3.99 3.96 ...

$ Feed : Factor w/ 3 levels "Control","Low",..: 1111111122 ...
> summary(chicken)
Block Weight Feed
Min. :1.00 Min. :3.750 Control:8
1st Qu.:2.75 1st Qu.:3.928 Low :8
Median :4.50 Median :3.960 High :8
Mean :4.50 Mean :3.970
3rd Qu.:6.25 3rd Qu.:4.037
Max. :8.00 Max. :4.170

Note that the function summary recognize factors and calculate for them only the frequency list. To
get the locations estimates of the weight for the different feeding groups from the data set chicken,

type:

> Cl<-chicken[chicken$Feed=="Control","Weight"]
> C2<-chicken[chicken$Feed=="Low","Weight"]
> C3<-chicken[chicken$Feed=="High", "Weight"]
> summary(cbind(C1,C2,C3))
C1 C2 C3
Min. :3.750  Min. :3.920  Min. :3.940

1st Qu.:3.825 1st Qu.:3.960 1st Qu.:3.955
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Median :3.860 Median :4.005 Median :4.040

Mean 3.866 Mean :4.005 Mean :4.037

3rd Qu.:3.930 3rd Qu.:4.037 3rd Qu.:4.098

Max. :3.980 Max. :4.100 Max. :4.170

These are the same locations estimates as obtained for chicken0. Only the derivation is more
complicated. However, the data table chicken is much more convenient for plotting the box-and-
whisker plots.

> boxplot(Weight~Feed,data=chicken)
> boxplot(Weight~Block,data=chicken)

g
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Figure 1.1: Box plots with respect to Feed and Block

If we interpret the blocks as experimental units so that each block has three weight measurements,
we also can plot scatterplots for example the weights of the control group against the weights of the
group with low drug:

> plot(C1,C2,xlab="Control",ylab="Low")

To plot the scatterplots of all possible compinations of two variable we can use also the function
pairs:

> pairs(cbind(C1,C2,C3))
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Figure 1.2: Scatter plots for one pair of variables and for all pairs

1.7.1 Example (SPLIT)

> str(split)

‘data.frame’: 72 obs. of 4 variables:

$ Block : Factor w/ 6 levels "im,m2m m3m man . 1111111111
$ Variety: Factor w/ 3 levels "1","2" ,"3": 1111222233 ...

$ Manure : num O 0.01 0.02 0.04 0 0.01 0.02 0.04 0 0.01

$ Yield : num 111 130 157 174 117 114 161 141 105 140 ...
> Yi<-split[split$Variety=="1",]
> Y2<-split[split$Variety=="2",]
> Y3<-split[split$Variety=="3",]
> summary(cbind(Y1$Yield,Y2$Yield,Y3$Yield))

X1 X2 X3

Min. : 53.00 Min. : 60.0 Min. : 63.00

1st Qu.: 74.00 1st Qu.: 85.0 1st Qu.: 96.75
Median : 94.00 Median :102.5 Median :113.00
5
0

Mean : 97.63 Mean :104. Mean :109.79
3rd Qu.:113.75 3rd Qu.:126. 3rd Qu.:124.00
Max. :174.00 Max. :161.0 Max. :156.00

> boxplot(Yield Variety,data=split)

But also the other boxplots are easily obtained:

> boxplot(Yield~Block,data=split)
> boxplot(Yield"Block#*Variety,data=split)

T T
3.85 3.95

T
3.75

T T
4.05 4.15

T
3.95
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Figure 1.3: Box plots with respect to Variety and Block
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Figure 1.4: Box plots with respect to Block*Variety

Since the variables Yield and Manure are numeric in the data set split they can be plotted in a
scatter plot:

> plot(Yield™Manure,data=split)

The plots also can be given separately for the different varieties.

> plot(Yield™Manure,data=Y1)

> points(Yield~“Manure,data=Y2,pch=2)

> points(Yield™Manure,data=Y3,pch=3)

> legend(0.028,75,c("Variety 1","Variety 2", "Variety 3"),pch=c(1,2,3))
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Figure 1.5: Plots for all data and for data separated according to Variety

1.7.2 Exercise (Mustard)

Calculate for the data sets mustardO and mustard from Data set 1.4.2 the summary table of the
location estimators. Calculate in particular the location parameters for the different treatment
groups by using the data set mustard. Plot also the boxplots for all 4 treatment groups. What
happens when the two treatment factors are exchanged. Plot also the boxplots for the two treatment
groups for each factor separately.

1.7.3 Exercise (Darwin)

Calculate for the data sets darwin0 and darwin from Data set 1.3.2 the summary table of the location
estimators. Plot the boxplots for the two treatment groups. Use also the pairs as experimental unit
and plot the scatterplot for the height under cross-fertilization and self-fertilization.
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2 Test theory and the two-sample problem

In this section, the main concepts for statistical tests and corresponding designs are explained at
the example of the two sample problem

If the data set has only two variables where one variable is a treatment or block factor with two
levels, then we have a two sample problem. Here we will assume that the second variable is a numeric
variable and therefore a measurement. If the treatment or block factor has only two levels we can
divide the data set in two samples (two groups), one with the measurements, where the factor
variable attains the first level, and the other with the measurements, where the factor variable
attains the second level. Such situations we also have, if we are ignoring other variables.

Let y11,...,y1N, be the measurements of the first sample and ys1,...,%2n, the measurements of
the second sample. The sample sizes N1 and Ny can be equal or different. The vector of obser-
vations/measurements for the first sample is denoted by y1, = (y11,...,%1n,) | and the vector for
the second sample by 32, = (y21,--.,%2n,) . Here we will assume that yi1,...,y1n, are realiza-
tions of independent identically distributed random variables Y71, ..., Y1y, with normal distribution
N (1, J%) and that yo1, ..., yan, are realizations of independent identically distributed random vari-
ables Ya1,. .., Yay, with normal distribution NV (p2, 03).

2.1 Test theory by means of the two-sample t-test

The two means of the two samples can be estimated by the arithmetic mean

1 1 &
Yy, = — and 7o, = —

and are obtained by R by the function mean. Of particular interest is the difference between the
means

ylo - yQo’

However, a big difference does not automatically mean that the true means p; and po are different.
The difference will be the greater the greater the variability of the data is. Hence for testing

the hypothesis Hy : 1 = pe versus the alternative Hy : uy # s
we use the test statistic
g [ NN T~
N1+ No 012

where

1 N1 N2
~2 = )2 7. )2
TN TN, -2 (Z(yl" T ) |

n=1 n=1
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Since y11,...,Y1N;sY21,-- -, Y2N, are realizations of random variables Yii,...,Yin,, Yo1, ..., Yan,,
also the test statistic d is realization of a random variable D.

P-value

If ¢ is a realization of a test statistic 7', then the maximum probability under the null hypothesis
Hj that T attains the same or a more extreme value than t is called P-value.

Level o test

The null hypothesis Hy is rejected if the P-value is not greater than a.

Usual choice of «

0.05
~ number of tests at the same data set’

If 0’% = 0’%, then the test statistic D has under Hy : p1 = po a central t-distribution with N+ No —2
degree of freedoms. Then we have the following decision rule

t-test

P-value is not greater than «, or

Reject Hy : p1 = pg  if ~ )
|d| > tNi+Np—21-%, Tespectively.

Thereby ty, denotes the a-quantile of the central t-distribution with N degrees of freedom. Quan-
tiles of distributions are given in R by qdistname, i.e. the quantiles of the t distribution are given
by qt. The R function t.test calculates the test statistic |d| and the P-value.

The R function t.test also calculates the lower and upper bounds of the confidence interval for

w1 — po. The 1 — « interval is given by

élfa(yln y2.)

_ _ ~ 1 1 _ _ ~ 1 1
= U1 — Y20 — INi4+Np—2,1-2 012 4/ A + Ny Yo T Vo +iN 4+ Np—2,1-2 012 A + A ]

It has the property that the probability that the true difference p; — uso lies in the interval is at
least 1 —a. With a 1 — « confidence interval for g1 — po, we have a third possibility to perform the
t-test:

t-test

Reject Hy : g = po if 0 ¢ al_a(y1.,y2.)-

2.2 Checking the requirements of the t-test

The t-test has two very important requirements: the normal distribution of both samples and the
equality of the true variances. These requirements must be checked by tests. Since these tests are
only pretests, they are not influencing the level « for the main test(s).
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1. Checking the normal distribution: The normal distribution can be checked in R with
shapiro.test. If the assumption of normal distribution is rejected for at least on sample, then no
version of a t-test can be used. Then the Wilcoxon rang sum test wilcox.test must be used which
makes no assumptions for the distribution.

2. Checking the homogeneity of the variances: The test for Hy : 0? = 03 versus Hy : 03 # 03

bases on the quotient of the empirical variances for the two samples

= 82(y1,)
7%(y2.)
with
1 & 1 X
n=1 n=1

The test statistic ¥ is a realization of a random variable V which has under the null hypothesis

Hy : 03 = 03 a central F distribution with N; — 1 and Ny — 1 degrees of freedom.

F-test for testing the equality of variances

P-value is not greater than «, or

Reject Hy: 0% =05 if { R _
v < Fer,szl,% or v > Fer,szl,lf%v respectively.

Thereby Fn ar« denotes the a-quantile of the central F distribution with N and M degrees of
freedom and is given in R by gF. The test statistic and the P-value of the F-test are given in R by
var.test. If Hy: 0? = 032 is rejected, then the simple t-test cannot be used. However a modified
version, the Welch t-test, can be used, which is automatically used in R then. But the Welch t-test

also assumes normal distribution for both samples.

2.2.1 Example (Mustard)

It shall be tested whether the length differs under the two growing conditions and whether the length
differs under the two cutting treatments. At first we check the assumption of normal distribution
for the two growing conditions.

> mustardL<-mustard[mustard$grow.conditions=="1light","length"]
> mustardD<-mustard[mustard$grow.conditions=="dark","length"]
> shapiro.test (mustardL)$p.value

[1] 0.2552495

> shapiro.test (mustardD)$p.value

[1] 0.0746946

> var.test (mustardL,mustardD)
F test to compare two variances

data: mustardlL and mustardD



Christine Miiller Universitat Kassel, WS 2007/2008
Manuscript Linear Models and Ezperimental Design 26

F = 3.1851, num df = 15, denom df = 14, p-value = 0.03640
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
1.079940 9.209621
sample estimates:
ratio of variances
3.185090

Hence we can use the Welch t-test.

> t.test (mustardL,mustardD)
Welch Two Sample t-test

data: mustardlL and mustardD
t = 0.7751, df = 23.862, p-value = 0.4459
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
-5.635834 12.410834
sample estimates:
mean of x mean of y
28.1875  24.8000

We can obtain the results of the last two tests also faster:

> var.test(length~grow.conditions,data=mustard)$p.value
[1] 0.03640493

> t.test(length“grow.conditions,data=mustard)$p.value
[1] 0.4459191

For the two cutting groups we also do not reject the normality assumption. Moreover, we do not
reject the assumption of equal variances:

> shapiro.test(mustard [mustard$cutting=="noncut","length"])$p.value
[1] 0.5183037

> shapiro.test(mustard [mustard$cutting=="cut","length"])$p.value

[1] 0.1366706

> var.test(length“cutting,data=mustard)$p.value
[1] 0.1835491

> t.test(length™cutting,data=mustard)
Welch Two Sample t-test

data: length by cutting



Christine Miiller Universitat Kassel, WS 2007/2008
Manuscript Linear Models and Ezperimental Design 27

t =2.2734, df = 27.788, p-value = 0.03093
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
0.876303 16.887333
sample estimates:
mean in group cut mean in group noncut
29.70000 20.81818

Since the equality of the variances is not rejected, it is more accurate to use the nonmodified t-test:
> t.test(length~cutting,data=mustard,var.equal=T)
Two Sample t-test

data: 1length by cutting
t = 2.0223, df = 29, p-value = 0.05246
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
-0.1007162 17.8643526

sample estimates:

mean in group cut mean in group noncut

29.70000 20.81818

We can calculate the values also per hand

> mustardC<-mustard[mustard$cutting=="cut","length"]
> mustardNC<-mustard[mustard$cutting=="noncut","length"]
> length(mustardC)

(1] 20

> length(mustardNC)

(1] 11

> d<-sqrt(11x20/31) * (mean (mustardC) -mean (mustardNC) )/
+ sqrt ((19*var (mustardC)+10*var (mustardNC) ) /29)

>d

[1] 2.022298

> pt(-d,29)+1-pt(d,29)

[1] 0.05245525

Not that the p-value is here P(|D| > |d|) = P(D < —|d| or D > |d|) = P(D < —|d|)+1—P(D < |d|).
Hence the p-value can be calculated per hand via the distribution function of the t distribution which
is given in R by pt. We can also calculate the 0.95 confidence interval per hand:

> (mean(mustardC)-mean(mustardNC))-qt(0.975,29)*

+ sqrt ((19*var (mustardC)+10*var (mustardNC))/29) /sqrt (11%20/31)
[1] -0.1007162

> (mean(mustardC)-mean (mustardNC))+qt (0.975,29) *

+ sqrt ((19*var (mustardC)+10*var (mustardNC))/29) /sqrt (11%20/31)
[1] 17.86435
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Since the 0.95 confidence interval contains 0, the hypothesis Hy : p1 = o is not rejected, if only
one test is performed.

But here even two tests are performed at the same data set. Therefore, we have to set a = 0.05/2 =
0.025. From

> t.test (mustardL,mustardD)$p.value

[1] 0.4459191

> t.test (mustardC,mustardNC,var.equal=T)$p.value
[1] 0.05245525

we see that both tests are not rejecting the equality of the means. The Wilcoxon test, which can
be always used, provides even worse results

> wilcox.test(mustardL,mustardD)$p.value

[1] 0.7216463

Warnmeldung:

cannot compute exact p-value with ties in: wilcox.test.default(mustardlL, mustardD)
> wilcox.test(mustardC,mustardNC)$p.value

[1] 0.07209985

Warnmeldung:

cannot compute exact p-value with ties in: wilcox.test.default (mustardC, mustardNC)

That both hypothesis of equality of means are not rejected is due to the adjustment of the level «.
It would be better two tests both hypothesis with one test. This will be done later.

2.2.2 Exercise (Growing)

“Heights were meausred (to the nearest inch) of maize plants in adjacent rows which differed only
in a pollen sterility factor.”(Hand et al. 1996, P. 130/131)

The data file GROWING.DAT contains the data where the first column concerns the heights for fertile
pollen and the second column the heights for sterile pollen. Read the data and create a data set
growing in which different rows belongs to different plants. Plot the boxplots from this data set.
Moreover test whether the two groups with fertile and sterile pollen differs with respect to the
means. Use also the necessary pretests. In any case, use also the Wilcoxon test for comparison.
Interpret the results.

2.2.3 Exercise (Darwin’s fertilization experiment)

Test by means of the data set darwin whether the mean heights under cross- and self-fertilitzation
are the same. Calculate also with mean the difference between the arithmetic means of the two
groups and compare the results with the boxplots from Exercise 1.7.3.

2.3 « and [ error

Every statistical test for testing a null hypothesis Hy versus an alternative hypothesis H; can make
wrong or correct decisions. There two types of wrong decisions called « and 3 error.
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decision for Hy | decision for H;

Hj is true | correct decision Q-error

H is true (B-error correct decision

Since statistical tests do the decisions based on data which are realizations of random variables,
the decisions are done randomly. Hence we have probabilities for correct and wrong decisions. An
a-level test is a test where the probability for the a-error is less than «. This means that if we
decide according to our data for H; we only can have a correct decision or the a-error. Since « is
very small (usually less or equal 0.05) the probability for wrong decision is low if we decide for Hj.
Therefore we say that the data are speaking significantly for Hy or versus Hy, respectively, if the
decision according to the data is for Hj.

If we decide according to our data for Hy then we can have a correct decision or a (-error. However,
we usually do not know how large the g-error of our test is. Usually the probability for the -error
can be up to 1 — o where 1 — « > 0.95. Hence there is a very high probability for the S-error.
Therefore we say that the data are speaking not versus the null hypothesis Hy if the decision
according to the data is for Hy. This can mean in particular that we do not have enough data to
reject the null hypothesis Hy.

Interpretation of test results
A decision for Hy or versus Hy, respectively, based on the data is a significant result.

A decision for Hy based on the data is a useless result. It could mean in particular that we have
too few data to reject Hy.

To see what this means for the t-test, we will simulate data. Random numbers with normal dis-
tribution can be easily generated with the command rnorm. To generate two normally distributed
samples, we can create the self-defined function twosample as follows in the additional editor win-
dow:

function(N1,mul,sigmal,N2,mu2,sigma2)
{
list(samplel=rnorm(N1,mul,sigmal) ,sample2=rnorm(N2,mu2,sigma2))

¥

To generate for example two samples, one with N1 = 10, u; = 3, 01 = 2, and the other with
N2 =12, ug = 2, 09 = 4, we have then only to type

> twosample(N1=10,mul=3,sigmal=2,N2=12,mu2=2,sigma=4)

$samplel
[1] 1.218657 6.299094 5.060729 4.137085 6.324159 6.676449 4.562354 2.024045
[9] 3.272009 4.857833

$sample?2
[1] -0.3604491 3.4885205 9.6260172 5.9064812 -0.5593599 2.1067412
[7] 4.5098866 7.1203010 0.4827544 2.0188771 -1.5580092 2.4073573

To get the probabilities for a-error and S-error we have only to repeat the generation of the two
sample many,many times, say 10.000 times and to count the cases, where we make the error. From
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the law of large numbers we know that the relative number of cases approximates the probability if
the number of repetitions is high enough. 10.000 repetitions is high enough.

a-error: At first we simulate the a-error. In this case the null hypothesis Hy : uq = po is true.
Moreover, we need o1 = o3 for the t-test. Hence only the sample sizes N1 and N5 can be different so
that the simulation function alpha.error is only a function with the arguments mu, sigma, N1,
N2, M, alpha, where M denotes the number of repetitions which is set by default to 10000. alpha
is the level of the test and is set by default to 0.05. If default values are given for the arguments of
a function, then these arguments must be not specified by calling the function but can be specified
if other values shall be used. The function alpha.error is defined as follows:

function (mu,sigma,N1,N2,M=10000,alpha=0.05)
{
# Function which simulates the aplha error
error<-0
for(i in 1:M){
s<-twosample (N1=N1,mul=mu,sigmal=sigma,N2=N2,mu2=mu,sigma2=sigma)
s1<-s$samplel
s2<-s$sample?2
if (t.test(sl,s2,var.equal=T)$p.value<=alpha){
# If decision for H1:
error<-error+l
}
}
list(alpha.error=error/M)

3
Calling this function we get:

> alpha.error(mu=3,sigma=2,N1=10,N2=12)
$alpha.error
[1] 0.0519

> alpha.error(mu=3,sigma=2,N1=10,N2=12)
$alpha.error
[1] 0.0462

We see that several calls of the function alpha.error provides different a-errors but all a-errors
are very close to 0.05. We would get closer results to 0.05 by using larger repetitions numbers
M. We can interpret the result as follows: If many, many people are using the t-test and the null
hypothesis Hg : p1 = o is true, then only approximately 5% of the people would reject fasely the
null hypothesis, i.e. would falsely decide that p1 # ps is true. Hence if you get the decision pq # po,
there are two possibilities for you: you may one of the unlucky 5% of people who make a wrong
decision or your decision is correct.

B-error: Now we simulate the S-error. In this case the alternative Hy : 1 # pg is true. But still
we need o1 = o9 for the t-test. Hence the simulation function beta.error is a function with the
arguments mul, mu2, sigma, N1, N2, M, alpha and is defined as follows:
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function (mul,mu2,sigma,N1,N2,M=10000,alpha=0.05)
{
# Function which simulates the beta error
error<-0
for(i in 1:M){
s<-twosample (N1=N1,mul=mul,sigmal=sigma,N2=N2,mu2=mu2,sigma2=sigma)
s1<-s$samplel
s2<-s$sample2
if(t.test(sl,s2,var.equal=T)$p.value>alpha){
# If decision for HO:
error<-error+l
¥
}
list (beta.error=error/M)

}
For p11 = 3 and po = 4, which satisfies the alternative, we obtain for example:

> fix(beta.error)

> beta.error(mul=3,mu2=4,sigma=2,N1=10,N2=12)
$beta.error

[1] 0.7965

> beta.error(mul=3,mu2=4,sigma=2,N1=10,N2=12)
$beta.error
[1] 0.7999

This means that if many, many people do the t-test for data coming from the two different normal
distribution N(3,42) and N(4,42), then approximately 79% of the people make the wrong decision
that the two normal distributions are the same.

All self-defined functions used in this lecture can be found on the homepage of this lecture. They
are included in the ASCII file all funct.asc which can be loaded with the source command like
the data ASCII file all data.asc described in Subsection 1.6. But if you are planning to write own
R functions in future, then you should implement the functions by yourself to get more experience
with this.

The B-error can be also obtained mathematically via the non-central t-distribution. Namely, if
|1 — p2| = do, then the [-error is given by:

IJWI*M2|=5U (deCiSion for HO) = P|m,“2|:50 (’D‘ < tN1+N272,17a/2)

= Fyni4+No—2,K58) EN +No—2,1—a/2) = Fy(Ni+N2—2,K 5) (=N 4+ No—2,1—a/2) (1)

where Fy(n,+N,—2 K 5) 1s the distribution function of the non-central t-distribution with Ny + No —2

N1 No
Ni1+N2

of the non-central t-distribution is given in R by pt by specifying the non-centrality parameter ncp.
Hence for 1 = 3, ue = 4, 01 = 09 = 2, Ny = 10, Ny = 12 of the above example we obtain

. The distribution function

degrees of freedom and non-centrality parameter K § and K =
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since N1 4+ No — 2 = 20, Ny Ny = 120, Ny + Ny = 22, § = |u1 — pe|/o = 0.5, K§ = /6 0.5, and
1—0.05/2 = 0.975:

> pt(qt(0.975,20),20,ncp=sqrt (120/22)*0.5) -pt (-qt (0.975,20) ,20,ncp=sqrt (120/22)*0.5)
[1] 0.800646
>

We see that the result is similar to the simulated values. Note that for § = 0, i.e. the null hypothesis
is true, we obtain

> pt(qt(0.975,20),20,ncp=sqrt(120/22)*0)-pt (-qt (0.975,20) ,20,ncp=sqrt (120/22) *0)
[1] 0.95

i.e. we obtain 1 — «. Here the noncentrality parameter is equal to 0 so that the noncentral t-
ditribution becomes the central t-distribution.

2.3.1 Exercise (3 — errors)

a) Simulate the (-error for Ny = 10, Ny = 12, 01 = 2 = 09, 1 = 3 and the following values for ps:
4, 3.5, 3.1, 3.01.

b) Do the same for Ny = 10, Ny = 12, 01y = 2 = 09, pu1 = 6 and the following values for us: 7, 6.5,
6.1, 6.01, i.e. all values for u; and us are added by 3.

c¢) Do the same for Ny = 10, Ny = 12, 01 = 1 = 09, 1 = 6 and the following values for ps: 7, 6.5,
6.1, 6.01, i.e. only o1 = o9 is changed.

What are your conclusions?

d) Compare all simulated values with the theoretical values given by the noncentral t-distribution.

2.4 Design considerations

Since the a-error of any a-level test is «, the a-error cannot be influenced by the design of the
experiment. However, the (-error can be influenced by the design. It should be as small as possible
since then the probability is as high as possible to get a significant result, i.e. that Hy is rejected,
if Hy is indeed true. Thereby note that for the probability of the (-error we have

Py, (decision for Hy) = 1 — Pp, (decision for Hy) = 1 — Py, (significant result)

Hence minimization of the [-error, i.e. Py, (decision for Hy), means maximizing
Py, (significant result).

Optimal designs

An optimal design is a design which minimizes the S-error of the a-level test.

Optimal allocation of N experiments to two groups: If the total number of experiments
shall be N = Ny + N, the N; and Ny should be chosen so that the G-error is as small as possible.
Formula (1) shows that the (-error depends only on §, Ny, and Ny. If N is small then the S-error
can be easily minimized by playing with §, Ny, and N,. To facilitate this task, write the function
beta.error.exact as follows:
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function (delta,N1,N2,alpha=0.05)

{

# Calculates the theoretical beta error

K<-sqrt (N1*N2/(N1+N2))
pt(qt(1-alpha/2,20),20,ncp=K*delta)-pt(-qt(1-alpha/2,20),20,ncp=K*delta)
}

2.4.1 Exercise

Determine Ny and Ns, if N should be 30. Does the choice of N7 and Ny depends on §. What is
your proposal for the general case?

For mathematicians: Prove the general proposal.

Planning the sample size: Often the total number of all experiments is not given from the
beginning and must be chosen by the experimenter. In general we have the general rule:

The larger the sample size N is the smaller the (-error is.

But many experiments produce costs so that the sample size cannot be arbitrary high. Then the
aim is to determine the sample size N such that the [-error for a given deviation from the null
hypothesis is not greater than a given value 3. For the two sample problem we may demand that
the B-error is not greater than (3 if the absolute difference of the means p; and ps is greater a given
value k, i.e. |1 — po| > k. This means that as soon as |1 — p2| > k is true, the t-test would reject
the null hypothesis, i.e. provide a significant result, with probability of at least 1 — 3. Thereby &
denotes a relevant difference between the means. This relevant difference is often known or can be
specified in practice. Usually [ is chosen as « so that the -error is for |1 — pe| > k the same as
the a-error. Hence the test has the same probability for a wrong decision for |y — ps| > k as for
w1 = po. However, the probability for a wrong decision is still up to 1 — a if 0 < |u1 — po| < K is
true.

The aim is now to find the smallest sample size N so that the (-error for |u; — 2| > & is not greater
than 8. For simplicity, we will assume that N7 = Ny = % However, according to 1 the S-error
can be only calculated for kK = § ¢ and o is unknown. Hence relevant alternatives, i.e. relevant
differences, must be specified in terms of the unknown standard error. But, as soon as ¢ is known
we can determine the sample size N = 2 N7 = 2 Ny as the minimum number N such that

Fyn—2,k 6 (tN=21-a/2) = Fyn—2,k5)(—tN—-2,1-a2) < B

with K = 4/ % The calculation of N can be done by try and error by using the self-defined function
beta.error.exact with N1=N/2 and N2=N/2, i.e. repeat for example for § = 2

> N<-10
> beta.error.exact(2,N/2,N/2)

for several values of N.

2.4.2 Exercise
Determine the minimum sample size N so that the S-error is not greater than ac = 0.05 for |1 —p2| >
20. Determine also the sample size for |1 — pa| > 0/2.
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A further design question: Usually the NV experiments are done in a specific temporal or spacial
order. For examples plants are growing on specific positions of the field, animals are living in specific
places of a cot, patients of a hospital arriving in a specific order to the hospital. Then the question
is how to assign two different treatments to the experimental units. Since it is never clear if there
are special spacial or temporal influences on the measurement, the assignments of the treatments to
the experimental units should be done randomly. This allocation can be easily done by the function
design.crd of the agricolae package.

For example to allocate 10 treatments t1 and 10 treatments t2 to 20 units, type:
> library(agricolae)

> design.crd(c("t1","t2"),c(10,10))
plots c("t1", "t2") r

1 1 t2 1
2 2 t2 2
3 3 tl1 1
4 4 t2 3
5 5 tl 2
6 6 tl 3
7 7 t2 4
8 8 tl 4
9 9 tl 5
10 10 t2 5
11 11 tl 6
12 12 tl 7
13 13 t2 6
14 14 t2 7
15 15 tl 8
16 16 t2 8
17 17 t2 9
18 18 tl1 9
19 19 t2 10
20 20 tl 10

Then we get an order how to allocate the two treatments: at first t2, then t2 again, then t1 and
SO on.
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3 One-way ANOVA

As in Section 2, it is assumed that the data set contains only two variables: one numeric variable
concerning measurements and a factor variable concerning treatments or blocks (groups). But here
we assume that the factor can has more than two levels, i.e. that we may have more than two
treatments or two groups. Let I denote the number of levels (treatments, blocks, groups) and let
be

Y1s = (Y11, ..., y1n,) | the vector of observations for level (group) 1,
Yos = (Y21, ..., y2n,) | the vector of observations for level (group) 2,
yrs = (Y11, ..., yIn,) | the vector of observations for level (group) I.

Altogether there are N = N1+ Nso+. ..+ Ny observations. yis, ..., Y. are realizations of independent
random vectors Yy, ..., Y7, where Y, = (Y1, ... ,Yim)—r fori=1,...,1.

3.1 The ANOVA test

Yil, .- -, YiN, are realizations of independent identically distributed random variables Yy, ..., Yin;,
with normal distribution N (p;,02) for i = 1,...,I. This can be expressed also as

Y;‘n:/%‘i‘Zin:,U'"i_ai"i_Zin with ZinNN(OvazZ)7

where Z;,, is the measurement error, u the average mean, and «; the effect of level (group) i. The
aim is to test the null hypothesis that there is no treatment/group effect, i.e. to test

Hy:py = po=...=pr versus Hp: there exist 7,7 with p; # py;
or, equivalently,
Hy:ap=ay=...=a; =0 versus H; : there exist i with o; # 0.

The test statistic is based on estimates for the components u, p;, «;, Z;, and o;:
TR
ILL: H:goozzﬁzzyin’
=1 n=1

1 &
Wit Hi =Y = A Zym,
v n=1

O =fi = O =iy~ Y

Zin = Yin — Mi : gzn = Yin — Yie
1 I N; 1 I N;
2 ~2 ~2 — \2
o’ o :ﬁz Zin:mZZ(yin_yi.)~
i=1 n=1 i=1 n=1
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The ANOVA test (AN=analysis,O=of VA=variance, in German: Varianzanalyse) is based on the
decomposition of the general variance

1 I N;
TsG = N 1 DD (Win—7..)°

i=1 n=1
as follows
I Ni I Ni
S50 7= Y Y (Win—Tu)> = DY Win = Via +Tia — Uo)’
=1 n=1 i=1 n=1
I N
= Z Z [(yln - yio)Q + Q(yln - gzo)(yzo - yoo) + (glo - yoo)Z]
i=1 n=1
I N I [N I
= 3> Wi T +2> [Z(ym - yz-.)] Tie = Toa) + O Ni(Tia — 7o)’
i=1n=1 i=1 Ln=1 i=1
=0
I N I
= D> > W=7+ Nl —..)* = Ssse + Sssr
i=1 n=1 i=1
with
I N;
Ssse = 2> (Win — i)’
i=1 n=1
I
Sssr = Y Ni(Tin — T
i=1

Yssq is called Grand Sum of Squares, Yggr Sum of Squares for errors, and Y ggpr Sum of Squares
for Treatments. They have the following distributions:

1 1 1
2 2 2
— 285G ~ XN—1: 3USSE ~ XN-I» —5USST ™~ XI-1-
o o o
Therefore the corresponding variances are 3%50 = ﬁzsgg, 8§SE = ﬁZSSE, and 8§ST =
ﬁESST. E%SE is called variance within treatments and &%ST is called variance between treatments.
A high variance between treatments compared with the variance within treatments is speaking versus

the null hypothesis that the treatment effects are the same. Hence the test statistic is

~2
7 = Zssr

~2
0SsSE

If 0 = 0% =...0%, then V has a F-distribution with 7 — 1 and N — I degrees of freedom.

ANOVA test for one-way layout

/\2
o~ g
. SST
if V=25"2>F 1N 11a
0sskE

Reject Hy: pp1 = po = ... = pur
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Thereby Fn ar« denotes the a-quantile of the central F-distribution with N and M degrees of
freedom.

Usually, the values for the analysis of variance are summarized in the so-called ANOVA table:

Cause of variability Degrees of freedom Sum of squares Variance estimates
Differences ! _ —
between -1 Sssr =Y NiVie—Ya)®  Gep = 71ZssT
factor levels i=1
M t L&
easuremen 7\2 a2 1
N-—-1T by = Yin — Yi. o =
eror SSE ; nZ:l( in — Yis) SSE = N-TLSSE
I N,
Total N -1 Yssa = Z Z(Y;‘n -Y.)? G6igc=73ssc
i=1 n=1

The first two rows of the ANOVA table together with the p-value and the value of the test statistic
are given in R by the commands anova(lm(....)) (1m from linear model).

Special case I = 2: In the case of I = 2, also the t-test can be used. However, it provides the
same p-value as the ANOVA test since the ANOVA test statistic V' the squared t-test statistic d.
ie. d>=1V.

3.1.1 Example (Growing)
Regard the data set growing from Exercise 2.2.2. Then the ANOVA test provides:

> anova(lm(Height~Pollen,data=growing))
Analysis of Variance Table

Response: Height

Df Sum Sq Mean Sq F value Pr(>F)
Pollen 1 192.67 192.67 7.1138 0.01408 =*
Residuals 22 595.83  27.08

Signif. codes: O ’***’ 0.001 ’*x> 0.01 ’x> 0.05 *.” 0.1 > *> 1
Recall that the t-test provides:

> t.test(Height™Pollen,data=growing,var.equal=T)
Two Sample t-test

data: Height by Pollen
t = 2.6672, df = 22, p-value = 0.01408
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
1.260534 10.072800
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sample estimates:
mean in group Fertile mean in group Sterile
96.58333 90.91667

Hnece the p-values coincide. And indeed the value of the squared t-test statistic

> (t.test(Height“Pollen,data=growing,var.equal=T)$statistic) "2
t
7.113846

is the value of the test statistic of the ANOVA test which is called F value in the ANOVA table of
R.

3.2 Checking the requirements of the one-way ANOVA test

As the t-test, the one-way ANOVA test has two requirements:

1. The measurements y;1,...,y;n, must have a normal distributions for each level (treatment,
group) i =1,...,1.

2. The variances of the normal distributions must be equal, i.e. 02 =02 = ... = o2

1. Checking the normal distribution: This done as for the t-test with the Shapiro-Wilk test
given in R by shapiro.test.

2. Checking the homogeneity of the variances: If the normal distribution can be assumed
for each level (group), then the equality (homogeneity) of the variances can be tested with the
Bartlett-Test. It bases on the estimates of the variances o7 given by

1
~2 V)2
g; = N, — 1 n;l(ym Yz.)

and the pooled variance estimate

I N; I
~ 1 - = 1 ~
Ghop = 7 YN (Vi =Y. = 7 > (N = 1)57.

i=1 n=1 i=1

The test statistic has the form

1
(0= Dm0yt

i=1

E:

[P

where

I
1 1 1
_ _ 1.
“T3I-1) (;Ni—l N—I>+
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Bartlett test for testing the homogeneity of the variances

2 5 2
cee = O-I lf B > lel,lfa'

Reject Hy : 0% = 03

Thereby, X%\,a denotes the a-quantile of the central x2-distribution with N degrees of freedom.

The Bartlett test is given in R with the function bartlett.test. Note that the Bartlett test
statistic is not defined if one of the variance estimates &7 is equal to 0 since In(0) is not defined. If
bartlett.test is applied to a data set where one 812 is equal to 0, then it can happen that the R
session breaks down.

Alternative, if the requirements of the ANOVA test are not satisfied: If the hypothesis of
normal distribution for each level (group) or the hypothesis of equality of the variances is rejected,
then the ANOVA test cannot be used. An alternative is the distribution-free Kruskal-Wallis test
which generalizes the Wilcoxon rang sum test and is in R available under kruskal.test.

3.2.1 Example (Chicken)

Regard the data set chicken from Exercise 1.4.1. The aim is to test whether the drug added to
the feed has an influence on the weight of chicken. At first we have to check whether the weight
measurements for the three drug groups are normally distributed:

> shapiro.test(chicken[chicken$Feed=="Control","Weight"])
Shapiro-Wilk normality test

data: chicken[chicken$Feed == "Control", "Weight"]

W = 0.9607, p-value = 0.8164

> shapiro.test(chicken[chicken$Feed=="Low","Weight"])
Shapiro-Wilk normality test

data: chicken[chicken$Feed == "Low", "Weight"]

W =0.9782, p-value = 0.9535

> shapiro.test(chicken[chicken$Feed=="High", "Weight"])
Shapiro-Wilk normality test

data: chicken[chicken$Feed == "High", "Weight"]

W = 0.9234, p-value = 0.4582

Nothing speaks versus the normal distribution. Therefore we can test whether the variances are
equal:

> bartlett.test(Weight~Feed,data=chicken)
Bartlett test for homogeneity of variances

data: Weight by Feed
Bartlett’s K-squared = 0.9958, df = 2, p-value = 0.6078

Hence also the homogeneity of the variances is not rejected, so that the ANOVA test can be applied:

> anova(lm(Weight~Feed,data=chicken))
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Analysis of Variance Table

Response: Weight

Df Sum Sq Mean Sq F value Pr(>F)
Feed 2 0.132358 0.066179 11.492 0.0004254 x*x**
Residuals 21 0.120938 0.005759

Signif. codes: O ’***’ 0.001 ’*x> 0.01 ’x> 0.05 *>.” 0.1 > *> 1

Since the p-value is less than 0.05, we can conclude that the drug added to the feed has a significant
influence on the weight of chicken. The same result we get also with the distribution-free Kruskal-
Wallis test. However, this test provides a larger p-value.

> kruskal.test (Weight“Feed,data=chicken)
Kruskal-Wallis rank sum test

data: Weight by Feed
Kruskal-Wallis chi-squared = 12.0522, df = 2, p-value = 0.002415

To produce the complete ANOVA table as above we calculate the general variance and the grand
sum of squares:

> var(chicken$Weight)
[1] 0.01101286

> 23*var(chicken$Weight)
[1] 0.2532958

Then we obtain the following ANOVA table:

Cause of variability Degrees of freedom  Sum of squares ~ Variance estimates

Differences
between 2 Yssr = 0.132358  0ggp = 0.066179
factor levels
Measurement _ ~ .

21 Yssr = 0.120938  0&gp = 0.005759
error
Total 23 Yssq =0.253296 0gg- = 0.01101286

We see that indeed 0.132358 + 0.120938 = 0.253296 is satisfied. Moreover, the column Mean Sq in
the ANOVA table of R containes the variance estimates 0% g and 0zgp.
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3.2.2 Example (Germinating seeds)

The data in the file GERMIN.DAT “came from an experiment to study the effect of different amounts
of water on the germination of seeds. For each amount of water, four identical boxes were sown with
100 seeds each, and the number of seeds having germinated after two weeks was recordered. The
experiment was repeated with boxes covered to slow evaporation. There were six levels of watering,
coded 1 to 6, with higher codes corresponding to more water.”(Hand et al. 1996, P.1)

Here the number of seeds germinating per box:

Uncovered boxes Covered boxes

Amount of water Amount of water
1 2 3 4 5 1 2 3 4 5)
22 41 66 82 79 45 65 81 55 31
25 46 72 73 68 41 80 73 51 36
27 59 51 73 74 42 79 74 40 45
23 38 78 84 70 43 77 76 62 *

o O O OoOlo
oS O O O

Here we analyse only the results for the uncovered boxes. The treatments are here the 6 levels of
watering. We want to test whether there is a effect of watering in the uncovered boxes. Hence the
null hypothesis is that there is no effect of watering on the seed numbers.

To apply the function 1m, the data set must have the form where different units belong to different
rows. To transform the data from the data file GERMIN.DAT into this form, the following function
Germin.funct was written:

function ()

{

germinO<-read.table("GERMIN.DAT",na.string="x*")
germinl<-data.frame(germinO[1:4,],"uncovered")
germin2<-data.frame(germin0[5:8,],"covered")
germinli<-cbind(germini[,c(1,7)],"1")
germinl2<-cbind(germini[,c(2,7)]1,"2")
germinl3<-cbind(germini[,c(3,7)],"3")
germinl4<-cbind(germini[,c(4,7)]1,"4")
germin1b<-cbind(germini[,c(5,7)],"5")
germinl6<-cbind(germini[,c(6,7)]1,"6")
germin21<-cbind(germin2[,c(1,7)],"1")
germin22<-cbind(germin2[,c(2,7)]1,"2")
germin23<-cbind(germin2[,c(3,7)],"3")
germin24<-cbind(germin2[,c(4,7)]1,"4")
germin25<-cbind(germin2[-4,c(5,7)],"5")
germin26<-cbind(germin2[,c(6,7)]1,"6")

names (germinl1)<-c("seed.numbers","box","watering")
names (germinll)<-c("seed.numbers","box","watering")
names (germinl2)<-c("seed.numbers","box","watering")
names (germinl3)<-c("seed.numbers","box","watering")
names (germinl4)<-c("seed.numbers","box","watering")
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names (germinl5)<-c("seed.numbers","box","watering")
names (germinl6)<-c("seed.numbers","box","watering")
names (germin21)<-c("seed.numbers","box","watering")
names (germin22)<-c("seed.numbers","box","watering")
names (germin23)<-c("seed.numbers","box","watering")
names (germin24)<-c("seed.numbers","box","watering")
names (germin25)<-c("seed.numbers","box","watering")
names (germin26)<-c("seed.numbers","box","watering")
germin<-rbind(germinil,germini2,germini3,germinl4,germini5,germinié,
germin21,germin22,germin23,germin24,germin25, germin26)
row.names (germin)<-1:47

germin

¥

Since each group has only 4 measurement it is very unlikely that the normal distribution is rejected
in the groups 1,2,3,4,5. The group 6 should be dropped from the data set since there the variance
differs clearly from the variances in the other groups. Since this variance is 0, it even would produce
a break down of R if the Bartlett test is used.

> germin<-germin.funct ()
> germin.unc<-germin[germin$box=="uncovered",]
> bartlett.test(seed.numbers~watering,data=germin.unc[germin.unc$watering!="6",]1)

Bartlett test for homogeneity of variances

data: seed.numbers by watering
Bartlett’s K-squared = 6.7289, df = 4, p-value = 0.1509

Hence the requirements of the ANOVA test are not rejected so that the ANOVA table for the
uncovered boxes can be produced:

> anova(lm(seed.numbers watering,data=germin.unc[germin.unc$watering!="6",]1))
Analysis of Variance Table

Response: seed.numbers

Df Sum Sq Mean Sq F value Pr(>F)
watering 4 7904.7 1976.2 34.946 1.943e-07 x*x*x
Residuals 15 848.2 56.5

Signif. codes: O ’**x*x’ 0.001 ’*x> 0.01 °’x> 0.05 *.” 0.1 > *> 1
With

> var(germin.unc[germin.unc$watering!="6","seed.numbers"])

[1] 460.6816

> 19xvar(germin.unc[germin.unc$watering!="6","seed.numbers"])
[1] 8752.95
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we obtain the complete ANOVA table:

Cause of variability Degrees of freedom Sum of squares Variance estimates

Differences
between 4 YssT =T7904.7  GLgp = 1976.2
factor levels
Measurement ~9

15 by = 848.2 = 56.5
error S5E 955E
Total 19 Yssq = 87529 &g, = 460.6816

Since we obtain the very small p-value of 1.943e-07, the null hypothesis is rejected. Hence there is
a significant effect of watering in the uncovered boxes.

3.2.3 Exercise (Germinating seeds: Covered boxes)
Test whether there is also a watering effect for the seed numbers in the covered boxes in Example
3.2.2. Check the requirements of the ANOVA test and produce the complete ANOVA table.

3.2.4 Exercise (Trees)

Test with the ANOVA test as well as with the Kruskal-Wallis test whether the stem diameters of
trees differ significantly between species in the data set trees in the library agricolae. Check the
requirements of the ANOVA test.

3.3 Multiple comparisons

If the ANOVA test rejects the hypothesis Hy : u1 = po = ... = py, then one would like to know
which p; are different. The naive procedure is to perform all pairwise t-tests for Hq : p; = p;
with 7 # j. But then I(I — 1)/2 tests are performed at the same data set so that the Bonferroni
adjustment for the levels of the t-test should be used. This means that a = % is used for the
level of the t-tests. Let here

AU y5s) = / 14Vj ie je

denote the t-test statistic for testing Hp : p; = pj based on y;, and y;s.

Multiple comparisons with the Bonferroni adjustment

If there are I levels (groups), then for 1 <i¢ < j < I:

_ _ P-value of the t-test is not greater than %, or
Reject Ho : p; = pj; if ~

|d(Yix, yjx)| > EN L+ Np—2,1— s respectively.

However, the comparisons with the Bonferroni adjustment are very conservative, i.e. the [-error
is high. A better method is Tukey’s Honest Significant Difference (HSD) method. It uses the fact
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that the maximum relative range

maxn=1,..,.N Y, — minn:l,...,N Y,

g

E:

has a studentized range distribution gy, if Y7,...,YxN are independent and identically distributed
with normal distribution A/(y,0) and 52 is independently distributed as y-squared with v degrees
of freedom.

Multiple comparisons with the Tukey’s Honest Significant Difference method
If there are I levels (groups), then for 1 <i < j < I:

N;N;  |Yie — Vj.l
Ni—i-Nj OSSE

Reject Ho : p; = pj if V2 > qI,N—I,1-a

Thereby gy ., denotes the a-quantile of the studentized range distribution gy,. These quantiles
are given in R by qtukey. R offers also a function for making the comparisons. This function is
called TukeyHSD and bases on the results of the function aov, which produces a reduced ANOVA
table. Besides y;, —¥,, and the p-values for the pairwise comparisons, TukeyHSD provides also the
lower and upper bounds of the simultaneous confidence intervals for the mean differences p; — p;,
i.e. it calculates

T ossp |1 1
Yie = Ujo T UN-L1-a= 5\ + N,

forall1<i<j <.

When the sample sizes N; are very unequal, Tukey’s HSD can be also very conservative. There-
fore, the R package agricolae provides several other multiple comparison method as the Waller-
Duncan method given in waller.test. However, to run them without errors, a newer version of the
agricolae package must be used, namely agricolae_1.0-6.zip from
http://tarwi.lamolina.edu.pe/~fmendiburu/.

3.3.1 Example (Germinating seeds: Uncovered boxes)

To see which watering levels provides really different seed numbers we use Tukey’s Honest Signifi-
cant Difference method. Before using this, we compare at first the commands anova(lm...) and
aov(...):

> germin.unc<-germin[germin$box=="uncovered",]
> anova(lm(seed.numbers~watering,data=germin.unc[germin.unc$watering!="6",1))
Analysis of Variance Table

Response: seed.numbers
Df Sum Sq Mean Sq F value Pr(>F)
watering 4 7904.7 1976.2 34.946 1.943e-07 **x
Residuals 15 848.2 56.5
Signif. codes: O %%’ 0.001 ’*%’ 0.01 ’x%’ 0.056 >.”> 0.1 > * 1
> aov(seed.numbers~watering,data=germin.unc[germin.unc$watering!="6",])
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Call:
aov(formula = seed.numbers ~ watering, data = germin.unc[germin.unc$watering !=
II6II s ] )
Terms:

watering Residuals
Sum of Squares 7904.70 848.25
Deg. of Freedom 4 15

Residual standard error: 7.519973
Estimated effects may be unbalanced

We see that indeed aov provides a reduced ANOVA table.

> germin.unc<-germin[germin$box=="uncovered",]
> TukeyHSD(aov(seed.numbers”watering,data=germin.unc[germin.unc$watering!="6",1))
Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = seed.numbers ~ watering,
data = germin.unc[germin.unc$watering != "6", 1)
$watering
diff lwr upr p adj
2-1 21.75 5.330196 38.16980 0.0073044
3-1 42.50 26.080196 58.91980 0.0000075
4-1 53.75 37.330196 70.16980 0.0000004
5-1 48.50 32.080196 64.91980 0.0000014
3-2 20.75 4.330196 37.16980 0.0105229
4-2 32.00 15.580196 48.41980 0.0001967
5-2 26.75 10.330196 43.16980 0.0012013
4-3 11.26 -5.169804 27.66980 0.2637507
5-3 6.00 -10.419804 22.41980 0.7894955
5-4 -5.25 -21.669804 11.16980 0.8569113

We can conclude that almost all pairs of watering levels produce different seed numbers. The only
exceptions are the levels 4-3, 5-3, and 5-4. This result corresponds also to the boxplots:

> boxplot(seed.numbers~watering,data=germin.unc[germin.unc$watering!="6",]1)

Now we compare the results of Tukey’s Honest Significant Difference method with the Bonferroni
adjustment method:

> gerS.unc<-germin.unc/[,"seed.numbers"]

> gerW.unc<-germin.unc[,"watering"]

> t.test(gerS.unc[gerW.unc=="1"],gerS.unc[gerW.unc=="2"])$p.value
[1] 0.01557484
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Figure 3.1: Box plots for the uncovered boxes

> t.test(gerS.unc[gerW.unc=="1"],gerS.unc[gerW.unc=="3"])$p.value
[1] 0.004334964

> t.test(gerS.unclgerW.unc=="1"],gerS.unc[gerW.unc=="4"])8$p.value
[1] 8.701039e-05

> t.test(gerS.unclgerW.unc=="1"],gerS.unc[gerW.unc=="5"])8$p.value
[1] 3.762982e-05

> t.test(gerS.unclgerW.unc=="2"],gerS.unc[gerW.unc=="3"])8$p.value
[1] 0.03292381

> t.test(gerS.unclgerW.unc=="2"],gerS.unc[gerW.unc=="4"])8$p.value
[1] 0.002008712

> t.test(gerS.unclgerW.unc=="2"],gerS.unc[gerW.unc=="5"])8$p.value
[1] 0.004932404

> t.test(gerS.unc[gerW.unc=="3"],gerS.unc[gerW.unc=="4"])$p.value
[1] 0.1508645

> t.test(gerS.unc[gerW.unc=="3"],gerS.unc[gerW.unc=="5"])$p.value
[1] 0.393299

> t.test(gerS.unc[gerW.unc=="4"],gerS.unc[gerW.unc=="5"])$p.value
[1] 0.2172643

Since the adjusted significance level is 0.05/10 = 0.005, we obtain only significant differences for
the watering combinations 1-3, 1-4, 1-5, 2-4, 2-5. Hence the differences for 1-2, 2-3, which appeared
significant with Tukey’s Honest Significant Difference method, are not any more significant. This
shows that the Bonferroni method is more conservative.

We can use also HSD.test and waller.test of the newest agricolae package:

library(agricolae)

attach(germin.unc[germin.unc$watering!="6",]1)
model<-aov(seed.numbers~watering)

df<-df.residual (model)

MSerror<-deviance(model)/df

comparison<-HSD.test (seed.numbers,watering,df ,MSerror,group=TRUE,main="title")

V V V V Vv V
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> comparison

trt means M N std.err
1 4 78.00 a 4 2.915476
2 5 72.75 a 4 2.428134
3 3 66.75 a 4 5.793315
4 2 46.00 b 4 4.636809
5 1 24.25 c 4 1.108678

The lengthy printout of HSD.test is dropped here. Since HSD.test uses Tukey’s Honest Significant
Difference, it provides the same results as TukeyHSD but in a different form: different letters in the
column M indicate significantly different means. Hence 3-4, 3-5, and 4-5 do not concern different
means. The Waller-Duncan method provides even more significantly different means:

> comparison<-waller.test(seed.numbers,watering,df,MSerror,
+ Fc,group=TRUE,main="title")
> comparison
trt means M N std.err
78.00 a 4 2.915476
72.75 ab 4 2.428134
66.75 b 4 5.793315
46.00 c 4 4.636809
24.25 d 4 1.108678

[S2 " ~ NN GV I NG I
= N W oD

Here additionally 3-4 shows significantly different means.

3.3.2 Exercise (Germinating seeds: Covered boxes)

Find out for the covered boxes which watering levels provides significantly different seed numbers.
Use Tukey’s Honest Significant Difference method and the Bonferroni adjustment method and com-
pare the results. Use also HSD.test and waller.test from the newest version of the agricolae
package. Visualize the results with boxplots.

3.3.3 Exercise (Trees)
Find out with the data set trees from the agricolae package which species have significantly
different stem diameters. Visualize the result with boxplots.

3.4 Designing the one-way ANOVA

Like for the t-test, the smallest B-error is achieved if the samples sizes N1, No, ..., Ny are equal or
as equal as possible. Moreover, the allocations of the levels (treatments) to the experimental units
should be done randomly. Such designs are called completely randomized designs for one
factor and can be created, for example, with the function design.crd of the agricolae package.

3.4.1 Exercise (One-way ANOVA design)
Determine a good design for 3 treatments TR1, TR2, TR3, TR4 applied at 12 experimental units.



Christine Miiller Universitat Kassel, WS 2007/2008
Manuscript Linear Models and Ezperimental Design 48

4 Two-way ANOVA

Here it is assumed that the data set contains three variables: one numeric variable concerning
measurements and two factor variables A and B concerning treatments or blocks (groups). The
factor variable A has A levels and the factor variable B has B levels. Let N, denote the sample
size for factor level combination (a,b). Because of A B level combinations, we have the following
table for the sample sizes:

B
1 2 B
1 Nip Nio Nip
A 2 Nop Noo Nop
A| Ng1 | Nag | ... | Nap

Table 1: Numbers of repetitions for each level combination

In balanced designs the sample sizes are all equal, i.e. Nyy =M fora=1,...,Aandb=1,...,B.
But unbalanced designs with different sample sizes are also considered. In particular, same of
the sample sizes N, can be zero.

In the general case, we have the following measurements:

Y11« = (Y1115 - - - ,ynNu)T the vector of observations for level combination (1,1),

Y12« = (Y121, - - - ,y12N12)T the vector of observations for level combination (1,2),
1B« = (Y1B1, - - - ,leNlB)T the vector of observations for level combination (1, B),
Yo1x = (Y211, - -+, Y21N,, ) | the vector of observations for level combination (2, 1),
Yo« = (Y2B1, - - - ,yQBNQB)T the vector of observations for level combination (2, B),
Yate = (YA11,---,YAIN,, ) the vector of observations for level combination (4, 1),
yaps = (YaB1,- - - ,yABNAB)T the vector of observations for level combination (A, B).

Altogether there are N = Nij + Nig+ ...+ Nip+ Noy+ ... + Nop+ ... + Na1 + ... + Nap
observations. ¥iix,-...,YAps are realizations of independent random vectors Yiix,..., Yap« where
Yavs = Yapts- -+ Yapn,,) fora=1,...,Aandb=1,...,B.

The ANOVA test assumes that y.p, is a realization of a random variable Yy, with normal dis-
tribution A (jtap, 0?) and that all measurement variables Yy, are stochastically independent for
n=1...,Ng,a=1,...,A, b=1,...,B. Note that all variables Y, have the same variance as
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it should be for the one-way ANOVA.

4.1 Model with interactions

If Nyp <2foralla=1,...,A, b=1,..., B, then the following model for the distribution of the
measurements variables can be used:

Yabn = ab + Z@n =p+ o+ ﬁb + Yab + Zabn with Zabn ~ N(O’ 0'2),

where
1. Z,py is the measurement error,
2. p the average mean,
3. ag the main effect of level a of factor A,
4. (B, the main effect of level b of factor B,
5. Yap the interaction between the levels a and b of the factors A and B.

If the parameters p, a1,...,a4, B1,...,08, Y11,---,7Y1B,-- -, YAB can attain arbitrary values, then
the model is overparametrized since there are 1 + A+ B + A B different parameters while there are
only A B level combinations. Hence side conditions for the parameters are needed, which are:

B

A B A
ag=0, > 8=0 > qw=0forallb=1,....B, > yp=0foralla=1,...,A (2)
a=1 b=1 a=1 b=1



Christine Miiller Universitat Kassel, WS 2007/2008
Manuscript Linear Models and Ezperimental Design 50

Let be N,, = Zb 1 Nap and Ny = Za 1 Nap. The parameters have the following estimates:

LA
I ﬁZE...-ZNZ

Ngp
Z Yabns

ZWMm

Hab - ﬁab = yab. =

B Nab
aa Z Z yab’n yooo gaoo - yooo?
Nae b=1n=1
A Nab
/Bb : b N Z Z yabn yooo y.b. yoo.’
L "
’Yabzlu’ab_ —Oéa /Bb : '/Y\ab:ﬁab_ﬂ_aa_ﬂb:yab._ga.. _yobo—f_g-o-’
Zabn = Yabn — Hab * /Z\abn = Yabn — Yabe>
A B Ng
2 ~2 22
(o2 OSSE = B Z Zabn (3)

1b=1n=1

ab

a=
B

- ﬁzzzym Tun)?
a=1 b=1

Note that the estimates oy, Bb; and 7, satisfy the side conditions 2.

4.2 Model without interactions

If some of the N, are zero or equal to 1, then the model with interactions cannot be used. Then a
model without interaction shall be used:

Yabn = Uab + Zzn =p+ o+ ﬁb + Zabn with Zabn ~ N(O’ 0'2),

where pu, a, and [, have the same interpretations as before and also the same estimates. Only the
estimate for the variance changes:

Zabn = Yabn — M — Qg — ﬁb /Z\abn = Yabn — K — aa ﬂba
A B Ng
2, ~2
0" OgsplA+B = N AB SNz, (4)
a=1 b=1n=1
A B Ny

= N —A— B+1zzzyabn_ Qg Bb)Q'

a=1 b=1n=1
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4.3 ANOVA tests

Hypotheses

In the model with interactions, there are three hypotheses, which should be tested:

Hé i Yap = 0 for all (a,b)  versus
Hy':a,=0foralla versus
HB :p,=0forallb versus

HYI : there exists (a,b) with yg # 0,
Hf‘ : there exists a with ag # 0,
HPB : there exists b with 3, # 0.

The tests are derived by regarding modified hypotheses which can be tested sequentially:

H{ P

D lap = B+ Qg + Py versus
IA%L"AJFB S hah =+ B versus
fl(? S lhah = [ VETSus

ﬁf+Biﬂab=M+aa+ﬂb+%b,

fflA|A+B gy = P+ g + By,

HE iy = o+ By

The hypotheses I:T64+B, ﬁ;‘A+B, and IA—jéB can be tested separately by

Yssr1/(A—=1)(B—1)

Reject ﬁ64+3 if

Ysse/(N — AB)

Yssaja+n/(A—=1)

> Fla-1)(B-1),N-AB,1-a-

Reject I?SWHB if

Ysseja+B/(N —A—B+1)

Yssp/(B—1)

> FAAN-A-B+l,1-a-

Reject ﬁég if

Yssep/(N — B)

> Fp_1,N-B1-a-

Thereby Fin a,« denotes again the a-quantile of the central F-distribution with N and M degrees
of freedom. The constructions of the tests bases on the fact that the used sum of squares are
stochastically independent with y2-distribution.

Note, that the last test is the ANOVA test for the one-way layout. Thus, we have

B
$558 =Y Nob abe = Uou)’
b=1
A B Ny

YssEB = Z Z Z@abn ~Tupa)”

a=1 b=1n=1

is the sum of squares for factor B,

is the sum of squares for errors in the one-way layout.
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The other sum of squares are defined as follows:

Y554|A+B is the sum of squares for factor A in model A+B,
A B Ny
YSSE|A+B = Z Z Z(yabn — [ — Ay — [)? is the sum of squares for errors in model A+B,
a=1b=1 n=1
A B
dissr = Z Z Nab Tabe = Tase — Tabe + Tass)? is the sum of squares for interactions,
a=1 b=1
A B Ng
Y5sE = Z Z Z Yabn — yab. is the sum of squares for errors in the full model.
a=1b=1n=1
The grand sum of squares
A B Ng
D556 = 3 > (Yabn — Tuw)’
a=1b=1n=1
can be decomposed as follows
Yss¢ = YssB+ Xssg|Bs
Yssa¢ = YssB+YssaarB + XSSE|A+B:
Yssa = YssB+ Yssajarp T Xssi+ XssE,
where

YssB, Yssp|p are stochastically independent,
YssB, YssA|A+B, 2ssE|A+p are stochastically independent,
Y.55B; 2X55A|A+B> 25S1, 2ssE are stochastically independent.

Note that there is no simple expression for Y gg444p. Moreover, the tests depend on the order of
the factors. We obtain other tests if the factors A and B are exchanged. This means in practice
that we have to decide which factor should take the role of factor A and which factor the role of
factor B.

Balanced designs
However, for balanced designs with Ny, = M foralla=1,..., A, b=1,..., B, we do not have this
problem. There it holds

B
Sss8 = MAY Gupe = Tuus)?,
b=1
A
Ss5414+B = 5554 = MB D> (Taee = Tuud)s
=1
B

A
ESSI = M Z (gabo - yau - yobo + gon)Q’
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so that the decomposition of the grand sum of squares becomes

Yssa = Xssa+ Xssp+ Lssp|atrn (6)
Yssa¢ = Xssa+ Xssp+ Lgsr+ LssE- (7)

Since the sum of squares for factors A and B are of analogous form, the factors A and B can be
exchanged.

4.3.1 Exercise (For mathematicians)
Prove that the decompositions (6) and (7) really hold for balanced designs.

ANOVA test for the two-way layout with interactions and general design

Using the tests in (5), the order of factors A and B would be also important for balanced designs
since the sum of squares for errors X ggp44p and Yggp|p are different. Therefore, always YXgsp
is used in the denominator of the ANOVA test statistic. Moreover, only then it is not necessary
to adjust the level « of the tests. I.e. we can use for all three tests a = 0.05 if these are the only
tests at the data set except for some pretests. This is due to the decomposition of the grand sum of
squares. The following variance estimators are used in the test statistics besides 54 given in (3):

1 1 1
~2 ~2 ~2
OssB = 5 —{>255B, OssAla+B = 4 1 >55AIA+B; 0551 = A-D(B= 1)2551-

This leads to the following tests:

ANOVA tests for the two-way layout with interactions

~2
. . Eas g
Reject HOI P Yab = 0 for all (CL, b) if V] == ,\551 > F(A—l)(B—l),N—A Bil-a:
0SsE
= a\AQS‘SAA B
Reject H64 taga=0foralla if Vy= TH > FA_1N-AB1-a-
0SSE

~2
-~ o
Reject HY : By =0forallb if Vp=-3E>Fp iy apia.
0sskE
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Again, the values for the analysis of variance are summarized in the so-called ANOVA table:

Cause of variability Degrees of freedom Sum of squares Variance estimates
Factor B B-1 YssB Giep = 512888
Factor A A-1 Y55A|A+B 3§5A|A+B = 17555414+ B
Interaction (A-1)(B-1) 25S1 0% = mzsw
lgfrejrsurement N_AB Sesn &% o = ﬁ Nesp
Total N -1 255G Oisc = T1185G

ANOVA test for the two-way layout without interactions and with general design

Here Yg5pja4p is used in the denominator of the test statistics since then we have again the
decomposition of the grand sum of squares.

ANOVA tests for the two-way layout without interactions
82
Reject H64 o, =0forall a if XA/A = Ag‘%ﬂ > FA_1,N—A-B+1,1-a-
OSSE|A+B
~ 52
Reject HOB . ﬁb =0 forall b if VB = ,\2& > FB—l,N—A—B+1,1—a-
OSSE|A+B

Again, the values for the analysis of variance are summarized in the so-called ANOVA table:

Cause of variability Degrees of freedom Sum of squares Variance estimates
Factor B B-1 Y558 Giep = 51Sssn
~2 1
Factor A A-1 Y.55A4|A+B OSSA|A+B — T T2SSA|A+B
Measurement N—-A—B+1 D ~2 _ 1 »
—A-b+ SSE|A+B 9SSE|A+B — N—A—B+1~SSE|A+B

error

Total N -1 Yssa 0ise = 588G
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Checking the requirements of the two-way ANOVA tests

As for the one-way ANOVA test the normal distribution for each factor combination and the ho-
mogeneity of the variances must be checked. However this can be done only if there are many
measurements for each factor combination. In such situations, the same methods as for the one-
way layout can be used by regarding each level combination separately. But in designs with few
or even zero observations for some factor combinations this makes no sense. The normal distri-
bution, however, can be always tested by testing the normal distribution of the residuals with
shapiro.test(1m(...)$residuals. This method should be also used if there are many levels in
the one-way layout.

4.3.2 Example (Germinating seeds)

We have seen in Example 3.2.2 and Exercise 3.2.3 that there is a significant watering effect for the
uncovered boxes as well as for the covered boxes. To test whether there is also a box effect, we
could use the t-test. But then we have to take into account that we are doing three tests at the
same data set germin. Therefore, it is better to use the ANOVA test. With this test we also can
test whether there is an interaction between the type of the box and the watering level. But at first
we test whether we can assume the normal distribution and the homogeneity of the variances:

> shapiro.test(lm(seed.numbers~watering*box,data=germin[germin$watering!="6",]
+ )$residuals)$p.value
[1] 0.9119584

Hence there is no evidence that the normal distribution is not satisfied.

> anova(lm(seed.numbers watering*box,data=germin[germin$watering!="6",]))
Analysis of Variance Table

Response: seed.numbers

Df Sum Sq Mean Sq F value Pr(>F)
watering 4 6675.8 1668.9 34.7094 1.142e-10 *x**
box 1 0.2 0.2 0.0035 0.953
watering:box 4 6068.9 1517.2 31.5540 3.492e-10 **x*
Residuals 29 1394 .4 48.1

Signif. codes: O ’**x*x’ 0.001 ’*x> 0.01 °’x> 0.05 *.” 0.1 > *> 1

We can conclude that there is a significant watering effect and a significant interaction. The type
of the box has no significant effect. With

> var(germin[germin$watering!="6","seed.numbers"])

[1] 372.085

> 38xvar (germin[germin$watering!="6","seed.numbers"])
[1] 14139.23
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we can produce the complete ANOVA table:

Cause of variability Degrees of freedom  Sum of squares  Variance estimates

Factor B 4 Yssp = 6675.8 %45 = 1668.9
Factor A 1 ESSA|A+B =0.2 8§SA|A+B =0.2
Interaction 4 Ygsr = 6068.9 0%y = 1517.2
Measurement ~9

29 Yssr = 1394.4 ooy =481
error
Total 38 Ysse = 14139.23 524, = 372.085

If the order of the factors watering and box are exchanged, then almost the same table is obtained.
This is due to the fact that we have almost a balanced design with N, = 4. Only one observation
is missing in the covered boxes for watering level 5:

> anova(lm(seed.numbers”box*watering,data=germin[germin$watering!="6",]))
Analysis of Variance Table

Response: seed.numbers

Df Sum Sq Mean Sq F value Pr(>F)
box 1 0.2 0.2 0.0037 0.9522
watering 4 6675.8 1668.9 34.7093 1.142e-10 x***
box:watering 4 6068.9 1517.2 31.5540 3.492e-10 **x*
Residuals 29 1394 .4 48.1

Signif. codes: O ’**x*x’ 0.001 ’*x> 0.01 °’x> 0.05 *.” 0.1 > * 1

Although there is a significant interaction and N, < 3 always, we demonstrate here the use of
anova(lm(...)) also for the one-way layout without interactions:

> shapiro.test(lm(seed.numbers™box+watering,data=germin[germin$watering!="6",]
+ )$residuals)$p.value
[1] 0.0704208

The p-value provided by the Shapiro-Wilks test is now much smaller than in the model with inter-
actions. This is due to the strong interactions. But still it is larger than 0.05.

> anova(lm(seed.numbers~box+watering,data=germin[germin$watering!="6",1))
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Analysis of Variance Table

Response: seed.numbers

Df Sum Sq Mean Sq F value Pr(>F)
box 1 0.2 0.2 0.0008 0.9779438
watering 4 6675.8 1668.9 7.3795 0.0002320 *x*:x
Residuals 33 7463.3 226.2

Signif. codes: O ’**x*x’ 0.001 ’*x> 0.01 °’x> 0.05 *.” 0.1 > *> 1

We see that the test statistics, the F values, have changed. But we see also that the sum of squares
for box:watering and Residuals satisfy 6068.9 + 1394.4 = 7463.3.

4.3.3 Exercise (Mustard)

In Example 2.2.1, the two t-tests for testing for an influence of cutting and of the growing conditions
provided no significant results.

a) Now test with the ANOVA test whether there are effects of the cutting and the growing conditions
and whether there are interactions between the two treatment factors. Test also the requirements
of the ANOVA test and produce a complete ANOVA table. What do you conclude?

b) Change also the order of the treatment factors and compare the results.

c) Use the test for interactions as pretest. If the hypothesis of no interactions is not rejected, use
also the ANOVA test for the two-way layout without interactions. Test then also its requirements.
Compare the results with the ANOVA test for the two-way layout with interactions. What happens
with the test statistics and P values? Explain the result.

4.4 Designs for two treatment factors

Table 4 regarded as matrix is called incidence matrix and has the form

N1 Nig ... Nip
Noi1 Ny ... Nop ®
Nai Na2 ... Nap

If there are two treatments, then also the interaction of the treatments is of interest. This means
that each Ny, should be at least 2. We have seen that balanced designs have the advantage that the
order of the treatment has no influence on the analysis. Hence a good design is a balanced design
with Ngy = M foralla=1,...,A, b=1,...,B and M > 2. We know that the higher M is the
smaller the G-error of the test is.

The allocation of the level combinations should be done randomly to the N = M A B experimental
units. Such designs are called randomized designs for two factors and can be created with the
function design.ab of the library agricolae.

4.4.1 Example
If factor A has the levels A1, A2, A3 and factor B has the levels B1, B2, B3, B4 and M = 2, then
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we obtain for example the following allocation:

> library(agricolae)
> design.ab(c("Al","A2","A3"),C("Bl","B2","B3","B4"),2)
plots block C("Alll’ ||A2||’ ||A3||) C("Bl", ||B2||’ ||B3||’ ||B4||)

1 1 1 Al B4
2 2 1 A3 Bl
3 3 1 A2 Bl
4 4 1 A3 B3
5 5 1 A3 B2
6 6 1 A2 B3
7 7 1 Al Bl
8 8 1 Al B2
9 9 1 A2 B2
10 10 1 A2 B4
11 11 1 A3 B4
12 12 1 Al B3
13 13 2 A2 B2
14 14 2 A3 B3
15 15 2 A3 B2
16 16 2 Al B2
17 17 2 A2 B4
18 18 2 A2 B1
19 19 2 A2 B3
20 20 2 A3 Bl
21 21 2 Al B4
22 22 2 Al B3
23 23 2 A3 B4
24 24 2 A1 B1

We see that the second repetitions are given in a second block. This makes sense since if the
experiment must be stopped before all measurements are done, then at least all level combinations
were used at least one time.

4.5 Designs for one treatment and one block factor

Usually experiments cannot be done under the same conditions. There are temporal and spacial
conditions. The random allocation of the treatments to the experimental units in the one-way
layout described in Subsection 3.4 aims to reduce unknown temporal and spacial influences. But
sometimes these temporal and spacial influences are known and therefore cannot be neglected. This
is in particular the case if the experiments are done in different years with different weather or at
different experimental stations with different climatic conditions and different ground. Then these
different conditions must be regarded as block factor. In our notation, the second factor B will
denote this block factor. Since there are usually many block factors, the numbers Ny, of sample
sizes for the level combinations of the treatment and the block factor are small. Very often the
incidence matrix given in (8) consists only of zeros and ones. Since the numbers Ny, are such small,
only the ANOVA test for the one-way layout without interaction is used. This makes sense, since
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one wants to know whether there is a block effect and interactions are of less interest. The order
of the treatment factor and the block factor should be such that the treatment is the factor A and
the block factor is the factor B. Then at first in the whole model it is tested whether there is a
treatment effect, and then in a model without treatment effects it is tested whether the blocks have
significant influence.

The treatment factor is the factor A and the block factor is the factor B in the ANOVA test of
Subsection 4.3.

For example a incidence matrix can have the form:

_ o O
S = O =
S = = O
S = O =
= = O O
S O ==

This is a block design with A = 4 treatments and B = 6 blocks. It is a incomplete block design
since some N, are equal to zero.

A block design is called complete block design if Ny, > 0foralla=1,...,4A,b=1,...,B.

A block design is called incomplete block design if there exists level combinations (a, b) with
Ngp = 0.

A block design is called balanced block design if the number of treatments N, is equal in
each block b (N,; = N,s = ... = N,p), each treatment level a appears in the same number of
blocks (N1, = N, = ... = Ny,) and each pair of treatments aj,a2 € {1,..., A} appears in the
same number of blocks.

Obviously, if Ny = M for alla =1,...,A, b =1,...,B, then this is a balanced complete block
design. But there are also balanced incomplete block designs.

A block incomplete design which is balanced is called balanced incomplete block design
(BIBD).

Balanced complete block designs

Although with the block factor a temporal or spacial influence is taking into account, there may
be also unknown temporal or spacial influence. Therefore the treatments should be allocated in a
block randomly. Such designs are called randomized complete block designs (RCBD) and
can be constructed with design.rcbd of the agricolae package.

4.5.1 Example
If there are 3 levels T1, T2, T3 for the treatment and 4 levels for the block factor, we can use for
example the following randomized complete block design:

> library(agricolae)

> design.rcbd(c("T1","T2","T3"),4)
plots block c("T1i", "T2", "T3")

1 1 1 T1
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In randomized complete block designs, we have Ny =1foralla=1,...,A, b=1,..., B. Besides
the ANOVA test for two-way layout without interactions, also the Friedman rank sum test can
be used. This is a distribution-free test and should be used if the normal distribution is rejected.

4.5.2 Example (A soil experiment)

The data in the file SOIL.DAT “are part of a larger experiment to determine the effectiveness of blast
furnace slags (German: Hochofenschlacke) as agriculural liming material (German: Scheidungsma-
terial) on three types of soil, sandy loam (German: Lehm) (I), sandy clay loam (clay in German:
Ton) (IT) and loamy sand (IIT). The treatments were all applied at 4000 lbs per acre, and what was
measured was the corn yield in bushels per acre.” (Hand et al. 1996, P. 220)

The tree types of soil are regarded as blocks. There were 7 levels of the treatment: none slag
None, coarse slag Coarse, medium slag Medium, agricultural slag slag, agricultural limestone lime,
agricultural slag + minor elements slag.plus, agricultural limestone 4+ minor elements lime.plus.
At first we read the data:

> s0il0<-read.table("SOIL.DAT")
> s0ill<-c(s0il0[,1],s0110[,2],s0110[,3])
> soil2<-data.frame(rep(c("none","coarse","medium","slag","lime","slag.plus",
+ "lime.plus"),3),s0ill)
> soil<-data.frame(c(rep("I",7),rep("II",7),rep("III",7)),s0112)
> names(soil)<-c("soil","slag","yield")
> soil
soil slag yield
1 I none 11.1
2 I coarse 15.3
3 I medium 22.7
4 I slag 23.8
5 I lime 25.6
6 I slag.plus 31.2
7 I lime.plus 25.8
8 II none 32.6
9 IT coarse 40.8
10 II medium 52.1
11 II slag 52.8
12 II lime 63.1
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13 II slag.plus 59.5
14 II lime.plus 55.3
15 III none 63.3
16 1III coarse 65.0
17 III medium 58.8
18 1III slag 61.4
19 1III lime 41.1
20 III slag.plus 78.1
21 1III lime.plus 60.2

This is not a randomized complete block design. But maybe the randomization was lost by putting
the data in file SOIL.DAT.

Then we test for normality:

> shapiro.test(lm(yield"soil+slag,data=soil)$residuals)$p.value
[1] 0.2199803

Hence the normal distribution is not rejected so that the ANOVA test can be used. Since soil is
the block factor it should come at first:

> anova(lm(yield~soil+slag,data=so0il))
Analysis of Variance Table

Response: yield

Df Sum Sq Mean Sq F value Pr(>F)
soil 2 5696.3 2848.2 36.0743 8.41e-06 *x**
slag 6 731.1 121.8 1.5432 0.2457
Residuals 12 947.4 79.0

Signif. codes: O ’**x*x’ 0.001 ’*x> 0.01 °’x> 0.05 *.” 0.1 > * 1

Hence the types of slags have no significant influence, however the soil has. But this was probably
known before the experiment. Now we can also test the hypothesis of the influence of slag types
with the Friedman rank sum test:

> friedman.test(yield"slagl|soil,data=so0il)
Friedman rank sum test

data: yield and slag and soil
Friedman chi-squared = 8.1429, df = 6, p-value = 0.2278

It provides almost the same p-value although usually distribution-free tests provides larger p-values
and have larger §-error. Note the different writing of the formula: yield~soil+slagin the ANOVA
test and yield~slaglsoil in the Friedman rank sum test.
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Balanced incomplete block designs

Balanced incomplete block designs are needed when the block size is too small so that not all
treatments can be applied in the block. The block size can be even 2 in the extreme case. This is
for example the case when the experimental units are the eyes persons and k& > 2 eye drops should
be studied. Then each person provides a block of block size is 2 and the number of treatments levels
is higher than the block size.

The question is, for which block sizes and for which numbers of treatment levels a balanced incom-
plete block design exists. Here some necessary conditions for the existence are given. For balanced
designs, let be

R = Ny, =...= Ny, the block size,
K = N, =...= N,p the total number of repetitions of the treatment levels,
A the number of blocks in which a pair of different treatments ay, as € {1,..., A} appears.

Obviously, it holds:
AR=BK (9)

Moreover, there are

A AA-1
( 5 ) = % different pairs of treatment levels,

K K (K-1
( ) ) = % different pairs of treatments in each block,

so that
AN (A-1)=BK (K -1).
Substituting B K by A R and dividing by A, we obtain
AA-1)=R (K -1). (10)

Conditions (9) and (10) are only necessary conditions for a balanced incomplete block designs but
not sufficient conditions. For example A = 16, R = 3, B = 8, K = 6, and A = 1 satisfies with
16 3=8 6 and 1 15=3 5 the conditions (9) and (10) but there exists no balanced incomplete block
design.

In the function design.bib of the agricolae package one can only specify the number of treatments
and the block size.

4.5.3 Example (Balanced incomplete block design)
The balanced incomplete block design for A =3 and B = 2 has the form:
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> design.bib(c("T1","T2","T3") ,k=2)

Parameters BIB

Lambda
treatmeans :
Block size :
Blocks
Replication:

N W N W~

Efficiency factor 0.75

<<< Book >>>
plots block c("Ti", "T2", "T3")

1 1 1 T1
2 2 1 T2
3 3 2 T1
4 4 2 T3
5 5 3 T2
6 6 3 T3

This means that we have R =2, B =3 and A = 1. A BIB design with A = 16 and K = 6 is so
large that we give here only the automatic printout:

> ddd<-design.bib(as.factor(1:16) ,k=6)

Parameters BIB

Lambda : 1001
treatmeans : 16
Block size : 6
Blocks : 8008
Replication: 3003

Efficiency factor 0.8888889

<<< Book >>>

4.5.4 Exercise (Designs for two factors)

a) Create a randomized design for two treatments A and B where treatment A has 6 levels, treatment
B has 4 levels, and M = 2.

b) Create a randomized complete block design for a treatment with 6 levels and a block factor with
4 levels.

c) Is it possible so create a randomized incomplete block design for 6 treatments levels, 4 block
levels and block size 37 d) Create a randomized incomplete block design for 6 treatments levels and
block size 3.
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4.5.5 Exercise (Pepper)

Consider the data set pepper in Exercise 1.5.2. Treat the three treatment factors Heating, Lighting,
Carbon dioxid, where each has 2 levels, as one treatment factor with 8 = 23 levels. The condition
of the experiment was that only 6 compartments per block are available. Is the design of data set
pepper randomized incomplete block design if the block factor year is neglected? Find a randomized
incomplete block design for the experimental conditions with minimum number N of experimental
units. Neglect again the block factor year. How many blocks are needed? And if only two blocks
per year can be realized, how many years are needed for a randomized incomplete block design?



Christine Miiller Universitat Kassel, WS 2007/2008
Manuscript Linear Models and Ezperimental Design 65

5 Multi-way layouts and further models

If a data set has more than two factor variables, then we have a multi-way layout. The factor
variables can consist of several block variables B, ... B and several treatment variables A, ... A”.
Still we assume that there is only one numeric variable.

Since we have more than two factors, we do not have only interactions between two factors but also
higher order interactions between several factors.

Interactions of higher order
The effect, which appears when several factors are simultaneous at certain levels, is called higher
order interactions.

Example: four-way layout

Consider for example four factors A, B, C, and D. The factor A has levels aq, ..., a4, factor B has
levels bq,...,bp, factor C has levels ¢1,...,cc, and the factor D has levels dq,...,dp. The full
model with all interactions is than

Yabcd =N + g + 6b + Ye + 5d + aﬁab + AYac + ﬁ’)’bc + CV(Saal + 65bd
+ aBYabe + Bdapd + BY0bed + BYOabed + ZLabed

with Zgped NN(O,JQ) for all a € {al,...,aA}, be {bl,...,bB}, cEc {01,...,60}, de {dl,...,dD}.
For simplicity we also write: a € {1,...,A}, b € {1,...,B}, ¢ € {1,...,C}, d € {1,...,D}.
Thereby,

i is the average mean,
Qqa, By Ve, 6q  are the main effects of the factors a, B, C, D,
af, 1s the second order interaction of factor A at level a
and factor B at level b,
QYaes BYbes @ad, B0pg  are the other second order interactions,

afB7Yqpe 18 the third order interaction of factor A at level a, factor B at level b,

and factor C at level c,

aBupa + By0peq  are the other third order interactions,

afB70apea  1s the forth order interaction of factor A at level a, factor B at level b,

factor C at level ¢, and factor D at level d.

The main effects and the second order interactions should satisfy the same side conditions as for
the two-way layout. Moreover, the higher order interactions should satisfy for example

A B C
0= Zaﬁ’)’abc = Zaﬁ’)’abc = Zaﬁ’)'abm
a=1 b=1 c=1
A B C D
0= Z aﬂ’yéabcd = Z aﬂ’yéabcd = Z aﬂ’yéabcd = Z O‘ﬁ’yéabcd’
a=1 b=1 c=1

d=1
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for all a, b, c,d. This means that we have

I+ A-1)+B-)+C-1)+D-H+A-1)(B-1)+A-1)(C-1)

+B-1)C-1)+A-1)D-1D)+B-1)D-1)+(C-1)(D-1)+
+A-DB-DNC-DN+A-DB-HDL-1)+A-1)(C-1)(D-1)
+B-DC-DD-1)+A-1)B-1)C-1)(D-1)

— A-B-C-D

parameters.

Estimability in the full model of the four-way layout

All of the A BC D parameters of the full model are estimable if the total sample size N is at
least A-B-C-D.,ie. N> A-B-C-D, and each level combimation a, b, ¢, d is observed at least
once, i.e. Ngpeq > 1.

Testability in the full model of the four-way layout

All hypotheses about main effects and interactions are testable if the total sample size N is
greater than A-B-C-D,i.e. N > A-B-C- D, and each level combimation a, b, ¢, d is observed
at least once, i.e. Nypeq > 1.

This means that for testing, we need at least one observation more than for estimation. This is
due to the fact that for testing we additionally need an estimate for the variance ¢, which is not
allowed to be zero.

5.1 The ANOVA test for the multi-way layout

The ANOVA test tests the interactions and main effects again in a sequential order. For example,
for the four-way layout as follows:

1) Hg'POP Habed = I+ Qg + By + Ve + 04 + @Bap + Vac + BV + @aq + Bopa
+ afYabe + Bdapa + BY0bca
Versus
FABCD . _ ) ) 0
i : Habed = 1+ 0 + By + Ye + 0q + aBap + aVae + BYe + adeq + Bpa

+ afBYape + aB0aba + BY0bed + BY0qabed

2) HJP Habed = I+ + By + Yo + 0q + aBap + aVac + BYpe + adqq + Bpa
+ O‘ﬁ’)/abc + aﬂéabd
versus
HPeP Habed = I+ + By + Yo + 0q + aBap + aVae + BYpe + adgq + Bpa

+ afVabe + Bdapa + BY0bca
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3) Hyg'"P Habed = b+ o + Bb + Ve + 0a + Bab + Yac + BYbe + Adad + Bdpa
+a67abc
versus
Hi*PP Pabed = b+ o + Bb + Ve + da + Bab + Yac + BYbe + Adad + Bdpa

+ afYabe + Baba

4) HBC Habed = b+ 0 + By + Ve + 0q + Bap + aYac + BYbe + @daq + Fopa
versus
H{*BC Habed = M+ Qg + By + Ve + 04 + aBap + Vac + BVpe + aq + Bopa
+ aﬁ’)'abc
5) HYP - Habed = 1+ a + By + Ye + 0q + aBay + aVae + BYpe + 00aq
Versus
HPP Habed = 1+ 0 + By + Ye + 0q + aBap + aVae + BYpe + @daq + Bpa
6) H(I)4D : Habed = MU + o + ﬁb + Ye + 5d + aﬁab + Yac + 6'7bc
versus
HfD : Habed = K + aq + ﬂb + Ye + 5d + O‘ﬁab + QYac + ﬁ’)/bc + a(sad
7) HP Habed = 1+ q + By + Ye + g + aBap + BYpe
versus
HlBC : Habed = M+aa +ﬁb +’Yc+5d+aﬁab +04'7ac +ﬁ7bc
8) H'C - Habed = I+ 0q + By + Ye + g + afBap
Versus
H{C Habed = 1+ 0q + By + Ye + dq + aBap + aYac
Q)H(I?B: ,U'abcd:,u'"i_aa"i_ﬁb"i_’)/c"i_(sd
versus
H{*B . Habed = fb+ Qq + By + Ve + dq + aBap
10) HOD ,U'abcd::u'"i_aa"i_ﬁb"i_’)/c
versus

HlD: ,U'abcd:,u'"i_aa"i_ﬁb"i_’)/c"i_(sd
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11) Hf Habed = K+ q + By
Versus
HY : Habed = 1+ a + B + Ve
B . —
12) Hy - Habed = |4+ Qg
Versus
HY Habed = K+ q + B
13) H' : Habed = [
versus
HiA: Habed = I+ 0

All these hypotheses can be only tested if the sample size is greater than A- B -C - D. If this is not
the case some interaction must be dropped.

5.1.1 Example (Pepper)
Now we regard all variables of the Example 1.5.2 separately. This means that there are two block
variables (Year and Block) and three treatment variables (Heating, Lighting C02).

> aov(Excess~Year*Block*Heating*Lighting*C02,data=pepper)

Call:
aov(formula = Excess ~ Year * Block * Heating * Lighting * CO2,
data = pepper)

Terms:
Year Block Heating Lighting C02 Year:Block
Sum of Squares 24.40167 92.04167 7.62881 20.36507 1.19428 0.17964
Deg. of Freedom 1 1 1 1 1 1
Year:Heating Block:Heating Year:Lighting Block:Lighting
Sum of Squares 0.44831 0.00373 0.02709 0.49988
Deg. of Freedom 1 1 1 1
Heating:Lighting Year:C02 Block:C02 Heating:C02 Lighting:C02
Sum of Squares 0.08403 0.26779  0.84438 0.17992 0.15277
Deg. of Freedom 1 1 1 1 1
Year:Block:Heating Year:Block:Lighting Block:Heating:Lighting
Sum of Squares 1.64638 0.34362 0.47883
Deg. of Freedom 1 1 1
Year:Block:C02 Block:Heating:C02 Block:Lighting:C02 Residuals
Sum of Squares 0.72043 0.00600 0.51571  1.21000
Deg. of Freedom 1 1 1 2

Residual standard error: 0.7778175
10 out of 32 effects not estimable
Estimated effects may be unbalanced
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Hence not all of the parameters of the full model are estimable. Hence we must reduce the model,
for example, to:

> aov(Excess~Year+Block+Heating*Lighting*C02,data=pepper)

Call:
aov(formula = Excess ~ Year + Block + Heating * Lighting * CO2,
data = pepper)

Terms:
Year Block Heating Lighting CO02 Heating:Lighting
Sum of Squares 24.40167 92.04167 7.62881 20.36507 1.19428 0.20271
Deg. of Freedom 1 1 1 1 1 1
Heating:C02 Lighting:C02 Heating:Lighting:C02 Residuals
Sum of Squares 0.03074 0.13298 1.17600 6.06607
Deg. of Freedom 1 1 1 14

Residual standard error: 0.6582484
Estimated effects may be unbalanced

In this model, all parameters are estimable. Before we use the ANOVA test, we test for normal
distribution:

> shapiro.test (aov(Excess~Year+Block+Heating*Lighting*C02,data=pepper)$residuals)$p.value
[1] 0.7816656

> anova(lm(Excess~Year+Block+Heating*Lighting*C02,data=pepper))

Analysis of Variance Table

Response: Excess
Df Sum Sq Mean Sq F value Pr(>F)

Year 1 24.402 24.402 56.3170 2.859e-06 *x*x
Block 1 92.042 92.042 212.4246 7.441e-10 **x
Heating 1 7.629 7.629 17.6067 0.0008974 *x*x
Lighting 1 20.365 20.365 47.0009 7.861e-06 **x
Cc02 1 1.194 1.194 2.7563 0.1190947
Heating:Lighting 1 0.203 0.203 0.4678 0.5051472
Heating:C02 1 0.031 0.031 0.0709 0.7938500
Lighting:C02 1 0.133 0.133 0.3069 0.5883288
Heating:Lighting:C02 1 1.176 1.176 2.7141 0.1217170
Residuals 14 6.066 0.433

Signif. codes: O ’**x%x’ 0.001 ’*x> 0.01 °’x> 0.05 *.” 0.1 > *> 1

In this model the following tests were done in the following order. Thereby the following abbrevia-
tions are used: Y =Year, B =Block, H =Heating, L. =Lighting, C' =C02.

1) HJ*HC fyphie =p+Y + B+ H+L+C+HxL+HxC+LxC
versus
H{C fphte =i+ Y + B+ H+ L+ C+H+L+HxC+L+xC+H+LxC
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Héq*L*C is not rejected.
2) HEC fyphic =t +Y +B+H+L+C+H+L+HxC
versus
HlL*C; Myphtc = p+Y +B+H+L+C+H+xL+H+xC+L*xC

HOL*C is not rejected.

HxC

3) HO :
Versus

HlH*O :

Hé{*c is not rejected.
HxL .
4) HO .
versus

Hé{*L is not rejected.

5) HS -
Versus
chz

Hg is not rejected.
6) HY -

Versus
L.
HE

Pybhle = +Y +B+H+L+C+ Hx*L

Pyphic =p+Y +B+H+L+C+H*L+Hx*C

Pyphic =p+Y +B+H+L+C

Hybhle = +Y +B+H+L+C+Hx*L

Pyphie = +Y + B+ H+ L

Pyphic =p+Y +B+H+L+C

Pyphic = +Y + B+ H

Pyphic =p+Y + B+ H+ L

There is a significant lighting effect.

7) HE
Versus
HI.

Pyphic = +Y + B

Pybhle = p+Y + B+ H

There is a significant heating effect.

8) HP -
Versus
HlB :

Hybhle = 1+ Y

Pyphic = +Y + B
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There is a significant block effect.

9) Hy : Lybhic = [t
Versus

HY Hybhic = p+Y
There is a significant year effect.

5.1.2 Exercise (Pepper)

Study for the data set pepper also the following models: Excess~Year+Block*Heating*Lighting*C02
Excess~Year*Block+Heating*Lighting*C02, Excess~Year+Block+Heating+Lighting+C02. In
which model are all parameters estimable and in which model are all hypothesis testable? In-
dicate the parameters which are not estimable. Do the ANOVA for the testable models and check
the normal distribution. Which model should be used in practice?

5.1.3 Exercise (Huasahuasi)
The package agricolae contains the data set huasahuasi:

> library(agricolae)
> data(huasahuasi)
> huasahuasi

Block Treat Clon Comercial ylda y2da y3ra yield AUDPC
1 I 40mm 386209.1 18.80 10.80 8.00 6.10 24.90 442.40
2 I 40mm 387164.4 28.25 22.75 5.50 4.14 32.39 2.10
3 I 40mm Cruzal48 13.30 1.60 11.70 4.15 17.45 30.80
4 I 40mm Musuq 8.60 3.50 5.10 2.40 11.00 1424.85
5 I 40mm  Yungay 20.82 10.92 9.90 5.20 26.02 404.95
6 I 7dias 386209.1 23.00 10.50 12.50 3.60 26.60 895.65
7 I 7dias 387164.4 28.98 21.98 7.00 7.60 36.58 7.70
8 I 7dias Cruzal48 11.95 2.80 9.15 4.90 16.85 13.65
9 I 7dias Musuq 7.15 2.556 4.60 3.50 10.65 1147.30
10 I 7dias  Yungay 26.80 18.00 8.80 5.90 32.70 359.10
11 I SinAplic 386209.1 13.60 10.75 2.85 2.50 16.10 2071.30
12 I SinAplic 387164.4 31.80 29.30 2.50 6.50 38.30 20.30
13 I SinAplic Cruzal48 16.80 10.50 6.30 4.20 21.00 156.45
14 I SinAplic Musuq 0.80 0.00 0.80 1.65 2.45 2590.70
15 I SinAplic  Yungay 15.056 8.45 6.60 5.60 20.65 1790.60
16 IT 40mm 386209.1 15.80 12.00 3.80 3.10 18.90 1254.05
17 II 40mm 387164.4 50.70 46.60 4.10 2.40 53.10 6.65
18 IT 40mm Cruzal48 12.40 6.40 6.00 5.70 18.10 39.90
19 II 40mm Musuq 0.85 0.00 0.85 1.30 2.15 3317.30
20 IT 40mm  Yungay 24.80 14.10 10.70 1.95 26.75 1125.25
21 II 7dias 386209.1 20.55 15.65 4.90 6.30 26.85 476.70
22 IT 7dias 387164.4 37.30 32.10 5.20 2.00 39.30 1.05
23 II 7dias Cruzal48 12.30 5.00 7.30 8.00 20.30 21.00
24 II 7dias Musuq 9.60 6.00 3.60 2.30 11.90 428.05
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25 IT Tdias Yungay 20.20 14.30 5.90 2.70 22.90 514.50
26 IT SinAplic 386209.1 9.50 5.40 4.10 2.70 12.20 1785.00
27 IT SinAplic 387164.4 35.50 30.30 5.20 1.60 37.10 0.35
28 IT SinAplic Cruzal48 13.40 6.30 7.10 5.80 19.20 74.20
29 IT SinAplic Musuq 0.00 0.00 0.00 0.40 0.40 3168.90
30 IT SinAplic Yungay 11.60 5.50 6.10 2.15 13.75 2072.35
31 ITI 40mm 386209.1 10.95 5.10 5.85 3.20 14.15 872.20
32 III 40mm 387164.4 33.10 29.30 3.80 4.90 38.00 2.45
33 ITT 40mm Cruzal48 18.70 8.10 10.60 5.80 24.50 29.05
34 III 40mm Musuq 1.50 0.50 1.00 1.10 2.60 3069.50
35 III 40mm Yungay 24.00 15.70 8.30 1.40 25.40 754.95
36 ITT 7dias 386209.1 18.75 10.40 8.35 3.05 21.80 517.30
37 III 7dias 387164.4 37.80 32.10 5.70 3.10 40.90 3.50
38 ITT 7dias Cruzal4S8 17.90 9.30 8.60 3.55 21.45 15.05
39 III 7dias Musuq 3.40 0.70 2.70 3.70 7.10 1352.40
40 ITT Tdias Yungay 35.90 25.90 10.00 3.20 39.10 318.50
41 IIT SinAplic 386209.1 11.35 4.85 6.50 4.40 15.75 1520.05
42 ITI SinAplic 387164.4 34.70 29.20 5.50 4.65 39.35 2.45
43 IIT SinAplic Cruzal48 14.70 3.80 10.90 4.70 19.40 33.60
44 ITTI SinAplic Musuq 0.25 0.00 0.25 0.70 0.95 2903.60
45 IIT SinAplic Yungay 25.80 13.70 12.10 1.10 26.90 1055.95

Regard only the measurement yield but all factors Block, Treat, Clon. Find the largest reasonable
model in which all parameters are estimable and the largest reasonable model in which all hypothesis
are testable. Write done the null hypotheses, alternatives and the conclusions as in Example 5.1.1.

5.2 Latin square and graeco-latin square designs

If there are two block factors and one treatment factor and all three factors have the same number
of levels, than a latin square design is the best design.

Latin square design

A latin square design is a design which allocates to each level combination of two block factors
exactly one treatment level such that for each block level all treatment levels are used. Thereby
the numbers of treatment and block levels are the same.

Latin square designs are produced by design.1lsd of the agricolae package. For example,

> library(agricolae)

> design.lsd(c("A","B","C","D"))
plots row col c("A", "B", "C", "D"

1 1 1

DO WN
D O b W N
NN P =
N = B W N
o0 Q W QU= -~
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7 7 2 3 A
8 8 2 4 D
9 9 3 1 D
10 10 3 2 C
11 11 3 3 B
12 12 3 4 A
13 13 4 1 B
14 14 4 2 A
15 15 4 3 D
16 16 4 4 C

provides the following latin square

= W N =

O Q|-
QW Oin
O @»r Q|w
Q » O T+

Here the rows are the levels of the first block factor and the columns are the levels of the second
block factor. The capital letters A,B,C,D denote the four levels of the treatment.

If there are two block factors and two treatment factors and all four factors have the same number
of levels, than a graeco-latin square design is the best design.

Graeco-latin square design
A graeco-latin square design is a design which allocates to each level combination of two block
factors exactly one combination of levels of two treatment factors such that for each block level
all levels of the first and the second treatment factor are used. Thereby the numbers of treatment
and block levels are the same.

Latin square designs are produced by design.graeco of the agricolae package. For example,

> library(agricolae)

> design.graeco(c("A","B","C","D"),c("a","b","c","d"))
plOtS Trow COl C("A", I|B||, IICII’ I|D||) C("a", I|b||, "C", ||d||

1 1 1 A

©O© 00 N O O W N+~
©O© 00 N O O b W N

-
(@]
-
(@]

11 11

WWWWNNNNDNDR -
B W N R D WD PR D WD
OrrwaoaaawWw>uUwau

-
N
-
N
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13 13 4 1 B d
14 14 4 2 C c
15 15 4 3 D b
16 16 4 4 A a

provides the following graeco-latin square

1 2 3 4
Ab Da Cd Bc
Dc Ad Ba Cb
Bb Ac Dd
Bd Cc Db Aa

=~ W N =
@)
sV

Here the small letters stands for the graeco letters.

5.2.1 Exercise (Graeco-latin square design)
Produce a graeco-latin square design for the case that the numbers of block and treatment levels
are 5. Write the design also as graeco-latin square.

The level combinations of a latin square or graeco-latin square design can have repetitions or not. If
they have repetitions, the number of repetitions should be equal for all combinations of the design.
Many latin and graeco latin square designs have no repetitions. Then not all interactions can be
tested. Even in the case of 3 levels for each factor, only an additive model, i.e. a model without
interaction, can be used.

5.2.2 Exercise (A vandalized experiment)

The data file VANDAL.DAT contains the data of the following experiment. "‘Six varieties of turnip
were grown in 36 plots arranged in a latin square design. The response variable is the fresh weight
(roots plus tops) of turnips (German: Riibe) in pounds per plot (15ft x 15ft). Three plots in one
corner of the experiment had been attacked by vandals and therefore did not yield any usuable
data. Do the varieties of turnip differ in mean weight per plot...? The data below are laid out in
the pattern of the experiment. The letters denote the varieties, A to F."” (Hand et al. 1996, P. 61)

E, 20.0 F, 14.5 D, 20.5 A, 22.5 B, 16.0 C, 6.5
B, 17.5 A, 29.5 E, 12.0 C, 9.0 D, 33.0 F, 12.5
F, 17.0 B, 30.0 C, 13.0 D, 29.0 A, 27.0 E, 12.0
A, 31.5D, 31.5F, 24.0E, 19.5 C, 10.5 B, 21.0
D, 256.0 C, 13.0 B, 31.0 F, 26.0 E, 19.5 A, NA
C, 12.2 E, 13.0 A, 34.0 B, 20.0 F NA D NA

-
-
-
-
-
-

Analyze the experiment. Does the order of the factors influence the analysis? What happens, if the
missing values are substituted by 21.5 for F, 20.8 for A, 13.5 for D?
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5.3 Factorial designs

Latin square designs and graeco-latin square designs are special fractional factorial designs.

Factorial and fractional factorial design

Assume that there are k factors, each with n levels.

A complete factorial design is a design where each of the n* level combinations is realized
M > 1 times.

A fractional factorial design is a design where only some of the n* level combinations are
realized M > 1 times.

As in latin square and graeco-latin square designs, not all interactions can be estimated in fractional
factorial designs. However, some linear combinations of the interaction parameters can be estimated.
If interaction parameters are only estimable within such linear combinations, then they are called
confounded (in German: vermengt).

However, in complete factorial, all interactions are estimable. The function fact.nk of the agricolae
package provides complete factorial designs, where the allocation to the experimental units within
blocks is done randomly.

5.3.1 Example (Complete factorial design)
If there are three factors, each with two levels, which should be allocated to the experimental units
of four blocks, type

> fact.nk(2,3,4)

plots blocks A B C
1 1 1011
2 2 1101
3 3 1111
4 4 1110
5 5 1001
6 6 1000
7 7 1100
8 8 1010
9 9 2111
10 10 2100
11 11 2010
12 12 2101
13 13 2000
14 14 2110
15 15 2011
16 16 2001
17 17 3011
18 18 3101
19 19 3100
20 20 3000
21 21 3110
22 22 3111
23 23 3010
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24 24 3001
25 25 4011
26 26 4101
27 27 4010
28 28 4001
29 29 4100
30 30 4110
31 31 4000
32 32 4111

In each block we have 22 = 8 level combinations of the three factors.

5.3.2 Example (Pepper)

The Example 1.5.2 provides a design where the treatments H =Heating, L =Lighting, C' =C02
follow a 23 factorial design. However, the allocation of the 23 level combinations to the blocks is
not complete since each block can have only 6 experimental units.

It is clear as soon as we have more and more factors, then the number of experimental units within
each block explodes. For example, for 8 factors, each with 2 levels, we need 2% = 256 units for each
block. This is usually not possible, the reason why fractional factorial designs are needed. The R
package conf.design provides fractional factorial designs. In particular with this package designs
can be constructed where specified treatment contrasts are confounded with blocks.

5.4 Hierachical models and split plot designs

5.4.1 Example
The data set plots of the package agricolae is based on a split plot design.

> library(agricolae)
> data(plots)

> plots

block plot A B yield
1 1 plal bl 4
2 1 pl al b2 1
3 1 pl al b3 9
4 1  p2 a2 bl 6
5 1  p2 a2 b2 10
6 1 p2 a2 b3 2
7 2 p3 al bl 5
8 2 p3 al b2 3
9 2 p3 al b3 10
10 2 p4 a2 bl 4
11 2 p4 a2 b2 14
12 2 p4 a2 b3 1
13 3 pbalbl
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14 3 p5 al b2 2
15 3 p5alb3 15
16 3 p6 a2 b1l 3
17 3 p6 a2 b2 12
18 3 p6 a2 b3 1

There are 3 blocks and each block is divided in two subblocks called plots. Hence there are 6 plots
but each plot belongs only to one block. The blocks and plots are nested. Without the plots, this
would be a balanced complete block design. Models, where factors are nested, are called hierarchical
models or nested models.

The nested structure of the design can be expressed in the formula for the ANOVA by block/plot:

> anova(lm(yield~block/plot+A*B,data=plots))
Analysis of Variance Table

Response: yield
Df Sum Sq Mean Sq F value Pr(>F)
block 1 0.750 0.750 0.1742 0.6873870
A 1 0.222 0.222 0.0516 0.8259782
B 2 29.778 14.889 3.4581 0.0827438 .
block:plot 3  5.472 1.824 0.4237 0.7413290
A:B 2 300.444 150.222 34.8903 0.0001119 **x
Residuals 8 34.444 4.306
Signif. codes: O ’**x%x’ 0.001 ’*x> 0.01 °’x> 0.05 *.” 0.1 > * 1
> summary(lm(yield~block/plot+A*B,data=plots))

Call:
Im(formula = yield ~ block/plot + A * B, data = plots)

Residuals:
Min 1Q Median 3Q Max
-2.3333 -0.7778 0.1111 0.9167 3.0000

Coefficients: (2 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.8333 2.1318  0.860 0.41483
block 0.8333 0.8471 0.984 0.35406
Aa?2 -0.5556 2.1872 -0.254 0.80590
Bb2 -1.6667 1.6942 -0.984 0.35406
Bb3 7.6667 1.6942 4.525 0.00194 **
block:plotp2  2.3333 2.3960 0.974 0.35865
block:plotp3  0.2500 0.7336 0.341 0.74205
block:plotp4 0.9167 0.9471 0.968 0.36145
block:plotp5 NA NA NA NA
block:plotp6 NA NA NA NA

Aa2:Bb2 9.3333 2.3960 3.895 0.00457 **
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Aa2:Bb3 -10.6667 2.3960 -4.452 0.00213 **

Signif. codes: O ’**x*x’ 0.001 ’*x> 0.01 °’x> 0.05 *.” 0.1 > > 1

Residual standard error: 2.075 on 8 degrees of freedom
Multiple R-Squared: 0.9072, Adjusted R-squared: 0.8028
F-statistic: 8.688 on 9 and 8 DF, p-value: 0.002851

That some block/plots parameters cannot be estimated does not depend on the interactions of A
and B. We obtain the same problem without them:

> summary(lm(yield~block/plot+A+B,data=plots))

Call:
lm(formula = yield ~ block/plot + A + B, data = plots)

Residuals:
Min 1Q Median 3Q Max
-5.8889 -4.4722 0.1111 3.2778 8.1111

Coefficients: (2 not defined because of singularities)
Estimate Std. Error t value Pr(>|t])

(Intercept)  2.0556 5.6239 0.366  0.722
block 0.8333 2.3625 0.353  0.732
Aa?2 -1.0000 4.7250 -0.212  0.837
Bb2 3.0000 3.3411  0.898  0.390
Bb3 2.3333 3.3411  0.698  0.501
block:plotp2  2.3333 6.6822 0.349  0.734
block:plotp3  0.2500 2.0460 0.122  0.905
block:plotpd 0.9167 2.6414 0.347  0.736
block:plotp5s NA NA NA NA
block:plotp6 NA NA NA NA

Residual standard error: 5.787 on 10 degrees of freedom
Multiple R-Squared: 0.0976, Adjusted R-squared: -0.5341
F-statistic: 0.1545 on 7 and 10 DF, p-value: 0.9893

5.5 Models with random effects

If factors are block factors, then it could be that one is not interested in the effect of a specific
level since the levels are for example regions or years and one is not interested in the effect of a
specific randomly chosen region or specific year which will never come again. Then one is only
interested whether the region or year at all has a effect. Since the regions or years are chosen
randomly, their effect is also random. Usually, we do not have only block factors but also treatment
factors so that we have factors with random effects and factors with fixed effects. Such models
are called mixed models (German: Gemischte Modelle). The analysis of variance (ANOVA) is
the same as for models with fixed effects if the designs are balanced. The main difference between
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models with random effects and models with only fixed effects is that observations are not anymore
stochastically independent. This provides different [-errors. Moreover, different parameters are
estimated. Instead of the effects of the fixed factor levels, variance components of the random
factors are estimated.
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6 Regression

In the previous sections, it was assumed that there is one numeric measurement variable and one or
several factor variables. The factor variables can be also considered as explanatory variables for
the measurement variable. Here, we will assume that there are further numeric variables besides the
measurement variable and that these other numeric variable can be used as explanatory variable
for the measurement variable. These explanatory numeric variables are considered as indepen-
dent variables while the measurement variable is a dependent variable which depends on the
explanatory variables. The aim of regression is to specify this dependence.

6.1 Linear regression

The simplest dependence is that of linear regression. In this case we have only one explanatory
variable:

= (z1,...,zN) .

The dependent measurement variable is denoted by

Yy = (yla"'ny)T

and is a realization of a random vector Y = (Y7,...,Yy)" of stochastically independent variables
Yi,...,Yy. Often 2 = (21,...,2x)" is given by the experimenter for example if this variable
concerns some concentrations or doses of a drug or fertilizer. But it also can consist of measurements.
Than it is also a realization of a random variable. But we will only consider the conditional
distribution of Y = (Y1,...,Yy)" given x = (z1,...,2n)" so that z = (x1,...,2y5)" is regarded
always as nonrandom.

In a linear regression model, the dependence of the measurement Y,, on the explanatory variable x,,
is given by

Yy = o+ B2 + Zn, with Z, ~ N(0,07),

foralln=1,...,N.

Estimates for the unknown parameters Gy and 31 are obtained by the method of least squares, i.e.
Bo and 31 are those values so that the sum of squares

N

(Yn — Bo — Brz,)?

n=1
is as small as possible. It can be proved that this minimization problem is solved by

Bo = Y—HAT,

ﬂl = _2y)
S
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where
1 Y 1Y
yzﬁzynv Ezﬁzxn
n=1 n=1

are the arithmetic means of y and x, respectively,

N
1 _ _
Soy = 31 ;(yn — ) (wn —7T)

is the empirical covariance between y and x, and

is the empirical variance of z. The estimate for the unknown variance JE is based on the sum of
squares for errors which is the sum of squares with the estimates 5y and 3y, i.e.

1 N
52 = agsp; “N_9 (Yn — Bo — b1 $n)2-

n=1

These estimators are unbaised estimators, i.e. their expectations are the values which they are
estimating, i.e.

Esy.81.0° (Bo) = Do, Eg, 8.0 (61) = b, Egs, 5, .02 (32) _ 02’

for all By, 51, o2. The variances of the estimates BO and 51 are

2 2 a? 2 ZN 1 25 2
= ar = = n=
0—50 Vi /@O,/@l,0'2 (/80) (N R 1)8% o N ZTL]\[:l(:I;n . §)2 g
and
~ 1 1
2 _ _ 2 _ 2
03, = varg g, ,2(B1) = N =1)s2 o’ = Zflv:l(xn = o°.
These variances are estimated by
N 2
~ — ~ —~ 1 ~
O'%O = Ln=1 Tn 52 and 0'%1 = 52

N Zr]y:l(mn —T)? eryzl(mn —T)?
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6.1.1 Exercise (Designs for linear regression)

Assume that the design region is [0,1] and that N = 12. Which constellations of xy,...,z12 € [0,1]
provides the smallest variance 0%0 and which provides the smallest variance 0%1? Try different
constellations like

z = (0,0.1,0.2,0.3,0.4,0.5,0.5,0.6,0.7,0.8,0.9,1) ",
z = (0,0,0.2,0.2,0.4,0.4,0.6,0.6,0.8,0.8,1,1) ",

z =(0,0,0,0.3,0.3,0.3,0.7,0.7,0.7,1,1,1) ",

z = (0,0,0,0.5,0.5,0.5,0.5,0.5,0.5,1,1, 1),

z = (0,0,0,0,0.5,0.5,0.5,0.5,1,1,1,1) ",

z = (0,0,0,0,0,0.5,0.5,1,1,1,1,1) ",
z = (0,0,0,0,0,0,1,1,1,1,1,1)".

What are your conclusions?
Hint: for example, the variance J%l can be calculated for the first design as follows:

> x<-¢(0,0.1,0.2,0.3,0.4,0.5,0.5,0.6,0.7,0.8,0.9,1)
> mean(x~2)/(9*var(x))

Testing whether the intercept 3y is bg
For testing

Hg : By = by versus Hg : By # bo,

the test statistic is

~  Bo—b
dozﬁoA 0
030

It has a t-distribution with IV — 2 degrees of freedom.

t-test for the intercept

Reject HY : By = by if |do| > ty_2,1-3.

Squaring the test statistic leads to a test statistic with F-distribution with 1 and Ny degrees of
freedom.

F-test for the intercept

Reject HY : By = by if d2 > FinN_21-a.

Testing whether the slope 3; is b;
For testing

H& : 1 = b1 versus H& 1 B1 # by,
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the test statistic is

~  Bi—b
d1=ﬂ1A L
061

It has again a t-distribution with N — 2 degrees of freedom.

t-test for the slope

Reject HY : fy =by if |di] >ty g1 a.

Squaring the test statistic leads also to a test statistic with F-distribution with 1 and Ny degrees
of freedom.

F-test for the slope

Reject H& : ﬁl =b if (/i? > FLN_QJ_Q.

The estimators B\o and Bl are calculated in R with 1sfit or summary(1m(...)). The t-tests for
Hg : Bo = 0 and H& : f1 = 0 are obtained with summary(1lm(...)) and the F-test for HO1 P11 =0
with anova(lm(...)). The requirement of normal distributed errors and residuals can be tested
again with shapiro.test(aov(...)).

6.1.2 Example (Protein content in ground wheat)

The data file GROUND.DAT contains “the results of an experiment to calibrate a near infrared re-
flectance instrument for the measurement of protein content of ground wheat (German: gemahlener
Weizen) samples. The second column shows the protein content, measured by the standard Kjeldahl
method. The final six columns show measurements of the reflectance of near infrared radiation of
the wheat samples at six wavelengths in range 1680-2310. In the source paper the aim was to find a
linear combination of the last six columns which could be used to predict protein content.” (Hand
et al. 1996, P. 411)

> ground<-read.table("GROUND.DAT")
> names(ground)<-c("sample","protein", "Li","L2","L3","L4","L5","L6")
> ground

sample protein L1 L2 L3 L4 L5 L6

1 1 9.23 468 123 246 374 386 -11
2 2 8.01 458 112 236 368 383 -15
3 3 10.95 457 118 240 359 353 -16
4 4 11.67 450 115 236 352 340 -15
5 5 10.41 464 119 243 366 371 -16
6 6 9.51 499 147 273 404 433 5
7 7 8.67 463 119 242 370 377 -12
8 8 7.75 462 115 238 370 353 -13
9 9 8.05 488 134 258 393 377 -5
10 10 11.39 483 141 264 384 398 -2
11 11 9.95 463 120 243 367 378 -13
12 12 8.25 456 111 233 365 365 -15
13 13 10.57 512 161 288 415 443 12
14 14  10.23 518 167 293 421 450 19



Christine Miiller Universitat Kassel, WS 2007/2008

Manuscript Linear Models and Ezperimental Design 84
15 15 11.87 552 197 324 448 467 32
16 16 8.09 497 146 271 407 451 11
17 17 12.55 592 229 360 484 524 ©51
18 18 8.38 501 150 274 406 407 11
19 19 9.64 483 137 260 385 374 -3
20 20 11.35 491 147 269 389 391 1
21 21 9.70 463 121 242 366 353 -13
22 22 10.75 507 159 285 410 445 13
23 23 10.75 474 132 255 376 383 -7
24 24 11.47 496 152 276 396 404 6

We regard here only the columns protein and L1 where L1 is the explanatory variable. The
estimators By and (31 are obtained by

> 1lsfit(ground$L1,ground$protein)$coef
Intercept X
0.24069916 0.01995496

or by

> summary(lm(protein~L1,data=ground))

Call:
Im(formula = protein ~ L1, data = ground)

Residuals:
Min 1Q Median 3Q Max
-2.0683 -0.8799 0.1663 0.9453 2.4496

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.240699 3.938416 0.061 0.9518
L1 0.019955 0.008063 2.475 0.0215 =

Signif. codes: O ’**x*x’ 0.001 ’*x> 0.01 °’x> 0.05 *.” 0.1 > * 1

Residual standard error: 1.282 on 22 degrees of freedom
Multiple R-Squared: 0.2178, Adjusted R-squared: 0.1822
F-statistic: 6.125 on 1 and 22 DF, p-value: 0.02151

We can conclude that the slope of the regression line differs significantly from zero, i.e. the variable
L1 has a significant influence on the variable protein. However, there is no evidence that the
regression line has an intercept different from zero. summary(1m(...)) provides also the estimated

variances 0, and o, in the column Std.Error while anova(lm(...)) produces only the following
ANOVA table:

> anova(lm(protein~L1,data=ground))
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Analysis of Variance Table

Response: protein

Df Sum Sq Mean Sq F value Pr(>F)
L1 1 10.069 10.069 6.125 0.02151 =*
Residuals 22 36.165 1.644

Signif. codes: O ’***’ 0.001 ’*x> 0.01 ’x> 0.05 *>.” 0.1 > *> 1

We see that we get exactly the same p-value for testing Hol : 81 = PBr1 = 0. The squared t-value is
also the F-value since 2.4752 = 6.125625. We should also test whether the requirement of normally
distributed errors is satisfied:

> shapiro.test(aov(protein~L1,data=ground) $residuals) $p.value
[1] 0.613258

The function 1sfit is useful to draw the estimated line in the scatter plot:

> plot(ground$Ll,ground$protein,xlab="L1",ylab="Protein")
> abline(1sfit(ground$Ll,ground$protein)$coef)
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Figure 6.1: Scatter plot with regression line
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6.1.3 Exercise (Protein content in ground wheat)

Tests whether the other variables L2, L3, L4, L5, L6 of the data set ground have significant
influence on the variable protein and test whether the regression lines have an intercept different
from zero. Take into account that six tests with the test of Example 6.1.2 are done at the same
data set. Check also the normal distribution. Plot the scatter plot with the regression line for the
variables L2 and protein.

6.2 Polynomial regression

The dependence of the variable y on the variable x cannot described always by a linear function.
Sometimes a better description of the dependence is given by a quadratic or cubic function or even
by polynomial function of higher order.

If we assume a polynomial function of order r, then we use the model

Yo = o+ Bran + Prag + ...+ Bray + Zn, with Z, ~ N(0,0%), (11)
for all n = 1,..., N. The unknown parameters 3, 31 ..., [0r are estimated again by the method
of least squares. This means that their estimates Gy, (1 ..., Or are those values 3y, 31 ..., 0g for

which the sum of squares

N
(yn— Bo— Pran — Loy — ... — Bray)”
n=1
is as small as possible. There are not any more simple forms for the estimates BO, Bl ,BR as for

linear regression. However, if the design matrix X is defined as

1 oz 22 ... of

1 zo 23 ... of
X = _

1 xn x%v :c%

then the vector B = (BO, Bl ,BR)T of estimates is given by
B=X"X)"'XxTy.

2

The unknown error variance o° is estimated as before by

N
N 1 5 Ba 3 3
U2=U§SE=mZ(yn_ﬁO_ﬁli'n_ﬁlx%_"'_51%355)2'
n=1

~

The covariance matrix of the estimator (3 is

Cov(B) = (X' X) 162
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and is estimated by
Cov(B) = (X TX) 152,

The variances for the single estimators B\o, Bl ...,ﬁR and their estimated values are given by the
diagonal elements of the covariance matrices Cov(ﬂ) and Cov&ﬂ respectively. In particular the
sum of the variances is the trace of the covariance matrix Cov(f3).

6.2.1 Example (Quadratic regression)
In a quadratic regression model the degree of the polynomial is R = 2. Regard the following
explanatory variable or design, respectively,:

z = (0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9) T
The matrix (X " X)~! can be calculated in R with the function ginv of the contributed library MASS:

> x<-¢(0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9)
> X<-cbind(rep(1,10),x,x"2)
> library(MASS)
> ginv(t (X)%*%X)
[,1] [,2] [,3]
[1,] 0.6181818 -2.590909 2.272727
[2,] -2.5909091 16.553030 -17.045455
[3,] 2.2727273 -17.045455 18.939394

Hence 0. 6181818 02 is the variance of the estimate ﬂo, 16.553030 02 is the variance of the estimate
ﬁl, and 18.939394 o2 is the variance of the estimate ﬁg, for the design given by x. The sum of the
variances can be obtained by

> ginv (£ (X)%*%X) [1,1]+ginv (¢t (X)%*%X) [2,2] +ginv (t (X) %*%X) [3, 3]
[1] 36.11061

so that 36.11061 o2 is the sum of the variances.

6.2.2 Exercise (Designs for quadratic regression)

Assume as in Example 6.1.1 that the design region is [0,1] and that N = 12. Which constellations
of z1,...,x12 € [0,1] provides the smallest sum of variances? Try for example again the first six
designs of Example 6.1.1 for . Note that the 7th design cannot be used for quadratic regression
since a quadratic function cannot be determined with measurements only at two different points.
What is your proposal concerning a good design for quadratic regression?

Often it is unknown which degree of the polynomial shall be used. There are two possibilities to
find the degree:

1. Start with a high degree and test whether this degree has a significant influence. If it has
no significant influence, reduce the degree and test whether this has a significant influence.
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And so on. As soon as you have find a degree with significant influence you should use a

polynomial model with this degree.

2. Start with a model with low degree where the largest degree has significant influence. Add
a degree and test whether it has a significant influence. Stop when the added degree has no
significant influence. Use then the polynomial model without this degree.

6.2.3 Example (Protein content in ground wheat)

For the variables protein and L1 of the data set ground of Example 6.1.2, we start with a polynomial
model with degree 5:

> summary(lm(protein~L1+I(L1~2)+I(L1~3)+I(L1~4)+I(L1"5),data=ground))

Call:

lm(formula = protein ~ L1 + I(L1~2) + I(L1-3) + I(L1~4) + I(L1"5),
data = ground)

Residuals:

Min 1Q Median

3Q

-1.9889 -0.8412 0.1932 0.9740

Coefficients:

(Intercept) 2.
L1 -2.
I(L1~2) 1.
I(L1"3) -1.
I(L1~4) 1.
I(L1"5) -7.

Residual standard error: 1.324 on 18 degrees of freedom
Multiple R-Squared: 0.3177,
F-statistic: 1.677 on 5 and 18 DF,

In the column Estimate are the estimates BO, Bl .

with 1sfit:

> lsfit(cbind(ground$Ll,ground$Li~2,ground$L1~3,ground$L1~4,ground$L1~5),

625e+05
568e+03
003e+01
954e-02
900e-05
374e-09

+ ground$protein)$coef

Intercept

2.625338e+05 -2.568146e+03

X5
-7.374407e-09

2

2
8
1.
1
6

.311e+05
.266e+03
.871e+00
732e-02
.688e-05
.563e-09

X1

Max

1.
-1.
1.
-1.
1.
-1.

1.5638

136
133
131
128
126
124

X2

O O O O O

Estimate Std. Error t value Pr(>|t])
0.
.272
.273
.274
.275
.276

271

X3

1.002919e+01 -1.954335e-02

Adjusted R-squared: 0.1282
p-value: 0.1912

X4
1.900193e-05

,55 defined as above. They can be also obtained

Since the term L1755 has no significant influence, we reduce the model to a polynomial of degree 4
and then further and further:

> summary(1lm(protein~L1+I(L1~2)+I(L1~3)+I(L1~4),data=ground))
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Call:
Im(formula = protein ~ L1 + I(L1~2) + I(L1"3) + I(L1~4), data = ground)

Residuals:
Min 1Q Median 3Q Max
-1.8092 -1.0254 0.1343 0.9793 1.8553

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 3.206e+03 1.178e+04 0.272 0.788

L1 -2.379e+01 9.173e+01 -0.259 0.798
I(L1~2) 6.610e-02 2.671e-01  0.247 0.807
I(L1~3) -8.132e-05 3.447e-04 -0.236 0.816
I(L1-4) 3.742e-08 1.664e-07 0.225 0.824

Residual standard error: 1.333 on 19 degrees of freedom
Multiple R-Squared: 0.2699, Adjusted R-squared: 0.1162
F-statistic: 1.756 on 4 and 19 DF, p-value: 0.1795

> summary(lm(protein~L1+I(L1~2)+I(L1~3),data=ground))

Call:
lm(formula = protein ~ L1 + I(L1-2) + I(L1°3), data = ground)

Residuals:
Min 1Q Median 3Q Max
-1.84300 -1.04798 0.06961 0.94494 1.81930

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 5.623e+02 7.808e+02 0.720 0.480

L1 -3.190e+00 4.571e+00 -0.698 0.493
I(L1~2) 6.076e-03 8.884e-03 0.684 0.502
I(L1"3) -3.811e-06 5.728e-06 -0.665 0.513

Residual standard error: 1.301 on 20 degrees of freedom
Multiple R-Squared: 0.2679, Adjusted R-squared: 0.1581
F-statistic: 2.44 on 3 and 20 DF, p-value: 0.09425

> summary(lm(protein~L1+I(L1~2)+I(L1~3) ,data=ground))

Call:
Im(formula = protein ~ L1 + I(L1~2) + I(L1"3), data = ground)

Residuals:
Min 1Q Median 3Q Max
-1.84300 -1.04798 0.06961 0.94494 1.81930
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Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 5.623e+02 7.808e+02 0.720 0.480

L1 -3.190e+00 4.571e+00 -0.698 0.493
I(L1~2) 6.076e-03 8.884e-03 0.684 0.502
I(L1~3) -3.811e-06 5.728e-06 -0.665 0.513

Residual standard error: 1.301 on 20 degrees of freedom
Multiple R-Squared: 0.2679, Adjusted R-squared: 0.1581
F-statistic: 2.44 on 3 and 20 DF, p-value: 0.09425

> summary(lm(protein~L1+I(L1"2),data=ground))

Call:
Im(formula = protein ~ L1 + I(L1~2), data = ground)

Residuals:
Min 1Q Median 3Q Max
-1.85132 -1.03552 0.01018 0.87267 2.08337

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 43.7098394 44.7032358 0.978 0.339
L1 -0.1508808 0.1751872 -0.861 0.399
I(L1-~2) 0.0001668 0.0001708 0.976 0.340

Residual standard error: 1.284 on 21 degrees of freedom
Multiple R-Squared: 0.2517, Adjusted R-squared: 0.1805
F-statistic: 3.532 on 2 and 21 DF, p-value: 0.0476

> summary(lm(protein~L1,data=ground))

Call:
lm(formula = protein ~ L1, data = ground)

Residuals:
Min 1Q Median 3Q Max
-2.0683 -0.8799 0.1663 0.9453 2.4496

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.240699 3.938416 0.061 0.9518
L1 0.019955 0.008063 2.475 0.0215 =

Signif. codes: O ’***’ 0.001 ’*x> 0.01 ’x> 0.05 *>.” 0.1 > *> 1

Residual standard error: 1.282 on 22 degrees of freedom
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Multiple R-Squared: 0.2178, Adjusted R-squared: 0.1822
F-statistic: 6.125 on 1 and 22 DF, p-value: 0.02151

Hence the linear regression model is the correct model. We also see that the t-values and the p-
values changes every time when the model is refitted. In particular the linear term is not significant
in the polynomial models with degree larger than 1, but is significant in the linear regression model.

For large degrees, there can be problems with numerical stability. Orthogonal polynomials get
around this problem by using

21 =a1 + b,

2
Zo =ao +box + cox”,

2
zz3=a3z+ b3 +c3x +d4$3,

etc. where the coefficinets a,b,c,,... are chosen such that z:zs = 0 when r # s. z1,29,23,...,2R
are called orthogonal polynomials. If z. = (21,,...,2n,)' for 7 = 1,..., R, then we have a new
parametrization of the model (11):

Y, =oag+a1zp1 + sz + ...+ Qg znr + Zn. (12)

The design matrix of this parametrization is

1 Z11 Z192 e Z1R
1 221 Z9292 e 22R
7 =
1 ZN1 ZN2 ... ZNR
and satisfies that Z'Z is a diagonal matrix. This means that the estimates ag, a1, Qa, ..., ar for
a1,,...,ar do not depend on the degree R of the model since @ = (Qp,ay,as,...,ar)" is again
given by

a=(Z2"2)71z7y.

The poly () function constructs orthogonal polynomials.

6.2.4 Example (Protein content in ground wheat: Continuation of Example 6.2.3)

> summary(lm(protein~poly(L1,5) ,data=ground))



Christine Miiller Universitat Kassel, WS 2007/2008
Manuscript Linear Models and Ezperimental Design 92

Call:
lm(formula = protein ~ poly(L1l, 5), data = ground)

Residuals:
Min 1Q Median 3Q Max
-1.9889 -0.8412 0.1932 0.9740 1.5638

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.9663 .2702 36.882 <2e-16 *x*x
poly (L1, 5)1 3.1731 .3238 2.397 0.0276 *
poly (L1, 5)2 1.2530 .3238 0.946 0.3564
poly (L1, 5)3 -0.8655 .3238 -0.654 0.5215
poly (L1, 5)4 0.2997 .3238 0.226 0.8234
poly (L1, 5)5 -1.4875 .3238 -1.124 0.2759

Signif. codes: O ’***’ 0.001 ’*x> 0.01 ’x> 0.05 *>.” 0.1 > * 1

=)

Residual standard error: 1.324 on 18 degrees of freedom
Multiple R-Squared: 0.3177, Adjusted R-squared: 0.1282
F-statistic: 1.677 on 5 and 18 DF, p-value: 0.1912

Here we see at once that only the linear term has a significant influence so that the linear model is
the correct model. Now the estimates in column Estimate are the estimates ag, &, Qa, ..., a5 for
the orthogonal polynomials. Note that they differ ﬁonltheeﬁthnatesZ%,Zﬂ n.,Z%.Iiowever,the
estimates ag, aq, g, 3, @4 do not change if a model of degree 4 is used:

> summary(lm(protein~poly(L1,4) ,data=ground))

Call:
lm(formula = protein ~ poly(L1l, 4), data = ground)

Residuals:
Min 1Q Median 3Q Max
-1.8092 -1.0254 0.1343 0.9793 1.8553

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 9.9663 0.2721 36.630 <2e-16 #**x*
poly (L1, 4)1 3.1731 1.3329 2.381 0.0279 *
poly (L1, 4)2 1.2530 1.3329 0.940 0.3590
poly (L1, 4)3 -0.8655 1.3329 -0.649 0.5239
poly (L1, 4)4 0.2997 1.3329 0.225 0.8245

Signif. codes: O ’***’ 0.001 ’*x> 0.01 ’x> 0.05 >.” 0.1 > *> 1

Residual standard error: 1.333 on 19 degrees of freedom
Multiple R-Squared: 0.2699, Adjusted R-squared: 0.1162
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F-statistic: 1.756 on 4 and 19 DF, p-value: 0.1795

Only the p-values changes slightly since the variance estimates 8§SE changes slightly because the
estimate for poly (L1, 5)5,i.e. for as, is with -1.4875 not zero but rather small. The same p-values
are obtained also with the ANOVA approach:

> anova(lm(protein~L1+I(L1~2)+I(L1~3)+I(L1~4),data=ground))
Analysis of Variance Table

Response: protein
Df Sum Sq Mean Sq F value Pr(>F)
L1 1 10.069 10.069 5.6673 0.02791 *

I(L1~2) 1 1.570 1.570 0.8836 0.35901
I(L1~3) 1 0.749 0.749 0.4216 0.52391
I(L1~4) 1 0.090 0.090 0.0506 0.82448
Residuals 19 33.756  1.777

Signif. codes: O ’***’ 0.001 ’*x> 0.01 ’x> 0.05 *>.” 0.1 > *> 1

Once one has found an appropriate model, one would like to plot the estimated polynomial function
in the scatter plot. This is done by plotting estimated functions values

~

Um = [(Xm) = Bo + B1 Xm + Ba X2 + - + Br X2

at several points x1,...,xa of the range of x1,...,zyN. For these points, a design matrix can be
created as
Lo xd o xf
I x2 X3 - x5
x=| . T 7 ’
1 xm X?w X]\R4
Then the vector § = (J1,...,yu) | of the M estimated functions values at the points x1,...,xas is
given by
y=Xp.

6.2.5 Example (Protein content in ground wheat: Continuation of Example 6.2.4)
Although the quadratic term is not significant, we plot the estimated quadratic function and compare
this function with the estimated linear function:
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> plot(ground$Li,ground$protein,xlab="L1",ylab="Protein")

> abline(1lsfit(ground$Ll,ground$protein)$coef)

> x<-seq(440,600,by=2)

> X<-cbind(rep(1l,length(x)),x,x"2)

> beta<-1lsfit(cbind(ground$L1,ground$L1~2),ground$protein)$coef

> y<-X%*/beta

> lines(x,y)

Protein

460 480 500 520 540 560 580

Figure 6.2: Scatter plot with linear and quadratic regression line

6.2.6 Exercise (Split)

Regard the data set split from Exercise 1.5.1 and consider the variable Yield as dependent variable
and the variable Manure as explanatory variable, i.e. neglect the variables Block and Variety. Find
an appropriate polynomial model for the dependence of Yield on Manure. Find the model with
and without the function poly. What are the estimates for the parameters of the model? Plot the
estimated function in the scatter plot and compare the result with the linear regression line.

6.3 Multiple regression

The Subsections 6.1 and 6.2 allowed only one explanatory variable. But often there several ex-
planatory variables as in the Example 6.1.2. Let 2,1 = (211,...,2N81)%, T2 = (212,...,252)2, ...,
T.r = (T1R,...,rNR)? denote R explanatory variables.

Multiple Regression without interactions
The model without interactions, also called additive model, is given by

Yo = Bo+ B1%n1 + Boxna + ...+ BrTur + Zn, with Z, ~ N(0,5?),
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forallm =1,..., N. Estimates //B\O’B\l,BQ’ e 7ER are given again by those values Gy, 81, 32, --,0Rr
which minimizes the sum of squares

sz

Yn — B1 Tn1 — B2 Tn2 —~~-—5R$nR)2

n=1

and the estimate for the error variance o2 is

N
~9 1 ~ —~ N
0% = G%sp = N_Rh_1 Z(yn — Brant — Ba@nz — ... — BrEnr)’-
n=1
The vector E = (EO,BLBQ, ... ,B\R)T of parameter estimates can be calculated as before by

B=(x"X)"'xTy

where the design matrix X is here

1 T11 T12 ... T1R

1 o1 99 ... IT2R
X =

1 zny1 N2 ... ZNR

As soon as the columns of the design matrix are orthogonal to each other which can be satisfied by
special designs then X T X is a diagonal matrix and the parameter estimates are ﬂo,ﬂl,ﬂQ, ... ,ﬂR
independent of the number R of explanatory variables. I.e. for a smaller model with a smaller R
we would get the same estimates. Moreover, the order of the tests

Hy:p51=0 versus H;p:p1 #0,
Hy: P2 =0 versus Hj: (s #0,

Hy:Br=0 versus Hp:f0r#0,

does not depend on the order of the explanatory variables.

However, in the general case all this is not true. Hence we should take into account in which model
an estimator (3, is obtained and what are the null and alternative hypotheses which are tested. The
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function summary(1lm(...)) provides the t-tests for the following hypotheses:

0) HY:pin=012n1+ B22n2+ ...+ Branr
versus

HY : iy = Bo + B1n1 + P2 na + - .. + PR Tur,

1) Hg:pn=Po+B2an2+ ...+ Branr
versus

Hi : iy = Bo+ B1%n1 + Bona + ... + Brnr,

2) HE:pn=200+B12n1+...+Brang
versus

H? : iy = Bo + Brn1 + P2 na + ... + PR Tug,

r) Hg i = Bo+ Brop1 + B2 Tp2 + -+ BR-1 Tn(r—1)
versus

H{:,U'n:ﬁO‘i‘ﬁlxnl+62xn2+...+ﬁRan'

Additionally it provides in the last line of the output the p-value for testing

Bo 0 Bo
B 0 B

Hy:| B2 | =10 versus Hi:| B2 [ #] O
Br 0 Or 0

The function anova(lm(...)) provides the F-tests for the following sequential hypotheses:

1) H& s e = Do
Versus
HY : py = Bo + B,
2) H§ : pin = Bo + B1@n1
Versus
H} iy = Bo + B1 &n1 + B2 Tna,
3) HY:pn =00+ Bran + P2 on2
versus

H? iy, = Bo + B1n1 + P2 Tn2 + B3 Tp3,

r) Hg i = Bo+ BrTp1 + B2 Tp2 + -+ BrR-1 Tn(r-1)
versus

H{:,U'n:ﬁO‘i‘ﬁlxnl+62xn2+...+ﬁRan'
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We see that the last hypotheses coincide so that the p-values should be the same. However, the other
tests are different. Moreover, the ANOVA tests depend very much on the order of the explanatory
variables.

6.3.1 Example (Protein content in ground wheat: Continuation of Example 6.1.2)
Here we regard additionally the explanatory variables L2 and L3 besides L1.

> summary(lm(protein~L1+L2+L3,data=ground))

Call:
Im(formula = protein ~ L1 + L2 + L3, data = ground)

Residuals:
Min 1Q Median 3Q Max
-1.09579 -0.29380 0.02471 0.29865 1.24967

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 87.14739 12.53757 6.951 9.52e-07 *xx*
L1 -0.32804 0.04195 -7.820 1.66e-07 *xx*
L2 0.17296 0.12302 1.406 0.175
L3 0.22074 0.13928 1.585 0.129

Signif. codes: O ’**x*x’ 0.001 ’*x> 0.01 °’x> 0.05 *.” 0.1 > *> 1

Residual standard error: 0.5607 on 20 degrees of freedom
Multiple R-Squared: 0.864, Adjusted R-squared: 0.8436
F-statistic: 42.36 on 3 and 20 DF, p-value: 7.484e-09

We see from the last line that 8 = (B9, 81, Br2, Br3) | differs significantly from zero in the model
with explanatory variables L1, L2, L3. But the analysis for the single variables shows that only the
variable L1 has significant influence.

> anova(lm(protein~L1+L2+L3,data=ground))
Analysis of Variance Table

Response: protein
Df Sum Sq Mean Sq F value Pr(>F)

L1 1 10.0688 10.0688 32.0322 1.539e-05 **x*
L2 1 29.0890 29.0890 92.5423 6.046e-09 x**x*
L3 1 0.7896 0.7896 2.5118 0.1287

Residuals 20 6.2866 0.3143

Signif. codes: O ’***’ 0.001 ’*x> 0.01 ’x> 0.05 *.” 0.1 > * 1

Here we can conclude that the variable L2 has a significant influence in the model with the ex-
planatory variables L1 and L2 and variable L1 has a significant influence in the model with the only
explanatory variables L1. To see whether variable L1 has also a significant influence in the model
with the explanatory variables L1 and L2, wee need again summary(1lm(...)):
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> summary(lm(protein~L1+L2,data=ground))

Call:
lm(formula = protein ~ L1 + L2, data = ground)

Residuals:
Min 1Q Median 3Q Max
-1.11384 -0.27161 0.01101 0.29607 1.49950

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 98.37271 10.71122 9.184 8.42e-09 *x*x
L1 -0.28482 0.03300 -8.630 2.39e-08 *x*x*
L2 0.35876 0.03861 9.291 6.91e-09 *xx*

Signif. codes: O ’***x’ 0.001 ’*x> 0.01 °’x> 0.05 *.” 0.1 > * 1

Residual standard error: 0.5805 on 21 degrees of freedom

Multiple R-Squared: 0.8469, Adjusted R-squared: 0.8324

F-statistic: 58.1 on 2 and 21 DF, p-value: 2.759e-09

Indeed both variables have significant influence in the model with the two variables L1 and L2.
What happens with the ANOVA tests when we change the order of the variables:

> anova(lm(protein~L2+L1+L3,data=ground))
Analysis of Variance Table

Response: protein
Df Sum Sq Mean Sq F value Pr(>F)

L2 1 14.0641 14.0641 44.7427 1.645e-06 ***
L1 1 25.0937 25.0937 79.8318 2.029e-08 x*x**
L3 1 0.7896 0.7896 2.5118 0.1287

Residuals 20 6.2866 0.3143

Signif. codes: O ’***’ 0.001 ’*x> 0.01 ’x> 0.05 *>.” 0.1 > *> 1

Hence this result is similar to that before. But we get a completely different result when we type:

> anova(lm(protein~L2+L3+L1,data=ground))
Analysis of Variance Table

Response: protein
Df Sum Sq Mean Sq F value Pr(>F)

L2 1 14.0641 14.0641 44.743 1.645e-06 ***
L3 1 6.6634 6.6634 21.199 0.0001717 %%
L1 1 19.2199 19.2199 61.145 1.655e-07 ***

Residuals 20 6.2866 0.3143
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Signif. codes: O ’***’ 0.001 ’*x> 0.01 ’x> 0.05 *>.” 0.1 > * 1

This means that L1 has significant influence in the model with the variables L1, L2, L3, variable L3
has significant influence in the model with variables L2, L3, and variable L2 has significant influence
in the model with only variable L2.

> summary(lm(protein~L2+L3,data=ground))

Call:
lm(formula = protein ~ L2 + L3, data = ground)

Residuals:
Min 1Q Median 3Q Max
-2.18978 -0.56816 -0.06679 0.77975 1.78713

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 61.7833 23.8062 2.595 0.0169 =
L2 0.5487 0.2226 2.465 0.0224 *
L3 -0.4873 0.2080 -2.342 0.0291 =

Signif. codes: O ’**x*x’ 0.001 ’*x> 0.01 °’x> 0.05 *.” 0.1 > * 1

Residual standard error: 1.102 on 21 degrees of freedom
Multiple R-Squared: 0.4483, Adjusted R-squared: 0.3958
F-statistic: 8.533 on 2 and 21 DF, p-value: 0.001940

It seems that it was not a good idea to drop variable L1 from the model. We have done 6 tests
which means that we should use o = 0.05/6 = 0.008333333 so that L2 and L3 has no significant
influence. Since the other p-values are so small, we are here glad that we still have some significant
results. But doing so many test is very dangerous.

The strategy for testing in the additive multiple regression model

1. Choose an order of the variables so that the first variables have the highest chances to have
an influence in your opinion.

2. Then do only one ANOVA test.

3. Drop all the last variables from the model which show no significant influence.

4. Test in the reduced model with summary(1m(...)) whether 3 differs significantly from zero.
5. If 3 differs significantly from zero, then test with summary(1m(...)) for significant influence
of the single variables.

6.3.2 Exercise (Protein content in ground wheat: Continuation of Example 6.1.2)
Regard now all variables L1, L2, L3, L4, L5, L6 as explanatory variables and assume that you expect
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decreasing influence of the variables with increasing number, i.e. you expect that variable L1 has
the most influence. Do the analysis within an additive model.

Multiple Regression with first order interactions
The model with first order interactions is given by

Y, = ﬁo+26rxm+z Z Brs Ty Tns + Zn, with Z, ~ N(0,02),

r=1s=r+1

for all n =1,..., N. This model has 1 + R + R(R — 1)/2 model parameters (o, 41, .., Br, S12,- - -,

B(r-1)r- Estimates 0o, b1, ..., Br, B12; - PR, - - -, B(r—1)r are given again by those values [y, 01,
-y Bry 8125 -+, B(r—1)r Which minimizes the sum of squares

N R R R 2
Z (yn Z Br Tnr — Z Z Brs Tnr xns)

r=1s=r+1

and the estimate for the error variance o2 is

N

R R R 2
~ —~ 1 ~ ~
0-2:O-§SE:N_R_R(R_1)/2_1Z(yn_Zﬂrxnr_Z Z ﬂrsxnrzcns) .

n=1 r=1 r=1s=r+1

Multiple Regression with first order interactions and quadratic terms
In the model we can use additionally quadratic terms besides the first order interactions so that the
model is given by

Y, = ﬁO—FZﬁrxnr+22ﬁmxmxns+Zn, with Z, ~ N(0,02),

r=1 s=r

foralln = 1,..., N. Here we have 1+ R+ R? — R(R— 1)/2 model parameters. These are estimated
as before with the method of least squares.

Multiple Regression with higher order interactions
Besides first order interactions also higher order interactions can be included in the model. If
interactions up to the order S are included, then the model is given by

Yn—ﬂ0+2ﬂrxnr+z Z Brs Tnr Tns + ..

r=1s=r+1

R R
+ Z Z ... Z Brira..rs T Tnrg « -+ > Tnrg + Zn, with Z, ~ N(0,0?),

r1=1rg=r+1 reg=r+S—1
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forall n =1,..., N. This model has

(§)+<?)+<§>+(§)+...+(§) :1+R+R(R2_1)+3!(RR13)!+...+MRL15)!

model parameters.

General multiple regression

Also models with arbitrary combinations of specific interactions and higher order terms can be used.
But note that only a model can be used where the number of model parameters is less than the
sample size N.

6.3.3 Example (Protein content in ground wheat: Continuation of Example 6.3.1)
Let us regard as explanatory variables the variables L1, L2, L3, L4. If we want to use a model with
all higher order interactions we can use

> anova(lm(protein~L1xL2*L3%L4,data=ground))
Analysis of Variance Table

Response: protein
Df Sum Sq Mean Sq F value Pr(>F)

L1 1 10.0688 10.0688 134.1987 2.803e-06 **x
L2 1 29.0890 29.0890 387.7053 4.605e-08 *x*x
L3 1 0.7896 0.7896 10.5234 0.01181 =*
L4 1 5.2074 5.2074 69.4053 3.258e-05 *x*x
L1:L2 1 0.0292 0.0292 0.3894 0.55000
L1:13 1 0.0139 0.0139 0.1849 0.67853
L2:L3 1 0.0001 0.0001 0.0012 0.97344
L1:L4 1 0.0884 0.0884 1.1788 0.30923
L2:L4 1 0.1017 0.1017 1.3549 0.27796
L3:L4 1 0.0579 0.0579 0.7718  0.40527
L1:L2:L3 1 0.0575 0.05756 0.7664 0.40684
L1:L2:L4 1 0.0001 0.0001 0.0016 0.96867
L1:L3:L4 1 0.0645 0.0645 0.8597 0.38095
L2:L3:L4 1 0.0628 0.0628 0.8373 0.38692
L1:L2:1L3:L4 1 0.0029 0.0029 0.0385 0.84925
Residuals 8 0.6002 0.0750

Signif. codes: O ’***’ 0.001 ’*x> 0.01 ’x> 0.05 *>.” 0.1 > *> 1

If a model with first order interactions and quadratic terms should be used, then type:

> anova(lm(protein~L1+L2+L3+L4+I(L1~2)+I(L2"2)+I(L3~2)+I(L4"~2)+
+ L1:L2+L1:L3+L1:L4+L2:L3+L2:L4+L3:L4,data=ground))
Analysis of Variance Table

Response: protein
Df Sum Sq Mean Sq F value Pr(>F)
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L1 1 10.0688 10.0688 122.3152 1.538e-06 *x*x*
L2 1 29.0890 29.0890 353.3735 1.567e-08 *x*
L3 1 0.7896 0.7896 9.5915 0.01278 =
L4 1 5.2074 5.2074 63.2594 2.319e-05 **x*
I(L1~2) 1 0.0265 0.0265 0.3219 0.58433
I(L2"2) 1 0.0150 0.0150 0.1824 0.67933
I(L3"2) 1 2.211e-06 2.211e-06 2.686e-05 0.99598
I(L4-2) 1 0.0376 0.0376 0.4569 0.51606
L1:1L2 1 0.1679 0.1679 2.0400 0.18698
L1:L3 1 0.0872 0.0872 1.0588 0.33035
L1:L4 1 0.0011 0.0011 0.0134 0.91053
L2:L3 1 0.0005 0.0005 0.0066 0.93687
L2:1L4 1 0.0023 0.0023 0.0277 0.87159
L3:L4 1 0.0003 0.0003 0.0031 0.95713
Residuals 9 0.7409 0.0823

Signif. codes: O ’***’ 0.001 ’*x> 0.01 ’x> 0.05 *>.” 0.1 > * 1

The analysis of both extended models shows that the additive model is already an appropriate
model.

6.3.4 Exercise (Protein content in ground wheat: Continuation of Example 6.3.3)
Regard now all explanatory variables L1, L2, L3, L4, L5, L6 and consider the models
protein~L1*L2*L3*L4*L5*L6,
protein~L1*L2*L3*L4*L5+L6,
protein~L1*L2*L3*L4+L5*L6,
protein~L1*L2*L3+L4*L5*L6,
protein~L1*L2*L3*L4+L5+L6,
protein~L1*L2*L3+L4+L5+L6.
Determine for each model the number of model parameters. Which is the largest model which can
be used? Explain why some models cannot be used. Determine for the models which can be used
appropriate submodels.

6.4 Analysis of covariance

If there are numeric explanatory variables and explanatory variables which are factors then the
Analysis of Variance is also called Analysis of Covariance (ANCOVA). The numeric explanatory
variables are also called covariates. For the analysis in R, there is nothing new except the re-
quirement that block factors should be given at first and that they are usually given as additive
variables. Treatment variables should be given at last and it makes sense to use interactions between
the treatment and the numeric variables. It can be that the dependence of the measurement on the
numeric explanatory variable is different for different treatment levels.

If a linear regression line describes the dependence of the measurement on the numeric explanatory
variable, then a significant effect of a factor variable means that the intercept of the regression lines
is different for the different levels of the factor. A significant interaction between factor and numeric
explanatory variable means that the slopes of the regressions lines are different for the different
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levels of the factor.

Example: Model for one covariate with linear influence and one factor
The model for one covariate with linear influence, one factor A with A levels, and with interactions
between A and the covariate has the form

Y, = p+ g+ Ban + Yo 2n + Zpn, with Z, ~ N(0,0?), (13)
for all n = 1,..., N. Thereby, u is the average mean, ay,...,a4 are the main effects of the factor
A, 31 is the main slope of the regression line, and =1, ...,7v4 are the interactions between covariate

and factor A. Again we have

A

A
D=0 ) %=0,
a=1

a=1

which means

A A
—Qy = Zaaa - = Z’Ya'
a=2 a=2
Setting By = p — a7 and 1 = B — 71, the model (13) is equivalent with

Y, = B0+ aq + P12y + Yo Tn + Zpn, with Z, NN(O,JQ),

foralln =1,...,N. Here, By and 1 are the intercept and the slope of the regression line for factor
level a =1, and By 4+ a, and 31 + v, are the intercept and slope of the factor levels a = 2,..., A.

6.4.1 Example (Ground cover under apple trees)

The data in data file APPLE.DAT, “which were first published by Professor Pearce in 1953, come from
an experiment to study the best way of forming ground cover in an apple plantation. Treatment
O represents what was the usual treatment, keeping the land clear during the growing season but
letting the weeds grow up towards the end. Treatments A ,B,C,D and E represent the growing of
various permanent crops (German: Feldfriichte) under the trees. There were four randomized blocks.
The response Y was the total crop weight in pounds over a four-year period after the treatments
were begun. The trees were old and their crop seizes would be likely to vary considerable from one
tree to the next. However, records were available of cropping before the experiment began. These
were used to provide a covariate X, the total volume of crop bushels over a four-year period before
the new treatments began.” (Hand et al. 1996, P. 66)

appleO<-read.table ("APPLE.DAT")
applei<-c(appleO[,1],appleO[,3],appleO[,5],apple0[,7])
apple2<-c(appleO[,2],appleO[,4],appleO[,6],apple0[,8])
apple<-data.frame(c(rep("1",8),rep("2",6) ,rep("3",6),rep("4",6)),
rep(c("A","B","C","D","E","0"),4) ,applel,apple2)

names (apple)<-c("Block","Treat","X","Y")

apple

V V. + V V Vv V
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Block Treat X Y
1 1 A 8.2 287
2 1 B 8.2 271
3 1 C 6.8 234
4 1 D 5.7 189
5 1 E 6.1 210
6 1 0 7.6 222
7 2 A 9.4 290
8 2 B 6.0 209
9 2 C 7.0 210
10 2 D 5.5 205
11 2 E 7.0 276
12 2 0 10.1 301
13 3 A 7.7 254
14 3 B 9.1 243
15 3 C 9.7 286
16 3 D 10.2 312
17 3 E 8.7 279
18 3 0 9.0 238
19 4 A 8.5 307
20 4 B 10.1 348
21 4 C 9.9 371
22 4 D 10.3 375
23 4 E 8.1 344
24 4 0 10.5 357

At first we do an analysis without the covariate:

> anova(lm(Y“Block+Treat,data=apple))
Analysis of Variance Table

Response: Y

Df Sum Sq Mean Sq F value Pr(>F)
Block 3 47853 15951 10.211 0.0006492 *x*x
Treat 5 750 150 0.096 0.9914606
Residuals 15 23432 1562

Signif. codes: O ’***’ 0.001 ’*x> 0.01 ’x> 0.05 *>.” 0.1 > *> 1

We see that there is no treatment effect. Now we add the covariate X in the analysis:

> anova(lm(Y~Block+X*Treat,data=apple))
Analysis of Variance Table

Response: Y
Df Sum Sq Mean Sq F value Pr(>F)
Block 3 47853 15951 80.819 7.913e-07 **x
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X 1 15944 15944 80.781 8.633e-06 **x
Treat 5 4353 871 4.411 0.02622 *
X:Treat 5 2109 422 2.137 0.15207
Residuals 9 1776 197

Signif. codes: O ’%%*’ 0.001 ’*x> 0.01 ’x’ 0.05 *.” 0.1’

Now there is a significant treatment effect. We can also look at the estimated effects:

> summary(1lm(Y~Block+X*Treat,data=apple))

Call:
lm(formula = Y ~ Block + X * Treat, data = apple)

Residuals:
Min 1Q Median 3Q Max
-17.902 -6.654 0.775 6.135 16.891

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 317.699 111.672 2.845 0.01925 %

Block2 3.147 9.386 0.335 0.74509
Block3 -39.750 11.434 -3.476 0.00698 x*x
Block4 32.134 11.715  2.743 0.02273 *
X -3.797 13.127 -0.289 0.77895
TreatB -267.757 129.926 -2.061 0.06938 .
TreatC -360.563 130.653 -2.760 0.02212 *
TreatD -304.252 121.095 -2.513 0.03317 *
TreatE -350.886 137.274 -2.556 0.03088 *
TreatO -344.749 126.273 -2.730 0.02322 *
X:TreatB 30.015 15.367 1.953 0.08254 .
X:TreatC 42.028 15.456 2.719 0.02364 *
X:TreatD 36.342 14.385 2.526 0.03243 *
X:TreatE 45.476 16.809 2.706 0.02417 x*
X:TreatO 36.879 14.576 2.530 0.03222 *

Signif. codes: O ’#**%’ 0.001 ’*%> 0.01 ’x’ 0.05 ’.” 0.1’
Residual standard error: 14.05 on 9 degrees of freedom

Multiple R-Squared: 0.9753, Adjusted R-squared: 0.937
F-statistic: 25.43 on 14 and 9 DF, p-value: 1.623e-05

The estimates can be obtained by:

> coefficients(Im(Y"Block+X*Treat,data=apple))
(Intercept) Block?2 Block3 Block4 X

)

)

1

1

TreatB

317.699450 3.147023 -39.750123  32.133547 -3.796694 -267.757215
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TreatC TreatD TreatE TreatO X:TreatB X:TreatC

-360.563086 -304.252285 -350.885716 -344.748648 30.015275  42.027954
X:TreatD X:TreatE X:Treat0
36.341832 45.476112 36.879122

To plot the regression lines for the different treatments, we drop the factor block from the model
although it has significant influence:

> plot(apple$X,apple$yY,type="n",xlab="X", ylab="Y")

> text(apple$X,apple$Y,as.character(apple$Treat))

> co<-coefficients(1lm(Y X*Treat,data=apple))

> co

(Intercept) X TreatB TreatC TreatD TreatE
126.545752 18.692810 -95.045206 -162.518533 -106.254956 -104.695471

TreatO X:TreatB X:TreatC X:TreatD X:TreatE X:Treat0

-252.128756 9.600537 18.579379 12.847783 15.474376 24.864502

abline(co[1],co[2])

abline(co[1]+co[3],co[2]+co[8],1ty=2)

abline(co[1]+co[4],co[2]+co[9],1ty=3)

abline(co[1]+co[5],co[2]+co[10],1ty=4)

abline(co[1]+co[6],col[2]+co[11],1ty=5)

abline(co[1]+co[7],co[2]+co[12],1ty=6)

legend(6,370,c("A","B","C","D","E","0"),1ty=1:6)

V V V V V V V

350

300

250

200

Figure 6.3: Scatter plot with regression lines for the 6 treatments

We see that the 6 regression lines have different slopes and different intercepts. The different slopes
are due to the fact that the interactions between the treatment and the covariate X are included in
the model. If the interactions are not included, then the regression lines are parallel:
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> plot (apple$X,apple$¥,type="n",xlab="X",ylab="Y")

> text(apple$X,appledY,as.character(apple$Treat))

> co<-coefficients(1lm(Y X+Treat,data=apple))

> co

(Intercept) X TreatB TreatC TreatD TreatE
6.064324 32.950968 -13.454903 -5.954903 3.049258 24.877193

TreatO

-33.008322

abline(co[1],co[2])

abline(co[1]+co[3],co[2],1ty=2)

abline(co[1]+co[4],co[2],1ty=3)

abline(co[1]+co[5],co[2],1ty=4)

abline(co[1]+co[6],co[2],1ty=5)

abline(co[1]l+co[7],co[2],1ty=6)
legend(6,370,c("A","B","C","D","E","0"),1ty=1:6)

vV V V V V V V
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Figure 6.4: Scatter plot with regression lines for the 6 treatments

6.4.2 Exercise (Split: Continuation of Exercise 6.2.6)

Regard in the data set split the variables Yield, Manure, Variety. Investigate whether the variety
has an influence on the linear dependence of the yield on the manure. Plot the different regression
lines for the three varieties also when the varieties have no significant influence and there is no
significant interaction between variety and manure.

6.5 Designing regression experiments

Orthogonal polynomials have the advantage that they provide a design matrix Z so that the columns
of the matrix Z are orthogonal to each other, so that Z'Z is diagonal matrix. This orthogonality
property of the design matrix is also the aim of designing multiple regression and the analysis of
covariance.
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Designing multiple regression

Multiple regression can be designed as soon as the input of explanatory variables are given by
the experimenter. This is for example the case when the explanatory variable consists of some
drug doses or some concentrations of some fertilizer or insecticide. To derive the orthogonality
property it is useful to subtract the mean of the explanatory variables from the variable, i.e. regard
Tor = (T1r — Tur, ..., TNy — Tup)? instead of z,, = (21, ...,2xN,)2 for r =1,..., R. The model

Yo=00+B1xn1 +Pexn2+ ...+ BraTnr + Zn,

becomes then the model

Y, = Bo+5iTa+...+BrTr+ 01 (2n1 —Ta1) + ... + Br(Znr — Tur) + Zn,
= ﬂo+ﬂlgn1+---+ﬂR§nR+Zm

so that only the intercept has changed. Then each vector T, is orthogonal to the vector (1,1,...,1,1)T
consisting only of ones. As soon as the inputs of the vectors x,, are chosen such that Z,1,...,Z.r
are mutually orthogonal, i.e. 7] T, for all 7 # s, then the design matrix

1 11 19 ... TR
~ 1 o1 99 ... IT2R
X =

1 N1 IN2 ... INR

has orthogonal columns and XX isa diagonal matrix. This means that each of the parameters
051, --.,0r can be estimated independently from the other parameters and that the ANOVA tests
does not depend on the order of the variables. Designs with this orthogonality property can be
obtained for example by fact .nk for factorial designs.

6.5.1 Example
If there are two explanatory variables and each should be realized at 3 points (levels), then use:

> x<-fact.nk(3,2,1)

> X

plots blocks A B
1 1 100
2 2 110
3 3 120
4 4 111
5 5 102
6 6 122
7 7 101
8 8 112
9 9 121

The last two columns provide the design points. If the design region is not [0, 2], then the design
points must be shifted and scaled appropriately. These design points are given again in a random
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order to reduce the influence of unknown factors. To see that the design points indeed provide the
orthogonal property, type:

> t(x$A-mean (x$A) )%+ (x$B-mean (x$B))
[,1]
[1,] 0

Sorting the design point with respect to the first variable, the orthogonality property can be seen
already from the design if one has some experience with this:

> x[order(x$4),c(3,4)]
A B

O O W o0 H» N N O -
NNNNEFE P~ PP, OO O
N O NEFE O, N O

Regression designs based on complete factorial designs need like the complete block designs a high
sample size N. If there are many explanatory variables than complete factorial designs with even
2 levels for each variable are not possible. Then fractional factorial designs are needed. In these
designs not all unknown parameters are estimable since some are confounded with other parameters.
But the R package conf.design allows the construction of fractional factorial designs where the
confounded parameters can be specified.

6.5.2 Exercise (Split: Continuation of Exercise 6.4.2)

Compare the models Yield~Manure*Variety and Yield~Variety*Manure with respect to the es-

timators and the p-values of the ANOVA tests. Do the same for the models
Yield~Block+Manure*Variety, Yield~Block+Variety*Manure
Yield~Block*Manure*Variety, Yield~Variety*Block*Manure

Regard in the last comparison only the p-values of the ANOVA tests. Does the order of the variables

have an influence? Explain the result.

Designing the analysis of covariance

The model for the analysis of covariance is the most general model since in includes numeric ex-
planatory variables as well as factor variables. The question is whether also here a design matrix
with orthogonal columns can be created. For that we need to know how to get the columns of
the design matrix if the variable is a factor. Note that if the factor has A levels, then there are A
main effects aq,...,a4. Since they should satisfy ZaA:1 g = 0 there are indeed only A — 1 free
parameters. There are two main possibilities for coding the A — 1 parameters in the design matrix:
treatment coding and Helmert coding. For example for 4 levels the treatment coding is
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Dummy coding
1 2 3
110 0 0
levels 2|1 0 0
310 1 0
410 0 1
The Helmert coding is given by
Dummy coding
1 2 3
11-1 -1 -1
levels 2| 1 -1 -1
3 -1
4 3

We see that in both codings the columns are mutually orthogonal and that the columns are orthog-
onal to the vector (1,1,1,1)". Hence a design where the levels 1,2,3,4 are repeated with the same
number, M say, provides a design matrix where the corresponding columns are mutually orthogonal
and which are orthogonal to the first column consisting of ones. This means that balances designs
satisfy the orthogonality property.

A- and D-optimal designs
Besides the orthogonality criterion, there are also other design criteria. These are based on the
covariance matrix of the estimators which is proportional to

where X is again the design matrix. The sum of the diagonal elements of the matrix (X T X)™! is
the sum of the variances of the single estimators. Thus minimizing the sum of the diagonal elements
of the matrix (X' X)~! means that an average of the variances is minimized.

A-optimal designs
If a design minimizes the sum of the diagonal elements of the matrix (X " X)~! within all possible
designs, then the design is called A-optimal (A from average).

The power of the ANOVA tests however depends on the determinant of (X X)~!.

D-optimal designs
If a design minimizes the determinant of the matrix (X " X)~! within all possible designs, then
the design is called D-optimal (D from determinant).

Exercise 6.2.2 shows that the A-optimal designs for polynomial regression can be rather strange. In
general it is not easy to find A- and D-optimal designs. However, A- and D-optimal designs can be
found with the R package AlgDesign.
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7 Multivariate Analysis

7.1 Multivariate analysis of variance (MANOVA)

Up to now, only one measurement variable was considered. But often several measurement variables
exists. It is no good strategy to analyze them separately since these are tests at the same data set
so that the level of the tests must be adjusted by the number of the tests, i.e.

0.05
number of tests

o =

must be used as level for the tests. This is avoided by using the multivariate analysis of variance
(MANOVA). In R, the analysis is done with summary(manova(...)). Its usage is the same as for
anova(lm(...))) with the exception that several measurement variables should be given.

7.1.1 Example (Diet supplements)

“Fifteen guinea pigs were given a growth inhibiting substance and body weight measurements (in
grams) were recorded at the ends of weeks 1,3,4,5,6, and 7. At the beginning of week 5 vitamin E
therapy was started, the guinea pigs being divided into three groups of five to receive zero, low, or
high doses of vitamin E.” (Hand et al. 1996, P. 325)

> dietO<-read.table("DIET.DAT")
> diet<-data.frame(diet[,1],c(rep("1",5),rep("2",5),rep("3",5)),diet0[,2:7])
> names(diet)<-c("No","Group","Weekl","Week3","Week4","Week5","Week6","Week7")
> diet
No Group Weekl Week3 Week4 Weekb5 Week6 Week7

1 1 1 455 460 510 504 436 466
2 2 1 467 565 610 596 542 587
3 3 1 445 530 580 597 582 619
4 4 1 485 542 594 583 611 612
5 5 1 480 500 550 528 562 576
6 6 2 514 560 565 524 562 597
T 7 2 440 480 536 484 567 569
8 8 2 495 570 569 B85 576 677
9 9 2 520 590 610 637 671 702
10 10 2 503 555 591 605 649 675
11 11 3 496 560 622 622 632 670
12 12 3 498 540 589 557 568 609
13 13 3 478 510 568 555 576 605
14 14 3 545 565 580 601 633 649
15 15 3 472 498 540 524 532 583

No apply the multivariate analysis of variance:

> summary(manova(cbind (Weekl,Week3,Weekd,Week5,Week6,Week?) “Group, data=diet))
Df Pillai approx F num Df den Df Pr(>F)
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Group 2 1.4033 3.1358 12 16 0.01760 *
Residuals 12

Signif. codes: O ’***’ 0.001 ’*x> 0.01 ’x> 0.05 *>.” 0.1 > * 1

We see that there is a significant group effect. If we would do 6 ANOVA tests for each week
separately, we even would get never a significant group effect. These 6 ANOVA tests can called
easily with summary (aov(...))

> summary(aov(cbind(Weekl,Week3,Weekd ,Week5,Week6,Week?) “Group, data=diet))
Response Weekl
Df Sum Sq Mean Sq F value Pr(>F)
Group 2 2969.2 1484.6 2.1006 0.1651
Residuals 12 8481.2 706.8

Response Week3 :
Df Sum Sq Mean Sq F value Pr(>F)
Group 2 2497.6 1248.8 0.8728 0.4427
Residuals 12 17170.4 1430.9

Response Week4 :
Df Sum Sq Mean Sq F value Pr(>F)
Group 2 302.5 151.3 0.1397 0.871
Residuals 12 12992.4 1082.7

Response Weekb :
Df Sum Sq Mean Sq F value Pr(>F)
Group 2 260.4 130.2 0.0541 0.9476
Residuals 12 28906.0 2408.8

Response Week6 :

Df Sum Sq Mean Sq F value Pr(>F)
Group 2 8bb1 4275 1.3905 0.2863
Residuals 12 36898 3075

Response Week7 :
Df Sum Sq Mean Sq F value Pr(>F)
Group 2 13730 6865 2.4563 0.1276
Residuals 12 33539 2795

To check that summary(aov(...)) provides the univariate ANOVA test, type:

> anova(lm(Week7 Group, data=diet))
Analysis of Variance Table

Response: Week7
Df Sum Sq Mean Sq F value Pr(>F)
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Group 2 13730 6865 2.4563 0.1276
Residuals 12 33539 2795

Even if we regard the weeks before the therapy started and the weeks after start separately, there
is no group effect:

> summary(manova(cbind (Week5,Week6,Week7) “Group, data=diet))
Df Pillai approx F num Df den Df Pr(>F)

Group 2 0.70386 1.99117 6 22 0.1105

Residuals 12

> summary(manova(cbind (Weekl,Week3,Week4) “Group, data=diet))
Df Pillai approx F num Df den Df Pr(>F)

Group 2 0.71841 2.05538 6 22 0.1007

Residuals 12

This means that effects can become only significant if all measurements are analyzed simultaneously.
This is the great advantage of MANOVA.

R uses the method of Pillai by default. But there are also other methods as those of Wilks, Hotelling-
Lawley, Roy. The method of Roy, also called Roy’s union intersection test, has a very simple idea:
Let

yi y2 yr
1 2 D
Ya Y3 Ya
yl = 5 y2 = . 5 5 yp = :
YN y3 YN

the p measurements of the p measurements variables. These p measurements can be combined to a

univariate variable by using a linear combination given by a vector a = (a1, aq,. .. ,ap)T € R?:
yi yi vy
. Ya Y3 yh
Yy = a1 ) + as ) +...tap .
YN v Un

If #(y) is the test statistic of a univariate variable y, then it also can be used for the univariate
variable y?*. Roy’s idea was to regard

sup (y*)
a€ERP

as test statistic for the multivariate case. The rejection set of this test is a union since

{sup ) 2 ch = U {707 2 .

a€RP a€RP
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If 1(y?) is the test statistic for the univariate test for H§ : § € ©® versus H{ : § ¢ ©% then
SUp,ere t(y®) is the test statistic for testing Ho : 0 € [),cpp O versus Hy : 0 ¢ (),cre ©¢. This is
the reason why this method is called Roy’s union intersection test.

7.1.2 Example (Diet supplements: Continuation of Example 7.1.1)
The test results for the other testing methods are obtained by:

> summary(manova(cbind (Weekl,Week3,Weekd,Week5,Week6,Week?) “Group, data=diet))
Df Pillai approx F num Df den Df Pr(>F)
Group 2 1.4033 3.1358 12 16 0.01760 *
Residuals 12
Signif. codes: O ’**x*x’ 0.001 ’*x> 0.01 °’x> 0.05 *.” 0.1 > * 1
> summary(manova(cbind (Weekl,Week3,Weekd,Week5,Week6,Week?) “Group, data=diet),
+ test="Wilks")
Df Wilks approx F num Df den Df Pr(>F)
Group 2 0.08793 2.76773 12 14 0.03630 *
Residuals 12
Signif. codes: O ’***’ 0.001 ’*x> 0.01 ’x> 0.05 *>.” 0.1 > *> 1
> summary(manova(cbind (Weekl,Week3,Weekd, ,Week5,Week6,Week?) “Group, data=diet),
+ test="Hotelling-Lawley")
Df Hotelling-Lawley approx F num Df den Df Pr(>F)
Group 2 4.7859 2.3930 12 12 0.0724 .
Residuals 12
Signif. codes: O ’***’ 0.001 ’*x> 0.01 ’x> 0.05 *>.” 0.1 > * 1
> summary(manova(cbind (Weekl,Week3,Weekd ,Week5,Week6,Week?) “Group, data=diet),
+ test="Roy")
Df Roy approx F num Df den Df Pr(>F)
Group 2 2.7666 3.6888 6 8 0.04637 x*
Residuals 12

Signif. codes: O ’***’ 0.001 ’*x> 0.01 ’x> 0.05 *>.” 0.1 > *> 1

We see that the p-values of the different methods are different and that the method of Pillai provides
the smallest p-value. But this is not the case in general.

7.2 Crossover designs

In Example 7.1.1, the treatment, the dose of vitamin E, was not changed over the weeks. But
sometimes it makes sense to change the treatment so that each experimental units is treated with
several levels of the treatment, for example over the time. This is in particular useful for fields
where several crops can grow in different seasons or years and the yield is measures for each season
or year. Then it makes not sense to use for each subfield the same crops. It is much better to change
the crop in each subfield from season to season or year to year, respectively. Such designs are called
crossover designs or carryover designs. They can be constructed with the R package cross.des
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which needs the R packages AlgDesign and gtools. Hence all three packages must be installed. It
needs also the library MASS but this is a contributed library which must be not installed additionally.

7.2.1 Example (Crossover Design)
To create a balanced crossover design for 4 treatments in 3 time periods, type

> library(crossdes)
Lade notiges Paket: gtools
Lade notiges Paket: MASS
> all.combin(4,3)
(,11 [,2] [,3]
[1,] 1 2
[2,]
(3,]
[4,]
(5,]
(6,]
7,]
(s,]
[9,]
[10,]
[11,]
[12,]
[13,]
[14,]
[15,]
[16,]
[17,]
[18,]
[19,]
[20,]
[21,]
[22,]
[23,]
[24,]

DO D D D D WWWWLWWNNDNMNNMNDMNDMNNERRPR PP
W W NN EFE P, DD PNOOMNNNMNERE R, DS PP OOEFR, R, D PO ®WND
N R WEFE WNNEFE DR BDNDWR DR DWW DN W

Since there are 4 - 3 - 2 = 24 combinations of the 4 treatments, at least 24 experimental units are
needed.
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Part II

Mathematical Foundations

8 Preliminaries

8.1 Special methods from linear algebra

8.1.1 Definition (Idempotent matrix)
A n x n matrix A is called idempotent if and only if AA = A.

8.1.2 Lemma
If A is a symmetric and idempotent matrix of rank r, then A has r eigenvalues equal to 1 and n —r
eigenvalues equal to 0.

Proof. With the spectral decomposition of A. See e.g. Rencher 1998, P. 414. O

8.1.3 Lemma
Let tr(A) denote the trace of a the matrix A € RN*Y je. the sum of the diagonal elements of A.
Then we have:

a) tr(AB) = tr(BA) for all matrices A € RV*M B ¢ RMXN,

b) If A is symmetric, then tr(A) is the sum of the eigenvalues of the matrix A.

Proof.

a) Let A = (Anm)n=1,..Nm=1,..m and B = (Byn)m=1,..Mn=1,..N. Then the n’the diagonal
element of AB € RV*¥ ig Z%zl ApmBmn and the m’th diagonal element of BA € RM*M g
Zﬁle By Anm S0 that

N M M N
tr(AB) => > ApmBmn =Y _ > BrnAnm = tr(BA).

n=1m=1 m=1n=1

b) A has the spectral decomposition PDPT where P P is the identity matrix I and D is a diagonal
matrix consisting of the eigenvalues. According to a) it holds

tr(A) = tr(PDPT) = tr(DP" P) = tr(DI) = tr(D)

so that tr(A) is the sum of its eigenvalues. O

8.1.4 Definition (g-inverse)
A~ € R™*™ js called g-inverse (generalized inverse) of A € R™™ if and only if AA~ A = A.
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If A is a regular matrix, then A~ = A~! and A~! is the only g-inverse. Hence the g-inverse is really
a generalization of the inverse for regular matrices. But note that, if A is not a regular matrix,
then the g-inverse of A is not unique, i.e. there are several g-inverses. For the g-inverse of AT A the
following lemma holds.

8.1.5 Lemma

Let (AT A)™ be a g-inverse of AT A. Then it holds:

a) (ATA)™)T is g-inverse of AT A.

h) ATA(ATA)"AT = AT and A(ATA)"ATA= A,

c) A(ATA)~ AT is idempotent, i.e. A(ATA)"AT A(ATA)~AT = A(ATA)—AT.
d) A(ATA)~ AT is independent of the choice of the g-inverse.

e) A(ATA)~ AT is a symmetric matrix.

Proof.
a) ATA(ATA))TATA = (ATA(ATA)"ATA)T = (ATA)T = ATA.
b) In general, it holds: BD'D = CD'D implies BD" = CD'". For BD'D = CD'" D implies

0=(BD'D-CD'D)(B-C)" =BD"-CD"D(B-0)"
= (BD"-cD"Y(B-C)D")" =BD"-CcD")(BD"T —CD")"

Multiplying the last expression from both sides with an arbitrary vector of appropriate dimension
yields 0 = # " (BDT — CDT)(BD" — CDT)"x. This means 0 = (BD" — CDT) "z for all  and
therefore 0 = BDT — CD'.

Because of the definition of the g-Inverse, it holds ATA(ATA)"ATA = ATA. Setting B =
ATA(ATA)~, C = I the identity matrix, and D = A provides the first part of the assertion
b). The second part follows from the first part by transposing the matrices and using a).

c) follows from b).

d) Let (ATA)™~ be another g-inverse of ATA. Assertion b) implies A(ATA)~ATA = A =
A(ATA)"ATA. Setting B = A(ATA)™, C = A(ATA)~ and D = A, then the assertion shown
in b) provides A(ATA)¥AT = A(ATA)~AT. This means that A(AT A)~ AT does not depend on
the choice of the g-inverse.

e) The assertion a) implies (A(ATA)"AT)T = A((ATA)")TAT = A(ATA)~AT. O

8.1.6 Lemma (g-inverse of partitioned matrix)
If the symmetric matrix M is a partitioned matrix given by

A BT
M =
B C
with A € REXE B ¢ REXE and C € RE*K | where A is non-singular. Then the g-inverse of M is
given by
- ( A 4 A'BTETBATY —A'BTE- )

~E-BA! E-

with E=C — BA BT,
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Proof.
v - [ AATE AAT'BTETBA™' —BTE"BA™' —AA'B'E-+BTE~
"\ BA'+BA'BTEEBA'—-CE-BA™' _—BA'BTE-4+CE-

and

v [ AATTA+AATBTETBATIA-BTETBATIA- AAT'B'ETB+ B E°B
"\ BA'A+BA'BTEEBA'A—-CE BA'A—-BA'B'TE-B+CE™B
AA'BT+ AA'B"EEBA'BT - BTE"BA BT —AA'BTE-C+BTEC
BA'B"+BA'B'TEEBA'B" —-CE BA'B" —-BA'BTE-C+CEC
B A+B'ETB-B'E"TB-B'E"B+B'E™B
N B+BA'BTEEB-CE B-BA'BTE-B+CE B

BA'BT"+BA'B"EEBA'BT —-CE BA'B" —-BA'B'TE-C+CEC
A BT
= = M
B C

since

B'"+B'ETBA'BT - B"E-BA'B" —-B'E-C+BTEC >

BA'B" + (BA'B" —-C)E"TBA'B" - (BA™'B"T - C)E~C
= BA'B"4+(BA'B"-C)E-(BA™'B" - 0)
= BA'B"+BA'BT —C=C.

8.1.7 Definition (Column space)
Let be X € RV*E. Then

C(X) = {Xp; B e RF}

is called the column space of X.

8.1.8 Definition (Perpendicular projection matrix)

Let be U a subspace of RY. P € RN*N js called perpendicular projection matrix onto U if and
only if

Pu=w for allu € U,
Py =0 for allv € U+ = {w € RY; whu for all u € U}.
8.1.9 Lemma

a) The perpendicular projection matrix P € RVN*N is idempotent.
b) Every idempotent and symmetric matrix A € RV*N is a perpendicular projection matrix onto

C(A).
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Proof.
a) It holds

PPu = Pu=wuforall u € U,
PPy =P0=0forallve U™,

Let be w € RV arbitrary. Then there exists u € U and v € U+ with w = u 4 v. Then we obtain
PPw = PP(u+v) = Pu=u= P(u+v) = Pw

and thus PP = P.
b) For u = Af it holds Au = AAS = A =u. If

veCAT ={weRY; w A3 =0 for all 3 € RV},
then v' A3 = 0 for all B € RY. The symmetry of A implies ST Av = TATv =0 for all 5 € RV
and thus Av = 0. 0

8.1.10 Lemma

Let be X € RV*E,

a) X(X"X)~XT is the perpendicular projection matrix onto C(X).

b) Inxn — X(XTX)~XT is the perpendicular projection matrix onto C(X)=*.
(Inxn denotes the N x N identity matrix).

Proof.

a) Lemma 8.1.5 ¢) and e) and Lemma 8.1.9 imply that X (X " X)~ X" is the perpendicular projection
matrix onto C(X(XTX)~"XT). It remains to show C(X) = C(X(XTX)~XT"). It is clear that
C(X(XTX)~XT) c C(X). For the opposite inclusion note that for any u € C(X) there exists
(B € RP with w = X/3. Then Lemma 8.1.5 b) implies

XX"X) " XTu=X(X"X)"X"XB=Xp=u

and thus C(X) C C(X(X"TX)~XT).
b) Part a) implies X(X X)X Tu =0 for all u € C(X)* = C(X(X"X)"X")* and thus

(Inxny — X(XTX)"X u = u for all uw € C(X) .
If v € (C(X)+)*+ = C(X), then Part a) implies

(Inxn —X(XTX) " XTWw=v—v=0. O

8.1.11 Lemma
For any X € RVXE it holds

a) tk(X(XTX)"XT) = rk(X).
b) tr(X(XTX)"X") = rk(X).
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c) tr(Inxny — X(XTX)"X ") = N — rk(X).
d) rk(Iyxy — X(XTX)"XT) = N — rk(X).

Thereby rk(A) denotes the rank of the matrix A.

Proof.
a) It is clear that rk(X (X T X)~X ) < rk(X) holds. Because of Lemma 8.1.5 b) also the converse
inequality holds:

rk(X) = rk(X(XTX)"XTX) <rk(X(XTX)"XT").

b) X(XTX)~ X7 is a perpendicular projection matrix according to Lemma 8.1.10 a). Hence it is
idempotent according to Lemma 8.1.9 a). This means according to Lemma 8.1.2 that X (X TX)~X T €
RV*N has r eigenvalues equal to 1 and N —r eigenvalues equal to 0, where r = rk(X(X T X)~XT).
According to a) we have r = rk(X) and according to Lemma 8.1.3 b) tr(X (X" X)~XT) = r such
that tr(X(XTX)"XT) = rk(X).

c¢) The linearity of the trace provides
tr(Insny — X(XTX)"XT) = tr(Iyun) —tr(X(XTX)"XT) = N — rk(X).

d) Since Inxny — X(XTX)~XT is also a perpendicular matrix according to Lemma 8.1.10 b), its
rank coincide with its trace as in b) so that the assertion follows from c). O

8.1.12 Definition

Let be A = (Anm)n=1,...Nm=1,..M € RN*M and B € R™/. The Kronecker product A ® B is

-----

defined as
AHB A12B . AlMB
A©B— Ang A22B AQMB GRNIXMJ.
ANlB ANQB ... ANMB

8.1.13 Definition

Let be A = (Apm)n=1,. .Nm=1,..M € RNXM - The vec operator vec : RN*M — RNM g defined as

-----

U@C(A) = (AH,Agl, e ,ANl,Alz, e ,ANQ,. . aAlM)' . ,ANM)T.

Note that if A is given columnwise by A = (A,1|A.2| ... |A.s), then

Aa
A
vec(A) = .

Aot
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8.1.14 Lemma
IfAc RVM B cRIXJ C e RMXL D e R/*K | then

a) (A B) (C®D)=AC®BD € RNIXLK
b) (Ao B)T = AT @ BT.

Proof. Exercise. OJ

8.2 Random vectors and random matrices

8.2.1 Definition

a)Y =(Y,... ,Yp)—r is a random vector if Y1, ...,Y), are random variables.
b)
Z11 Zig ... le
Zan Zog ... Zzp
Z = . . .
N1 Zno ... ZNp
is a random matrix if Z11,Z12,...,Z1p, Z21, .-, %2p, .-, ZN1,- - -, LNp are random variables.

8.2.2 Definition (Expectation of random vectors and random matrices)
a) IfY = (Y1,...,Y,)" is a random vector, then

E(Y1) 1
p=py =EY) = E(:YQ) = H:Q € RP
E(Yp) Hp

is the expectation of Y.
b) If Z = (Zyi)n=1,..,N,i=1,..p IS a random matrix, then

E(Z11)  E(Z12) E(Zyp)
B(Z) E(Z:m) E(Z:22) E(Z:2p) c RV*P
E(Zn1) E(Zn2) ... E(Znp)

is the expectation of Z.
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8.2.3 Definition (Covariance matrix of a random vector)
IfY = (Y1,...,Y,)" is a random vector, then

COV(Yl, Yl) COV(Y&7 Yg) . COV(Yl7 Yp) 011 012 ... O1p
cov(Ya,Y7) cov(Ys,Ys) ... cov(Ys,Y, o o e O

5 = Cov(Y) = ( ’ 1) (Y2, Y3) (Y2, %) | _ 2 02 | o
cov(Yy, Y1) cov(Y,, Ya) ... cov(Y,,Y)) Opl Op2 ... Opp

with 055 = cov(Y;,Y;) = E((Y; — i) (Y; — py)) fori,j =1,...,p is the covariance matrix of Y.

Recall that 07 = 0;; = cov(Y;,Y;) = E((Y; — p13)?) is the variance of V;, i.e. cov(V;, ;) = var(Y;).

8.2.4 Definition (Covariance matrix of two random vectors)
IfX =(X1,...,X,)" and Y = (Y3,...,Y,)" are random vectors, then

cov(X1,Y1) cov(Xy,Ya) ... cov(X1,Y))
cov(Xs,Y1) cov(Xo,Ys) ... cov(Xs,Y,

Yxy = Cov(X,Y) = ( . ) ( . ) ( . ) c RI*P
cov(Xg, Y1) cov(Xy,Ya) ... cov(Xy,Y))

with cov(X;,Y;) = E((X; — E(Xy))(Y; — E(Y;))) fori = 1,...,q,5 = 1,...,p is the covariance
matrix of X and Y.

8.2.5 Lemma

We have

a) Cov(Y,Y) = Cov(Y),

b) Cov(X,Y) =E ((X = pux)(Y — MY)T)'

Proof.
a) is clear.
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b)
(X1~ E(X1))
E((X —p0)(v = py)7) =F ; (¥ =B()..... (¥, ~ E(¥;)))
(X4~ B(X,))
(X1 = EQXD))(Yi = B()) . (X1 = BO))(Y, — E(Y,)
_ g ; ;
(X, ~ B = E0) .. (X, — E(X,) (% - B(Y,)
E((X1 - BX)(Vi — BM)) .. B((X1 = E())(Y; - B(%)))
B~ BOG)0 — B .. E(0X, — BX) 5~ BT;)
= Cov(X,Y). O
8.2.6 Lemma

Let X = (X1,...,X,)" andY = (Y3,...,Y,)" be random vectors and Z be a q x p random matrix.
Then:
a) E(X+Y)=EX)+EY)ifq=p.

b) E(AY +b) = AE(Y) +bif Ae R?”*P b e R,

¢) E(AZ B) = AE(Z)B if A € R"™*4, B € RP*",

d) Cov(Y) = Cov(Y) .

e) Cov(Y') is positive semidefinite.

f)Yxy = Cov(X,Y)=EXYT) - EX)EXY)T.

g) Cov(AX +a,BY +b) = ACov(X,Y)BT if A€ R"¥4, B € R"™?, q € R™, b € R",

h) Cov(AY +b) = ACov(Y) AT if A€ RI*P, b € RY.

i) B(XTAY) = tr(ASyx) + piApy if A€ RI*P.

j) Cov(X +Y) = Cov(X) + Cov(Y) if g =p and X and Y are stochastically independent.

Proof.
a) to c) follow from the linearity of the expectation.
d) Since

cov(X;,Y;) = E((Xi — E(Xi))(Y; — E(Y;))) = E((Y; — E(Y;)(Xi — E(X;)))) = cov(Yj, X;)

fori=1,...,q,7 =1,...,p, the assertion follows.
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f) Lemma 8.2.5 b) provides with the linearity of the expectation

Cov(X,Y)=E ((X —px)(Y — uy)T> =E (X YT = Xpy —px Y + px u;)
= E(XY")—EX)py —pux E(YT) +puxpy =E(XY ") = E(X)E(Y)".

g) It follows from the above assertions:

Cov(AX +a,BY +0) 2 E ((AX +a)(BY +)7) ~E(AX +a)E(BY +b)"

Y g (AXYTBT +aY BT+ AXDT —i—abT) — (AE(X) +a) (BE(Y) +0)"

W BAXYTBT) —AEX)EY) BT 2 AEXYT)BT — AE(X)E(Y)T BT

A (BXYT) = B(X)E(Y)T) BT D ACov(X,Y)BT.

h) follows from g).
e) Assertion h) implies for all a € RP

a' Cov(Y)a = Cov(a' Y)=var(a'Y) > 0.
i) Lemma 8.1.3 and the linearity of the expectation provide

E(XTAY)=E(tr(XT AY)) =E(tr(AY X)) = tr(E(AY X))

D ARV X)) 2 (A (Syx + EX)EX)T)) = tr(AZyx) + tr(AEY) E(X)T)

= tr(ASyx)+tr(B(X)TAE®Y)) = tr(ASyx) + ux Apy.
j) Regard the (i,j) component of Cov(X 4 Y):

Cov(X +Y)iy = cov(X; + Vi, X; +Y;) = E((X; + Yi) (X; + 7)) — B(X; + Y;) E(X; + ;)
= B(XiX; +YiX; + X;Yj + YiY;) — (B(X,) + B(Y;)) (B(X;) + E(Y;))

= E(XiXj) + E(Y)E(X;) + E(X ) ( Yj) + E(YiYj)
— E(X)E(X;) — E(Y)E(X;) — E(Xy)E(Y;) — E(Y;))E(Y))
= =cov(X;, Xj)+cov(Y;,Y;) = COV(X) + Cov(Y))s ;. O

8.3 The normal distribution and related distributions

8.3.1 Definition

The random vector Y has a p dimensional normal distribution with parameters p € RP and ¥ €
RP*P je. Y ~ N,(u,X), if and only if Y has the density

1
(27)P/2 \/det B

=3 =) TS y—p)

fly) =
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8.3.2 Lemma
a) If Y has a p dimensional normal distribution with parameters p € RP and ¥ € RP*P| then

EY)=up, Cov(Y)=2%x.

b) If Y has a p dimensional normal distribution with parameters p € RP and ¥ € RP*P A € RP*P,
and b € RP, then

AY + b~ Ny(Ap+b, AZAT) (14)
Proof. See books which give introductions in probability theory. O
8.3.3 Lemma

IfY = (Y1,...,Y,)" ~ N,(u, %) and the components Yi,...,Y, are pairwise stochastically inde-
pendent, i.e. Y; and Y are stochastically independent for i # j, then Yi,...,Y), are stochastically
independent.

Proof. Since ¥ is the covariance matrix of Y, all components of ¥ are the covariances cov(Y;, Y;).

The pairwise independence of Y7, ...,Y}, implies cov(Y;,Y;) = 0 for i # j. Hence ¥ is a diagonal

matrix diag(o?, ... ,012)). This means with g = (p1,..., )" that the density of Y has the form

fy(y) = m exp (—%(y —w)'E Yy~ u))

1 1 (yi — )2
_ o <__ w)
(2mp/2y [TIE, 02 =

1 1 ) .
= 11 p exp <—@(y¢ — i) ) = HfN(ui,ag)(yi)-

Hence the common density is a product of densities of the single densities of Y;, so that Yi,...,Y,
are stochastically independent. O

8.3.4 Theorem
IfY ~ Np(u, %), A € RI*P, B € RP-9P, () is not singular with AXBT =0, a € RY, b € RPY,
then:

AY +a ~ Ny(Ap+a, ADAT)
BY +b ~ N, ((Bu+b, BEB")

and AY + a and BY + b are stochastically independent.
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Proof. Let be X = AY +a and Z = BY 4+ b. According to (14) we have

()= (o ()= (e (2)- (=(2))

Then
<A>Z<A)T_ ASAT AYBT \ [ AzAT 0
B B) \ BxAT BxBT | 0 BYBT
implies
A AT T T
det((B>E<B> )—detAEA det BY.B
and thus
Tote2)

1
(27)P/2 (det ASAT)/2 (det BEBT)1/2

(O ) (5 i)
(O 0

= (2m)i2 (det ATAT)12 P (—% (z— (Ap+a)  (AZAT) ™ (& — (Au+ a))>

(2m)P—a)/2 (;et BY.BT)i/2 exp <_% (z— (Bu+b)" (BSB") " (z— (Bu+ b)))

qu(Au—i—a,AZAT)(x) ) pr,q(Bu+b,BzBT)(z)-

Since the density f(X)(x, z) is a product of the densities of X and Z, X = AY 4+aand Z = BY +b
Y

are stochastically independent. The product form of the densities provides also the distribution of
X =AY 4+aand Z = BY +b. O

8.3.5 Corollary
IfY ~ Ny(i, %), A€ R*P, B R™P, rkA = q, tkB =1 and ALB" =0, a € RY, b € R", then:

AY +a ~ Ny(Ap+a, ADAT)
BY +b ~ N,(Bu+b, BEBT)

and AY + a and BY + b are stochastically independent.
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Proof. Since ¥ is positive definite, there exists V' € RP*P with ¥ = V'V (linear algebra). Because
A and B are of full rank (rk =rank), there exists also C' € RP~97"%P with AV VT (g) =0 and

AV A
tk | BV | =rk B |V ]|=p
cv C

Then it holds

A

B T
k = d AY =0.
T g p an (C’) 0

According to Theorem 8.3.4, we obtain for every ¢ € RP79™" that AY + a and (g)Y + (g) are
stochastically independent and AY + a ~ Ny (Ap + a, ASAT). Then AY + a and BY + b are
stochastically independent as well, since BY + b can be obtained by projection onto the first
r components of (g)Y + (lc’) By analogous extension of A to (g,) we also obtain BY + b ~

i

Ny(Bu+b,BEBT). O

8.3.6 Theorem (Theorem of Craig and Sakamoto)
IfY ~ Ny(11,%) and A, B € RP*P are positive semidefinite with AXBT = 0, then:

a) AY and BY are stochastically independent.
b) YTAY and BY are stochastically independent.
c) YTAY and YT BY are stochastically independent.

Proof. Because A and B are positive semidefinite, there exists L € RP*4, M € RPX" with LLT = A,
MM =B, kL = q=1kL"L, rkM = r = tkM " M (linear algebra). Then 0 = AXB" implies

0=CL"L)'L"LLTSMM " M(M"™M)' =LTSM.

Corollary 8.3.5 provides that LY and M"Y are stochastically independent. Since functions of
independent random variables are also independent, i.e. hj(X) and ho(Z) are stochastically inde-
pendent if X and Z are stochastically independent, we obtain the independence of

a) LL'Y = AY and MM'TY = BY,

b) Y'LLTY =YTAY and MM'Y = BY,

OYTLL'TY =YTAY and Y  MMTY =Y TBY. O

8.3.7 Definition (x2-distribution)

a) X has a x%-distribution with N degrees of freedom and non-centrality parameter p'p, ab-
breviated by X ~ x%(N,u' ), if and only if there is a random vector Y = (Y1,...,Yn)" with
Y ~ Nn(u, INxn) such that

N
X=YTy=>»v.

n=1
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b) X has a central x2-distribution with N degrees of freedom, abbreviated by X ~ x?(N,0), if
and only if there is a random vector Y = (Y1,...,YyN)" with Y ~ Ny(0,Inxn (or if there are
stochastically independent random variables Y1, ..., Yn with Y, ~ N1(0,1) forn =1,...,N) such
that

N
X=Y'y=>» v
n=1
c) X has a 0?x?(N)-distribution, if and only if if there are stochastically independent random
variables Y1, ..., Yy with Y, ~ N1(0,0%) forn=1,..., N such that

N
X=>) v
n=1

8.3.8 Definition (¢-distribution)

T has a t-distribution with N degrees of freedom and non-centrality parameter &, abbreviated by
T ~ t(N,0), if and only if there are stochastically independent random variables X and Y with
X ~ x2%(N,0) and Y ~ N1(d,1) such that

Y

N .
~ X

If § =0, then T has a central t-distribution with N degrees of freedom.

T =

j

8.3.9 Definition (F-distribution)

V' has a F-distribution with M and N degrees of freedom and non-centrality parameter §, abbre-
viated by V ~ F(M,N,0), if and only if there are stochastically independent random variables X
and Y with X ~ x?(N,0) and Y ~ x%(M, ) such that

1
1y
M
V=1%
N
If § =0, then V has a central F-distribution with M and N degrees of freedom.

8.3.10 Lemma
If X and Y are stochastically independent with X ~ x?(N,0) and Y ~ N1(6,1) then

Y Y?
~t(N,$) and " F(1,N,6%).

1
X N

Zl-

Proof. The first part is the definition of the ¢-distribution. The second part follows from Y2 ~
x%(1,6%) and the definition of the F-distribution. O

8.3.11 Theorem
LetbeY = (Y1,...,Yn)" arandom vector satisfying Y ~ N (u, Inx) with u € RN and A € RV*N
a symmetric and idempotent matrix of rank rk(A). Then

YTAY ~ P (rk(A), u Ap).
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Proof. Since A is symmetric and idempotent with rank r = rk(A), A has the spectral decompo-
sition (see Lemma 8.1.2)

,
A= Z viv] =V'V,
i=1
where v1,...,v, € RY are mutually orthogonal and normed and V' = (vy,...,v,) . This implies

T T
YTAY =YY o] Y =) Y (Y w) =272
=1 =1

with Z = (Y Twy,...,Y T0,)T = VY. Then we have that V is of full rank and

T T T

/UT Ul (% 'Ul () “e 'Ul U?"
1
v;vl ’U;—’Ug . v;—vr
T .
Vv = : (vi,...,0p) = _ _ _ = Irxr
T
(Y
r T T T
U, V1 U, V2 ... U, U

T

since v, v; = 0 if i # j and v v; = 1. Hence Lemma 8.3.4 provides

Z=VY ~No(Vir,VINynV ) =N (Vi, VV T = No (Vi Iy
so that with Definition 8.3.7 a)

YTAY = Z1Z ~ 3P (r, " VIV i) = P (ck(A), n" A ). O
8.3.12 Theorem
If X and V are stochastically independent with Y ~ x?%(r,0), V ~ x?(q,0), then

Y +V ~x*(r+q,0).

Proof. According to Definition 8.3.7, there are stochastically independent random variables
Yi,..., Y., Wi, ..., W, with Y; ~ N(0,1) for ¢ = 1,...,7, W; ~ N(0,1) for j = 1,...,¢ and
X =3, YA V=2 W7 Then it holds X +V = Y71 Y+ >29_, W? ~ x*(r +¢,0). O

8.4 Foundations of statistical tests

In the general statistical setup, it is assumed that the data yi,...,yn € ) are realizations of
random variables Yi,...,Yn : @ — Y. The vector y = (y1, ... ,yN)T € YV is called observation
vector or sample and YV is called sample space. In the parametric setup, it is assumed that
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the distribution of the random vector Y = (Y7,... 7YN)T : Q0 — YV is known up to a unknown
parameter @, hence

PY e{pP); 0c0}.
Statistical tests are used if there are hypotheses about the unknown parameter:

null hypotheses Hy: 6 € ©¢ versus alternative H; : 6 € ©1 =0\ O.

8.4.1 Definition (Decision rule between Hy and Hj)
@ is called a decision rule between Hy: 0 € ©¢ and Hy : 0 € ©1 if and only if

p: YNV — {0,1}.

If o(y) = 0, then a decision for Hy is made based on the sample y. If ¢(y) = 1, then a decision for
H1 is made based on the sample y.

8.4.2 Remark (« and (3 error probability)
A decision rule between Hy: 6 € ©g and Hy : 0 € ©1 has two error probabilities:
the probability for the a-error

Pg((p(Y) = 1) with 0 € @0,
and the probability for the (-error
Py(e(Y) =0) with 6 € O;.

8.4.3 Definition (a-level test)
Let be a € (0,1). A decision rule ¢ between Hy: 6 € ©y and Hy : 0 € Oy is called a-level test if
and only if

Py(p(Y)=1) <« forall § € Oy,

i.e. the probability for the a-error is always not larger than a.

8.4.4 Remark
An a-level test ¢ has usually the form

o(y) = H{’f(y)>c}(y)7
where f(y) is called test statistic and c is called critical value. 1I denotes here the indicator
function. The main task for the development of tests is to determine the test statistic and the
critical value.

8.5 Tests for one and two samples

Tests for one or two samples of normally distributed random variables use the quantiles of the
t-distribution, the y2-distribution, and the F-distribution as critical values. Therefore let be

tM,a = Ft;/[l (Oé)
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the a-quantile of the central ¢-distribution with M degrees of freedom,

Xire =F5 (@)

Xir
the a-quantile of the central y2-distribution with M degrees of freedom, and

FN,M,a = F_l (Oé)

Fnom

the a-quantil of the central F-distribution with N and M degrees of freedom.

Tests for one sample

If the random variables Y7,..., Yy are stochastically independent and identically distributed with
Y, ~ N (i1,0?%), then there are two main test problems:

a) Hy:p=po versus Hy:u # po,
b) Hy:p <po versus Hj:p > po,
¢) Hy:p>po versus Hy:pu < g,

where g is a given value, and

a) Hy:o0? =02 versus Hy: o2 # op,
b) Hy:o® <o versus Hy:o® > of,

¢) Hy:0%> 02 versus Hy:o0? < o2,

where 0(2] is a given value. The tests base on estimates for 4 and o2. The estimate for yu is the

arithmetic mean

1 1
— _ T
U= nE_lyn = —NlNy,

where 1 € RY denotes the N dimensional vector consisting only of ones, and the estimate for o2
is the empirical variance

N
~ ~ 1 —
0'2 = UQ(y) = m E (Yn — Y)2
n=1

Thereby note (Exercise!) that

o1 - 1 !
52 = =V (v = ({0 1Y) V= = V7 (INxN - N1N1L> Y

where Iy« is the N x N identity matrix.

8.5.1 Theorem
IfY1,...,Yy are stochastically independent with Y, ~ N'(u,0?) fiirn =1,..., N, then
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@) Y ~ N(p, 0?),
b) & N, (Y — T)2 ~ 3N - 1,0),

o2

c)Y and ij:l(Yn —Y)? are stochastically independent.

Proof.

a) Note that the stochastic independence of Yi,...,Yx implies ¥ = (Yi,...,Yy)"
~ Nn(puly,0%Inxn) so that the assertion follows from (14) with A = % 1]\—, and b = 0 since
— 14T

= xlyy

b) The above exercise provides
N
Y (¥ -Y)=YTAY

n=1

with A = (Inxny — =1x1L). A is a symmetric and idempotent matrix because
N N y p

1 1
A-A= <INxN - N1N1}> (INxN - N1N1}>

1 1 1
= Inxn— N1N1E — N1N1} + mlNlﬁlNlT = A.

Moreover, we have
1 T 1 T
Aly = (Inxn — NlNlN Iy =1n — NlNlN 1y =0.
If v is orthogonal to 1y, i.e. 1}1} = 0, then

1
Av=Inynv— Nllev:v.

This means that A has rank N — 1. With Theorem 8.3.11 we obtain

N
1 - 1 1 1
— Y (¥ -Y) = EYTAY = EYTATAY =5 —u IN)TATA®Y — ply)
n=1
Yi—p T Yi—p
g g
= A ~ X2(N -1, 0)’
Yn—u Yn—p
g g

since Yot ~ N(0,1) and Y7,..., Yy are stochastically independent.

g
c¢) Because of

Y ~N(ply, 0® Inxn).
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and
Ac?Inyn 1INl =Aly1L o2 =0,

Theorem 8.3.6 implies the stochastic independence of YTAY and 1y 1EY = N1yxY. Then also
SN (Y, =Y)? and Y are stochastically independent. O

8.5.2 Theorem (t¢-test for one sample)
Let Yi,...,Yn ~ N(p,0?) be iid. with unknown 0 = (u,0%) € R x RT, g € R be known, and

o Y — Mo
d(y) := VN )

Then:

a) p(y) = ]I{ﬁ(y) (y) is a-level test for Hy : u = pg versus Hy : p # po.

b) ¢(y)

=1
c) p(y) = H{J(y)<t1v71,a}(y) is a-level test for Hy : p > pg versus Hy : p < pg.

I>tn_1,1—a/2}

() >t 11 }(y) is a-level test for Hy : p < pg versus Hy : > .

~

Proof. We show at first that d(y) has a central ¢-distribution with N — 1 degrees of freedom if
Y, ~ N(ug,0?) for all n = 1,..., N. According to Theorem 8.5.1, %GQ(Y) has a central y>2-
distribution with N — 1 degrees of freedom and is stochastically independent from the arithmetic
mean Y. Then %GQ(Y) is also independent of \/N% Because of Y ~ N (uolyn,0?Inxn) and

\/ﬁ@ = ﬁl}Y - @,uo, Theorem 8.3.4 or Corollary 8.3.5, respectively, provide

Y — o 1 VN 1
VN ~ N —1% poly — — g, ——1% 021

1
mﬂv)T) = N(0,1).

We can see also the A/(0,1)-distribution by calculating the expectation and variance of \/N%
knowing that linear combinations of normal distributed random variables are always normal dis-
tributed. Since v'N % and %GQ(Y) are independent, the central ¢-distribution of J(Y) follows
from Definition 8.3.8. This implies at once a).

b) Since pg was arbitrary in the above considerations, we have for all 4 € R that \/N% has a
t(N — 1,0)-distribution if Y;, ~ N (i, 0?) for all n = 1,..., N. In particular we obtain for arbitrary
M= o

Y — po
a(Y)

— PM <\/N % >tN-11-at \/N M&(\)(;;L>

Y —
P, (\/N TY')U > tN1,1a> =1-Fno10v-11-0)=1—-(1-0a) =a.

P(p(¥)=1) = P, (m > tNM)

IN
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c¢) This assertion follows analogously to the proof in b). O

8.5.3 Example (Gepaarte Zwei-Stichproben-Probleme)

Zum Beispiel werde der Blutdruck von N Personen vor und nach einer Therapie gemessen. Die
n’te Beobachtung Y, ist dann die Differenz der Blutdruckwerte V,, vor und des Blutdruckwertes W,,
nach der Therapie, d.h. Y, = V,, — W,. Gilt V,, ~ N(u1,0?) und W,, ~ N(ua,03), so kann man
auch annehmen, dass der Zufallsvektor (V,,, W,,)" eine zweidimensionale Normalverteilung besitzt.
Nach Satz 8.3.4 bzw. Folgerung 8.3.5 besitzt dann Y,, = V,, — W,, auch eine Normalverteilung mit
Erwartungswert

und Varianz
var(Yy,) = var(Vy,) + var(W,,) — 2cov(Vy, W) = o3 + 03 — 2cov(Vy,, Wy,) =: 02,

d.h. wir haben Y,, ~ N(u,c?). Hat die Therapie eine Blutdruck senkende Wirkung, so gilt u > 0.
Um das zu belegen, muss man dann Hy : u < pg gegen Hi @ pu > pg testen. Fiihrt ein Test zum
Niveau « zur Ablehnung der Nullhypothese, sprechen die Daten zum Signifikanzniveau « dafiir, dass
die Therapie eine Wirkung hat. Natiirlich kann es dann immer noch sein, dass die Therapie nicht
wirkt. Aber dann wiirde die Nullhypothese hochstens mit einer Wahrscheinlichkeit o« abgelehnt
werden, und bei kleinem o« wére das sehr unwahrscheinlich.

Vi,....,Vy und Wy,..., Wy bilden zwei Stichproben, die aber gepaart sind, da V,, und W, von
der gleichen Person stammen und damit nicht unabhéngig sind. Aus diesem Grund werden solche
Probleme gepaarte Zwei-Stichproben-Probleme genannt.

8.5.4 Theorem (Variance test for one sample)
Let Y1,...,Yn ~ N(p,0?) be iid. with unknown 0 = (u,0?) € R x R*, 62 € RT be known, and

N—1A2

v(y) = = - (y)-
0

Then:
a) p(y) = ]I{T(y)>X?\/—1,l—a/2 or T(y)<x?\f—l,a/2}(y) is a-level test for Hy : 0% = o3 versus Hj : 02 # o3.
b) p(y) = Wepyysy2, y(y) is a-level test for Hy : 0? < o} versus Hy : 0% > o3.

c) o(y) = H{T(y)<X?v71,a}(y) is a-level test for Hy : 02 > 03 versus Hy : 0% < o3.

Proof. According to Theorem 8.5.1, (Y) has a central y2-distribution with N — 1 degrees of
freedom, if Y;, ~ N'(u1,08) for all n = 1,..., N. This implies at once the assertion a).

+ N—1x2

b) Since for every 02 € R*, £5452(Y) has a central y*-distribution with N — 1 degrees of freedom,

i
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if Y, ~ N(p,0?) for all n =1,..., N, we have for arbitrary o2 < o2

N-1_
P (0) = 1) = P (22 80) > ¥ 1o )
0
N -1 _ o2
= P, ( o2 Jz(y) > O__gX?\/l,la>

N-—-1_
< P, ( 2 02(Y) > X%V—l,l—a) =1- FX2(N—1,0)(X?V—1,1—0¢) =1-(1-0a)=a.

The assertions c) follows like that in b). O

The probabilities of the (-error can be calculated for the ¢-tests given in Theorem 11.1.3. We
will give here only the S-error for the two-sided alternative. The other (-errors can be obtained
completely similarly.

8.5.5 Theorem (f-error of the two-sided one-sample t-test)

LetYi,...,Yy ~ N(p,0%) beiid. and ¢(y) = H{\J(y)|>tzv_1 ~ /2}(y) be the a-level test of Theorem

11.1.3 for Hy : p = pg versus Hy : p # po. Then the probabilities of the 3-error are given by

Pu(‘P(Y) = 0) = Ft(N—l,zS(u)) (thl,lfa/2) - Ft(Nfl,J(,u))(_thl,lfa/2)7

where 0(p) = VNEZLL,
Proof. If u is the true value, then Theorem 8.3.4 or Corollary 8.3.5, respectively, provide (compare

with the proof of Theorem 11.1.3 a))

Y — 1 1 VN 1 1
v N ~N 1 gy — — , — 1% %I — 1"
\/NO’ N M IN o Ho \/NO’ N NxN (\/NO' N)

2

:,MGWi%£J>:NWMM.

This means with Theorem 8.5.1 that

has a t(N — 1,6(u))-distribution if u is the true parameter. Hence

Pu(e(¥) = 0) = B (1d(y)| > tx-11-ap2)

= P, (c?(y) < _tN—l,lfa/2> + Py (C?(y) > thl,lfa/Q)

= Fyn-16) (IN-11-a/2) = FyN-1,6(0) (—tN-1,1-a/2)- .
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8.5.6 Example (Einhaltung von Produktionsvorgaben)
Bei der industriellen Produktion ist es nicht nur wichtig, dass die Produkte, die eine Maschine
erzeugt, eine bestimmte Grofe pg einhalten sondern dass die Grofe der Produkte auch nicht zu sehr
um den geforderten Mittelwert schwankt. So sollten Schrauben, die einen bestimmten Durchmesser
haben sollen, in ihrem Durchmesser nicht zu sehr von dem vorgegebenen Durchmesser abweichen.
Bei der Uberpriifung der Maschine wird man also zuerst

Ho : p = po gegen Hy = p# po
testen und dann
Hy : 0% < 02 gegen Hy : 0% > o}

iiberpriifen, wobei 0(2) der vorgegebene Genauigkeitswert ist. Wird eine der beiden Hypothesen
abgelehnt, darf die Maschine nicht weiterbenutzt werden.

Auch bei chemischen Analyse-Geréten und Methoden gilt diese Anforderung. Sie miissen im Mittel
das Richtige liefern und die Ergebnisse diirfen nicht zu sehr um den Mittelwert schwanken.

Tests for two samples

Let y11,...,y1n, be the measurements of the first sample and ya1,...,y2n, the measurements of
the second sample. The sample sizes N1 and Ny can be equal or different. The vector of obser-
vations/measurements for the first sample is denoted by y1, = (y11,...,%1n,) and the vector for
the second sample by y2, = (y21,...,%2n,) . Here we will assume that yq,...,y1n, are realiza-
tions of independent identically distributed random variables Y71,...,Y1n, with normal distribu-
tion A'(p1,0%) and that ya1, ..., yan, are realizations of independent identically distributed random
variables Yai,. .., Yoy, with normal distribution N(ug,ag). The two samples are stochastically in-

dependent, i.e. Y1, = (Y11,... ,YlNl)T and Y3, = (Yaq,... 7Y2N2)T are stochastically independent.
Here we have again two main test problems:

a) Ho:py = pg versus Hi:py # 2,
b) Hy:py < g versus Hy: g > po,
¢) Hy:pp > pe versus Hy:py < pg,

and

a) Hy:ol =05 versus Hy : 0% # 03,

b) Hy:o0? <03 versus Hy: ol > o3,

¢) Hy:o0?> 03 versus Hy: ol < o3.
Let be

1 1 &
= — and —
ylo Nl yln y20 N y2n
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the estimates for p; and us, respectively,

R 1 &
(1) = 57 2_n = T)* and () = =7 > (ven —T2.)’
n=1 n=1
the estimates for o7 and o3, respectively, and
~2 1 Al — \2 ak — \2
012 = Ni+N,—2 (;(yln — Y1)+ nzl(wn ) ) :

the pooled variance estimate.

8.5.7 Theorem (¢-test for two samples)
Let be Y11,...,YiNn,, Yo1,. . ., Yan, stochastically independent with Ya, ~ N (uy,02) forn =1,..., Ny
and Yo, ~ N (pg,02) form =1,..., Ny and

- | NiNa2 Y1, — Vo,
d(y): ylA y2.
N1+ Ny 012

Then:

a) p(y) = Lo (y) is a-level test for Hy : py = po versus Hy : py # po.

|>tNy 4Ny —2,1—ay2}

b) p(y) = 1{E(y) (y) is a-level test for Hy : py1 < pg versus Hy : g > po.

>EN] +Ng—2,1—a}

c) oly) = Leiw) (y) is a-level test for Hy : py > po versus Hy : py < po.

<tN;+Ny—2,a}

Proof. Acoording to Theorem 8.5.1, W&%Q(Y) has a central y2-distribution with Ny + Ny —2
degrees of freedom. Moreover Y 1. — Y. has a normal distribution. The parameters of this normal
distribution can be determined by calculating the expectation and the variance:

E(Yi.e—Yo.) =1 — po

and
[ N1 Ny — =
var —— (Y. — Yo,
< N1+N2( ! 2)>
Ny Ny _ _
= —— (var(Yy,) + var(Yo,
N1+N2( (Y1.) (Ya.))
= 7N1N2 o? (i—i-i)
Ny + N Ny N
= o2
Hence

[ NiNy Yi,—Yo,
N1+ Ny o2
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has a N(0,1)-distribution under Ho : 1 = pg. According to Theorem 8.5.1 ¢) and the stochastic
independence of Y! and Y2, we have that Y., Yo., foil(Ym - Y1) 2221(3/211 —Y3.)? are

stochastically independent. This implies that also 1/%1}% (71. —72.) and 5%, (y) are stochasti-

~

cally independent such that Definition 8.3.8 provides that d(Y) has a central ¢-distribution with
Ny + N3 — 2 degrees of freedom under Hy : g = po. This implies at once the assertion a).

The proof of b) is an exercise since it is similar to the proof for the ¢-test for one sample. The only
difference is that py — po must be subtracted from 7, — ¥, so that the numerator has a N(0, 1)-
distribution. The also the proof of part b) of Theorem 8.5.8. The assertion c¢) follows similarly like
the assertion b). O

8.5.8 Theorem (Variance test for two samples)
Let be Yi1,...,Yin,, Yo1,. .., Yan, stochastically independent with Yo, ~ N (u1, O'%) forn=1,...,NVq
and Yo, ~ N (ug,03) form=1,..., Ny and

~9
i) = 2l

02 (y2.)

Then:

i L2 2
a) o(y) = L{6(y)> Fr, —1.55—1.1—aj2 OF 5(y)<FN1—1,N2—1,a/2}(y) is a a-level test for Hy : 07 = o5 versus

Hy: 03 # 03.
b) p(y) = Lio(y)> Fuy —13g 1 3 (y) is a a-level test for Hy : 0? < 03 versus Hy : 03 > 03.

c) py) = 1{6(y)<FN1_1,N2_1,a}(y) is a a-level test for Hy : 03 > o5 versus Hy : 02 < 03.

Proof. According to Theorem 8.5.1, %EQ(M.) has a y2-distribution with N; — 1 degrees of
1
freedom and %32@2.) has y2-distribution with Ny — 1 degrees of freedom.
2

a) Under the null hypotheses, we have 0? = 03 and that 5%(y1,) and 2(y2,) are stochastically

independnently, since Y;, und Y3, are stochastically independent. This means that v(Y) has a F-
distribution with Ny — 1 and Ny — 1 degrees of freedom according to Definition 8.3.9. This implies
assertion a).

b) If 0? # o3, then
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has a F-distribution with Ny — 1 and Ny — 1 degrees of freedom. Hence for 01 < 02, we have

(M

> FNl—l,NQ—l,l—a>

71,93 %03 82(y2.)

_ éaz(ylo) 2F

— 0'%,0’% ULQ 2(y2.) Ni1—1,Na—1,1—«
2
570" (y1.)

< Poo 15%(y2.) > FN—1N-11-a | =1 = Fry v (FN—1,N-1,1-a) = @
P

The proof of assertion c) is similar to that of b). g

8.5.9 Theorem (f-error of the two-sided two-sample ¢-test)

Let beYi1,...,Yin,, Yo1,. .., Yan, stochastically independent with Yo, ~ N (u1, 02) forn=1,....,V;
2 — = 1. ~

and Yo, ~ N(ug,0°) form = 1,..., Ny and ¢(y) = ]I{‘d(y)‘>tN1+N272,lfa/2}(y)

of Theorem 8.5.7 for Hy : py = po versus Hy : py # pe. Then the probabilities of the (-error are

given by

be the a-level test

Pu iz (p(Y) = 0) = Fyny 8o -2,601,12)) (N1 4 Mo -2,1-a/2) = Fot(N1 4+ N—2-2,6(01 12)) (TN 48 -2, 1-0/2)):
where (1, 12) = \/7%#1;#2.

Proof. If p1 — po is the true difference, then
NiNy Yi.—=Yo) [ NiNy p1—po
E = = 6(1“’ /1’2)
Ni + Ny o N7 + Ny o
and (see the proof of Theorem 8.5.7)
[ NNy Y1, -V, 1
ar =1.
v N1+ Ny o
Hence

[ NiNy Yi,—Yo,
N1 + Ny o

has a NV ((u1, p2), 1)-distribution. This means with Theorem 8.5.1 that

g( )= [ N1 N2 Y1, — Yo,
Y N1+ Ny o12
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has a t(Ny + No — 2,0(p1, p2))-distribution if gy, uo are the true parameters. Hence

Pur s (0 (V) = 0) = P (|d0)] >ty 18,21 02)

= P, (CT(?J) < _tN1+N272,17a/2) + P, (J(y) > tN1+N272,17a/2)

= Ft(N1+N272,5(,u1,p,2))(tN1+N272,17a/2) - Ft(N1+N272,5(p,1,u2))(_tN1+N272,17a/2)' O
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9 The general linear model

In the general linear model it is assumed that the data yq,...,yn are realizations of stochastically
independent random variables Y7, ..., Yy which satisfy
B(Yn) = 2(tn) '8 (15)

or, respectively,
Y, =x(t,) " B+ Z, with E(Z,) =0 (16)

for n = 1,...,N. Thereby 3 € R® is an unknown parameter vector, ti,...,ty € 7 are known
experimental conditions, also called design points, in the design region 7 and z : 7 — R
a known regression function. Zi,...,Zy are error variables which usually satisfy var(Z,) = o2
foralln=1,...,N.

Setting Y = (Y1,...,YN)", Z = (Z1,...,ZN)", X = (2(t1),...,2z(ty)) ", the model (15) or (16),
respectively, can be written as

Y = XB+ Z with E(Z) =0y and Cov(Z) = o? Inxn,

where O € RY is the N dimensional vector consisting only of zeros and Iy is the N x N identity
matrix. X = (z(t1),...,2(ty))" is also called design matrix. Sometimes we also write Xy to
express the dependence on the design d = (¢1,...,tn).

9.0.10 Example (One sample problem)
The one sample problem given in 8.5 is a special linear model where § = p € R and z(t) = 1 for all
t. Hence

Yy = 2(ty) B+ Zn = p+ Zn.

If Z, ~N(0,0%) for n = 1,...,N, then E(Z,) = 0 and var(Z,) = o2 so that Y,, ~ N'(u,0?) for
n=1,...,N.

9.0.11 Example (Two sample problem)

The two sample problem given in 8.5 is also a special linear model where 8 = (1, u2)’ € R? and
z(t) = (M (), Lygy (t))" for t € {1,2}. Thereby t, € {1,2} denotes from which sample the n’the
observation is. If the n’the observation is from the first sample, then ¢, = 1 and

Y, = x(tn)—rﬂ+ Zn = (H{l}(tn)a ]I{2}(tn)) ( Ml > + Zn = (1’0) ( . > + Zn = p1 + Zn.
2 K2

Zy ~ N(0,0?) implies then Y, ~ N(p1,0%) for n = 1,..., N. If the n’the observation is from the
second sample, then ¢, = 2 and

Y, = 2(tn) B+ Zo = (Wyy (ta). Wpay (1) ( Zl ) + Zn = (0,1) ( Zl ) 7=yt 7,
2 2

Here, Z,, ~ N(0,02) implies Y, ~ N(ug,0?) forn=1,...,N.
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9.0.12 Example (Linear regression)
In the linear regression model, a linear relation between quantitative experimental conditions ¢,
and the observations/measurements y,, is assumed, i.e.

Bo

1

Yn :ﬂ0+ﬂltn+z = (Ltn) <

with z(t) = (1,t) T and 8 = (8o, 51)".

9.1 Identifiability

In many examples, it happens that the design matrix X = (z(t1),...,z(ty))" € R¥*E is of full
rank R. However, there are also many examples where the rank of X is less than R, i.e. rk(X) < R.

9.1.1 Example (One-way layout)

In the one-way layout, we assume that a qualitative factor A can attain A levels. These A levels
provides A samples so that the two sample problem is a special case of the one-way layout with
A = 2. For the one-way layout several parameterizations are possible.

Non-singular parameterization:

Yo =pa+ 2, ifty,=a, forn=1,...,N,

ie.
.%'(tn) = (H{l}(tn), ]I{Q}(tn), ceey H{A}(tn))T S RA,
6 - (Mlvu% R 7:U'A)T S RA‘
As soon as each level is observed at least once, then X = (z(t1),...,z(tx))" € RV*4 is of full rank

A. Sorting the observations/measurements with respect to the levels and assuming that each level
is observed M times (i.e. we have balance design), then the design matrix can be written with the
Kronecker product as

1 00 00
0

Iy O Op .o Op Ong 010 ...0°0

Orpr 1ar Opr ... Opp Opg

Om Oy 1ar oo Op O o

X e lpa@ly=| M S =10 10...00 |erV

000 0 1
000 0 1
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Control parameterization:
Assume without loss of generality that the first level is the control level, for example a placebo in
clinical studies or the standard crop in agricultural studies. Then we can set

Yo=pn+ 2, ift, =1,
Yo=p+oa,+ 72, ifty,=a, fora=2,..., A

Then we have

2(tn) = (1, Wy (tn), . .., Mgy (tn)) T € RY,
ﬂ = (M,OZQ,...,O[A)T S RA.

As soon as each level is observed at least once, then X = (z(t1),...,z(tn))" € RNV*4 is of full rank
A. In balanced designs, the design matrix has now the form

Y 157, Oarx(A-1)
Lyaa-ny Laa—nyx@a-1) @1y

100 0 0
100 0 0
1ay 1y Oar ... Oar Ou
1y Oar las ... Opr O -
e Ml 110 .00 0 | erVxA,
1py Opr Ops oo 1pp Opg _
1ay Oy Op ovn Onp 1u :
100 01
100 01

Singular parameterization:
This parameterization is preferred in applications although the corresponding design matrix is not
of full rank:

Yo=p+a,+ 72, ift,=a, fora=1,... A,
2(ty) = (1, My (ta), Moy (8, - -, Wyay () T € RAT,
B= (o1, 0,...,ax)" € R4

Here the design matrix X € RV*(A+1) is never of full rank since it has A + 1 columns. In balanced
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design it has the form:

X=(1MA IA><A®1M)

1 1 0 0 0
1 0
Iyy 1y Oy Opr O Om 1 01
1y Oy 1m0 Opr ... Onp Oy
_ 1{‘4 O{” OJ_‘” 11_‘” OJ_‘” OJ_‘” — 1101 ...0 0 |eRrNx@A+,
1y Oar Oar Opp oo s Op .
17 O Opr Opr oo Opp 1m :
1 0 O 01
1 0 0 01

X is not of full rank because there are two many parameters. Namely there are A + 1 parameters
where there are only A different experimental conditions. This means that not all of these A + 1
parameter can be estimated by data, i.e. they are not identifiable. To avoid this problem one can
use the side condition that

However, this requirement is not convenient mathematically. It is more convenient to use no side
condition for the parameters. This is possible since the interest lies not in estimating (identifying)
all parameters. The interest is here in estimating and testing the difference of level effects, i.e.
we want to know whether the A levels provide different effects. This means that we are only
interested in specific aspects of the unknown parameter vector 3. For example, we may only
interested in A() = a1 — a9, the difference of the effects of the first and the second level. Statistical
methods as estimators and tests should provide for such aspects the same results independently of
the parameterization which is used.

9.1.2 Definition (Linear Aspect)
If L € RS*E then \(B) = L@ is called linear aspect of 3 € RE.

9.1.3 Definition (Linear identifiability)
A linear aspect A\($) = L is called linear identifiable at X (d = (t1,...,tn), respectively) if and
only if for all § € R® it holds

Xf=0 = LE=0
(Xq8=0 = LB =0, respectively).
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9.1.4 Theorem
The linear aspect \(3) = L@ is linear identifiable at X if and only if there exists K € RSN such
that L = KX.

Proof.
<: Clear.
=: Let be b € R® arbitrary and set

B=b—(X"X)"X"Xb.
Then Lemma 8.1.5 b) provides
XB=Xb-(X"X)"X"Xb)=Xb-X(X"X)"X"Xb=Xb—Xb=0.
The linear identifiability of A(3) = LB implies
0=LA=Lb—LIX"X)"X"Xb
and thus
Lb=L(X"X)"X"X0b
for all b € R®. This means
L=L(X"X)"X"X =KX
with K = L(XTX)"X . O

9.2 Estimators

9.2.1 Theorem R
If Z ~ Ny(Oy,0% Inxn), Y = XB+ Z, where 02 € RT and 3 € R® are unknown, then (X 3,52)
with
B=(XTX)"XTy,
1

62 = %yT (INXN — X(XTX)_XT> Y= N(?J ~ XB)(y—XB)"

is the unique maximum likelihood estimator for (X 3,02).

Proof. Since Y ~ Nn(X3,0% Inxn), the density of Y is given by

fo.02(y) = %e*ﬁ(%xﬁf(y%ﬁ)
7 (2mo?)2
so that

L(B,0% ) i= 108 [ 2(4) = 5 5y = XB) T (y = X5) - %log@m?)

1 N
= 5.9 (yTy — 2y X3+ ﬂTXTXﬁ) Y log(2ma?).
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With %ﬁuﬁ =2A0 for any A € REXE we obtain
G, 1
3L =5 (XX - XTy) =0

— X'Xp=X"y. (17)

Any solution 3 of (17) satisfies according to Lemma 8.1.5 b)
XB=XX"X)X'XB=XX"X)X"y=X3.

Since X (XjX)*XT is independent of the choice of the g-inverse according to Lemma 8.1.5 d), we
see that X (3 is unique. Hence every # which maximizes fz ,2(y) satisfies X 8 = X 3.

Moreover, for each 3 which satisfies (17), we have

i

0 1 ~ ~ N 1
5o l.%)| = gty = XD (- X) - 5
o 87 20 2 0
1 ~ ~ N 1
= (- XB)T(y—XpB) - = = =
=
o=~ (y - XB)T (y - X@) -2 (yTy —28TXTy+ B8 XTX B)
N N
1
= 5 y =2 X(XTX) " XTy+y X(XTX) " XTX(XTX)" Xy
=x (Lem. 8.1.5)
1 -
= ¥ (v7y -y X(XTX)"XTy)
I _ T v\~ T)
- v (INxN X(XTX)"xT) .
Then for each 3 which satisfies (17), it holds
0? ~L XX Ora
7L(ﬂ)0-2’y)‘ = o
82(ﬂ,0'2) (@02):(5732) O1xr _%3_14

which is a negative semidefinit matrix. Hence L(B,02,y) has a local maximum at each (B, 72).
With (8,52) also (X 3,5%) = (X 3,52) is a maximum likelihood estimator and this estimator is
unique. ]

9.2.2 Remark
The estimator X (3 of Theorem 9.2.1 satisfies

X =Py,

where P is the perpendicular projection matrix onto C'(X), i.e. XB is perpendicular projection of
y onto C(X) = {X3; B € RE}.
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9.2.3 Theorem _ _ R
Let be f = (X" X)~X Ty. Any estimate (3 with X3 = X3 satisfies

f € arg min (y — XB)" (y — XB),
BERE

i.e. 0 is a least squares estimator.

Proof. Because of X(X'X)” X" X = X (Lemma 8.1.5 b)), it holds for all 3 € Rf

(y—XB) (y—XB)=(y—XB+XB-XB)(y— X5+ X5 Xp)
= (y—XB) (y—XB)+(y— XB)"(XB - Xp)
+(XB-XB) (y— XB)+ (XB—XB)(XB - XP)
= (y—XB)"(y—XB) + - XX"X)"X"y) (X5~ XB)
+(XB-XB) (y—X(XTX)" XTy)+(XB-XB) (XB - XP)
= (W-XB)"y—-XB+ @ —y" XX X)"X)X(F-P)
+(B-8)TXT(y-X(XTX)"XTy)+ (X5 -XB)(XB - XP)
= (y—XB) " (y—XB)+y (X - X(X"X)" X"X)(B-p)
=X
+(B-8)T (XT - XTX(X"X)" X )y +(XB-XB)"(XB—XB)
XT
= (—XB) " (y-XB)+(B-8)"X"X(B-p)
> (y—XB)"(y— XP).

Thereby, we have equality if and only if X 8= X3 =X (XTX)" X Ty. O

9.2.4 Theorem R
IfY = XB+2Z,E(Z) = Oy, Cov(Z) = 0*Inxn, B(y) = (X T X)~ X Ty, and A\(B) = L is identifiable
at X, then:

a) La(y) is unbiased estimator for L{.

b) 5%(y) = N—rlk(X) y' (Inxny — X(XTX)"XT)y is unbiased estimator for o2.

c) La(y) and 52(y) do not dependent on the choice of the g-inverse.

(unbiased estimator = erwartungstreue Schétzfunktion in German)

Proof.
a) The linear identifiability implies the existence of K € R*N with L = KX. Hence according to
the linearity of the expectation and Lemma 8.1.5 b)

E(LB(Y)=EEKX (X'X)"X'Y)=KX (X'X)"X"E®Y)
= KXX'"X)"X"Xp=KXp=Lp

=X
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for all 6 € R".

b)Y = X3+ Z, E(Z) =0y, Cov(Z) = 0%Iyxy imply E(Y) = X3+ E(Z) = X3 and Cov(Y) =
Cov(Z) = 0?In«n according to Lemma 8.2.6 b) and h). Set P = Inxn — X(XTX)~XT. Then we
have tr(P) = N — rk(X) according to Lemma 8.1.11 ¢) and PX = (Iyxny — X(XTX)" X)X =
X — X(XTX)"XTX =0y according to 8.1.5 b). Lemma 8.2.6 i) provides then

. 1

BG* () = 50 EYTPY) = N0 (tr(P Cov(Y)) + E(Y)TPE(Y)>
_ ﬁk(X) (tr(PCov(Y))+E(Y)TPE(Y))
= g (Pt +ATXTPX 5) P N—Ui?m tr(P) =

¢) The uniqueness of Lﬁ(y) = KX (XTX)"X"y (see a)) and o2(y) follows from the fact that
X (XTX)~XT does not depend on the g-inverse according to Lemma 8.1.5 d). O

9.2.5 Lemma R
IfY = XB+2Z,E(Z) = Oy, Cov(Z) = 0*Inxn, B(y) = (X T X)~ X Ty, and A\(B) = L is identifiable
at X, then

Cov(LB(Y)) = L (X' X) LT o2

Proof. Since \(3) = Lf is identifiable at X, there exists K € RN with L = KX. Lemma 8.2.6
h) and Lemma 8.1.5 b) imply

Cov(LA(Y)) = Cov(KX (X' X)X YV) =KX (X 'X) X Cov(¥)X (X TX) X" K"
= KXX'X)" X"Cov(2)X (XTX) X" KT =KX (X" X) "X "0’ InynX (X" X)"XTKT
= KXX' X)X X(X'"X)X"TK'o?=KX(X'X)X"K'o*’=L(X"X)"L" 02.D

n'g

=X

The question is whether L3(y) = L(X T X)~X "y is the best estimator for L3. Estimators can be
compared by their covariance matrices. Since there is no natural ordering of matrices we define for
matrices A, B € RVXN:

9.2.6 Definition

A<B:e ¢ Ac<c'Bc forallcc RN < B — A is positive semidefinite.

This is no complete ordering of matrices. It could be that matrices are not comparable with respect
to this ordering.

9.2.7 Theorem (Gauss-Markov theorem) R
IfY = XB+2Z,E(Z) = Oy, Cov(Z) = 0*Inxn, B(y) = (X T X)~ X Ty, and A\(3) = L is identifiable
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at X, then for all linear unbiased estimators Ay for A\(3) = L3 we have

Cov(LB(Y)) < Cov(AY).

Proof. Set B = L(X X)X so that L3(y) = By. Since L is identifiable, there exists K € RSN
with L = KX. Since Ay is unbiased estimator for L3, we have

KXB=L3=E(AY) = AE(Y) = AXS

for all § € R®. This implies KX = AX and

(A—-B)B" =(A-KX(X'"X) X" X(X"X)"X"K"
= AXX'X)X'KT-KX(X"X)"X"XxX(X"X)"X"K"
=X
= AXX'X)X'KT-KX(X"X)"X'"K"
KXX'TX)"X"TKT - KX (X"X)"X"K" =0g.

We obtain with Lemma 8.2.6 h)
Cov(AY) = ACov(Y) AT = ACov(Z) AT = Ac?Inyny AT = 02AAT

= 0 (A-B+B)A-B+B) =¢?>|(4A-B)Y(A-B)" +(A-B)B"+B(A—B)" +BB'

=0 =0

= 2 ((A —B)(A-B) + BBT>

T (as foLAY)

> o2BB Cov(BY) = Cov(LB(Y)),

since ¢ (A — B)(A—B)T¢ >0 for all c € RV, O

9.2.8 Example (One-way layout: Continuation of Example 9.1.1)
Assume that level ay (shortly level 1) of factor A is the control level (the placebo, the standard crop
etc.) and that the effects of the A — 1 other levels of the factor should be estimated as additional
effect to the effect of level 1. These additional effects can be positive or negative. Assume that the
observations/measurements are ordered according to the factor levels so that
Y= (yl""vyN)T = (ylla-"zlela"' yYALs - - - 7yANA)T = (yil:my;;’ 7?/]4—*)—'—

)

where N = Ny + No + ...+ N4 and

Yax — (yal) .. ayaNa)T
foralla=1,...,A. Set also

Na
Yae = 1Taya* = Zyana

n=1
. 1
Yae = E Yae,
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fora=1,...,N, and

A Ng N
Yoo = Zzyan = ZyTU
a=1n=1 n=1
L 1
Y=Yee = N Yoo

Non-singular parameterization:

If

(tn) = (Wgy(tn), Wizy (En), - -, Way () T € RA,
5 = (M17M27 ... 7/J'A)T € RA7

then the interesting aspect A(3) is

Ho — H1
oy =| T | =rsert
HA — 1
with

L= (—lac1 | Ia_1yx(a_1y) € RATD*A

The design matrix X has here in the general case the form

1n, On, O, NS O,
On, 1, On, On, On,
X — O, O, 1N, .. Ong O,
ONA—I ONAA ONA—I s 1NA71 ONA—I
On, U Oy, ... On, In,
so that
—1
Ny O o ... 0 0
0 Ny O 0 0
0 0 Nj 0
(XTX)” = . .
Njg_1 O
0 0 Ny

1 1 1
= diag(Nl,Ng,...,NA)_l:diag( — >
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where diag(by,be,...,bn) € RN*N denotes a diagonal matrix with diagonal elements by, ba, ..., by.
Since
Yie
Y2e
Xy=1 "1,
YA
we obtain
NLl yl' ylo
~ N U2 Yo
B=(XTX)XTy=x"x)"xTy=| ™ =
1 _
N, YA YA
which is the unique estimator for 3. Then
Yoo — Y1a
g L] - y L]
LXTX) X Ty=| 7% 7" | era?
Yae — Yta

is the unique estimator for A(3) = LB. That A(8) = LS is identifiable at X follows with Theorem
9.1.4 from the fact that X " X is non-singular since

L=L(X"X)"'X"X =KX.

Control parameterization:
Here we have (see Example 9.1.1)

2(tn) = (1, gy (tn), - -, Lyay (t0)) | € RA,
8= (u,ag,...,aA)T € RA,

so that

with

L= (0a-1|Ita—1yxa-1)) € RA-1DxA
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is the interesting aspect. The design matrix X has here in the general case the form

1n, On, O, On, O,
1N, 1N, On, On, On,
1N On 1N On On
X — 3 3 3 3 3
1NA—1 ONA—l ONA—I v 1NA—1 ONA—I
1n, U U ... Ony In,
so that
-1
N No N3 . Na_1 Ny
Ny Ny O 0 0
N3 0 Nj 0 0
(XTX) = .
Na_1 O 0 Njga_1 O
Ny 0 0 Ny

-1
(N b’
B b diag(Na, N3, ..., N4) ’

where b = (N2, N3,...,Na)T. The inverse of XX is given by Lemma 8.1.6. For applying this
lemma, set B = b, A = diag(Na, N3,...,N4), and C = N. Then

1 1 1
E=N —b"diag(No, N3,....NA) *b=N —b'di — = ... — )b
lag( 25,4V3, ) A) 1ag NQ’Ng’ 7NA
A
= N—ZNa:Nl,
a=2
1
E-BTA = ~ b diag(Na, N3, ..., Ny) !
1
1 1 1 1 1
= —b'diag(—,—,...,— ) = —1}
Nl 1ag (N27N37 ’NA> Nl A-1

AV + AT'BE"BTAT!
1
= diag(Na, N3,...,N4) "' 4+ diag(Na, N3,...,N4) "t A b diag(Na, N3,...,Ns)~!
1

= diag <i 1 L) LIA,11£ )
Ny" N3 "7 Ny Ny -
Ny’ N3’ """ Ny Ny

such that

(XTx) =
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With
yoo
Y2e
Xy=| "7 |,
YA
we obtain
Yoo Ll—r ( T
~ N arla1(y2e, s yal)
B=(XTX)IXTy = Lo
_g}’\f;l.lA—l + dlag(yNL;7 yWS;v DRI 111\1741;) + NLllA—l 11;71(212-7 s 7on)T

A
]\[L1 (y.o - Za:Q ya.)
. _ _ 1 A
diag(7a,, Y3er - UAl) — 1A—1ﬁ1 (?/.- - Zazg ya.)

Yie
Y2e — Y1
== y3o - ylo
Yie — Yl

which is the unique estimator for 3. Then

Y1e _ _
_ _ Y2¢ — Yle
Y2¢ — Yle 7 7
_ J— p— 3. - 1. —
LIXTX) ' X Ty = (0ac1 [ Lactyxam) | U =P | = : e RA!
Yae — Yle

Yae — Yle

is the same unique estimator for A(3) = L as we obtained for the non-singular parametrization.
That A(B) = Lg is identifiable at X follows as for the non-singular parametrization from the fact
that X T X is non-singular.

Singular parameterization:
Here we have (see Example 9.1.1)

.%'(tn) = (1, H{l}(tn), ]I{Q} (tn), RN H{A}(tn))T € RAJrl,

5 = (M,Oél,OéQ,... 7aA)T € RA+1'

so that

A(ﬁ):(ag—al,...,aA—al)T:Lﬁ
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with
L= (OAfl | — 14 | I(Afl)X(Afl)) € R(Ail)X(AJrl)

is the interesting aspect. The design matrix X has here in the general case the form

1y, 1v Oy, On, ... On, Oy
1, On, 1N, On, ... Opny On,
vy, Ong Ony  Iny  -.. Ony  On,
X —
1NA71 ONAA ONA—I ONA—I s 1NA71 ONAA
1n, U U On, ... On, 1n,
so that
N N, Ny N3 ... Nai Na
N N 0 0 0
No 0 Ny . 0 0
XTX = N3 0 0 N3 e 0 0
Nayi O O 0 ... Niyg O
Ny 0 0 0o ... 0 Ny
T
_ (N b € RATDX(A+1)
b diag(Ni, No,...,Ny) ’
where b = (N1, Na,...,N4)". Here XX is singular so that only a g-inverse can be calculated.

The g-inverse of X' X is given by Lemma 8.1.6. For applying this lemma, set B = b, A =
diag(N1, Na,...,Ny), and C = N. Then

1 1 1
E=N —b"diag(Ny,No,....NA) *b=N —b'di — = ... — )b
lag( 1,4V2, ) A) 1ag ]\[1 ) N2 ) ) NA

A
= N-> N,=N-N=0,

a=1
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Then E~ can be any value ¢ € R since 0c0 = 0. Hence set E~ = ¢ € R. Then

E-BTA™ ' =c¢b"diag(Ny, No,...,Na)~?
. 11 1
= c¢b'diag (E, Ny —) = cl}
AV 4+ AT'BE"BTAT!

= diag(Ny, No, ..., Na)~t +diag(Ny, No, ..., Na)“tbeb diag(Ny, No, ...

di 1 1 1 telall
= diag | —, —,...,— c
g NlaNz) 7NA Ala
1 1 1
= di _— ., — 1
lag(Nlez’ 7NA>+C AxXA
such that
c —ch
(XTX)™ =
—cly diag(NLl’NLg”"’NLA)—}_ClAXA
With
y..
Yle
Xty=1|"" [,
YAe
we obtain that
R . . ClYee — cl} (yl,,...,yA,)T
=X X)X y=
—cy,.1A+diag(yNLI,yNi2',...,%‘;)—kclAlX (Y1as - - -

& (yo. - Zf:l ya.)
diag(glny%’ cee ang) —lac (y-- - Zf:l ya.)

0

Y1,
= Y2

YA

G Na)!

L YAl) |

is a least squares estimator for 3 for all ¢ € R. Hence B is unique although (X " X)~ is not unique.
However, 3 is not the only least squares estimator since 3 + uy with v = (1,—1,—1,...,—1)T
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and p € R is also a least squares estimator according to Theorem 9.2.3 since Xy = 0 so that
X0B = X(B+ py). The property X~ = 0 for v # 0441 means according to Definition 9.1.3 that
is not identifiable at X. However, A(5) = L@ is identifiable since

L= (OA_1 | —1a-1| I(A—l)x(Afl)) =KX

for

14T 14T

-v1h w0 0o ... 0
14T 14T

-4 0 1% 0

K=| -%1§ 0 0 w1y, -+ 0 e RA-XN,

14T 14T

-3y, 0 0 0 o w1,

In particular for any E = B—k wy with ¢ € R we have

L3 =1 ((XTX)"'X Ty +p)

1% _ _
_ y2. - ylo
Y1e — K 7 7
_ 3¢ ~ YJle _
= (041 | —1ac1 [ Lacnxa—n)) | Y2 =1 | = : e RATL
_ Yae — Ule
Yae — 1

This is the same unique estimator for A(8) = L as we obtained for the other parametrizations.

Since all estimators for the additional effects of the A — 1 factor levels which are not the control
are unique and do not depend on the parametrization we can calculate the covariance matrix of the
estimator with the non-singular parametrization:

Cov(LB) = c? L(X ' X)'LT

2 - 1 1 _11—1
= o (“lact Hasnxa-n) diag ( 5o Ta-nx(a-)
—1)x —
, - A-1
g _1 — I - -
o ( A1 | Ia 1)x (A 1)) (diag(%---:ﬁ))
_ oL di : ;
_ o F11(14_1)><(14_1) + lag E””’N—A .
For the special case of A = 2 we obtain

3) = var(Vo, Vi) =o? (2 4+ L
Cov(Lp) =var(Yo, — Y1.) =0 <N1+N2 .

Hence minimizing the variance of the estimator y,, — 7, leads to the same optimization problem
as in Exercise 2.4.1.
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9.3 Tests

9.3.1 Example (One-way layout: Continuation of Example 9.2.8)

The aim is to test whether the different levels of the factor A have different effects for the oberser-
vations. If they do not have different effects then we say that the factor A has no influence. Hence
we have to decide between

Hj : Factor A has no influence
versus
H; : Factor A has an influence.

The null hypothesis Hy can be expressed in different forms for the different parametrizations:

Non-singular parametrization:

HQ:,U,1:/L2:...=,U,A
<
Ho — H1
M3 — H1 . _
Hy: LB = _ =0 with L = (~1a-1 | Iia_1)x(a_1)) € RATD*4,
na — p1
e
Hy:Y,=pu+2, foraln=1,... N
e

Hy:EY)=puly

Hy:E(Y) € C(1y).
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Control parametrization:

Hy:ao=a3=...=aa=0
<~
o2
Qs
Hy:LB=| " | =0with L= (04—1 | [(a_1yx(a_1)) € RATD*A,
aA
<~
Hy:Y,=p+2, foraln=1,... N
<~
Hy:E(Y)=puly
<~

Hy : E(Y) S C(lN)

Singular parametrization:

Hy:ao1=as=...=ay
—
g —
Hy: LB = 043?@1 =0 with L = (OA,1 | —1a_1| I(A—1)><(A—1)) c RA-Dx(A+1)
ap — Qg
—
Hy:Y,=p+2, foraln=1,...,N
—
Ho:E(Y)=ply
<~

Hy : E(Y) S C(lN)
We see that the formulation of the null hypothesis via E(Y) € C(1y) does not depend on the

parametrization. Moreover, we have C(1x) C C(X) for each parametrization.

The general testing problem in linear models
In the model Y = X3+ Z with Z ~ Nx(0xn, 02 Inxn), the following testing problem is considered:

Hy: E(Y) e C(Xp) versus H;: E(Y) ¢ C(Xo),
Hy: E(Y) = Xgy for some v € R? versus Hj : E(Y) # Xgy for all v € R?,

where C(Xy) € C(X) and X, € RV*X@Q,
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9.3.2 Theorem
Every likelihood ratio test for Hy : E(Y) € C(Xy) versus Hy : E(Y) ¢ C(Xo) depends on y only
via

y' (P—Py)y
y"(Inxn — P)y’

where P and P,y are perpendicular projection matrices onto X and X, respectively.

Proof. Note that P = X(XTX) X" and Py = XO(XOTXO)’XOT according to Lemma 8.1.10. In
the full model Y = X3 + Z, we have according to Theorem 9.2.1 and its proof

ol

: 527 (=XB)T (y—XB 1
sup  fg,2(y) = e XP) T w-XP) _

= o v €
P (2n5?)V P2 (2752) /2

since 02 = +(y — XB)T(y - XB) = %y (Inxn — P)y. Analogously we obtain for Y = v X+ Z

1302(0) = ——prse?
sup 2(y) = ——=—~e¢
~ERQ 62 R+ P (2mag)N/2
for 53 = +(y — Xo) " (y — Xo7) = vy (Inxn — Po)y = +y (Inxn — P+ P — Py)y. This implies
o\ X
SUPgern,o2ert f3.02(Y) <@ > 2
SUP~eRQ,02eR+ fg’(ﬂ (y) o?
N N
_ (yT(INxN — Py + yT(P — Po)y> 2 _ (1 n yT(P — Py)y > 2 0
yT(Inxn — P)y y"(Inxn — P)y

9.3.3 Theorem
Let be I = IN><N-

TXT(P-P)X
I O s i |
B YT = P)Y ~ (1K~ P),0),
—L Y (P-R)Y TyvT
c) rk(PIPO) T( " ~F<rk(P—Po), rk(I — P), B X (P;PO)X5>,
T Y (I-P)Y o

1
d) Under Hy : — YT(P —R)Y ~ X2 (rk(P — Py), 0),
o

1 T

1 T(7 —
rk(I—P)Y (I -Py

e) Under Hy : ~ F (rk(P — Ry), rk(I — P), 0).
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Proof.
a) C(Xy) C C(X) implies P Py = Py and with the symmetry Py P = Py as well so that

(P—P())(P—P()):PP—PPQ—P()P—l-P()PO:P—PQ—P0+P0=P—P0.

Hence also P — Py is symmetric and idempotent. Hence the assertion follows from
1y ~ Nn(2XB,Inxy) and Theorem 8.3.11.

b) The assertion follows similarly as in a) since I — P is also symmetric and idempotent and
(I -P)X =0.

¢) YT(P—Py)Y and YT (I — P)Y are stochastically independent according to Theorem 8.3.6 since

(I-PI(P-P)=I-P)(P-P)=P-P—PP+PPy=P—Py—P+P,=0.

Then the assertion follows from a) and b) and the definition of the F-distribution.
d) Under Hy we have

BTXT(P = R)XG =~ X (P~ Po)Xoy =77 X (Xo — Xo)y = 0.
e) follows from d) and c). O

9.3.4 Remark

rk([l—P) Y T(I—P)Y is the unbiased estimator for o2 of Theorem 9.2.4. Thereby we have rk(I — P) =

N —rk(X) according to Lemma 8.1.11.

9.3.5 Corollary
Let be q(1 — «) the 1 — a-quantile of the central F-distribution with rk(P — Py) and rk(I — P)
degrees of freedom, then

1 T
tk(P—ry) / (P —Po)y

Iy _any () with V(y) =
{Vy)>q(1-a)} rk([l—P) yT(I— P)y

is a-level test for Hy : E(Y') € C(Xy) versus Hy : E(Y) ¢ C(Xy). Its B-error is given by

F - |
F(I"k(P—PO), rk(1-p), BTXT((I:72—PO)X5> (q(1 —a))

Sometimes it is easier to formulate hypotheses in form of
Hy: LB=1 versus Hy: LG #1

with L € RS*® | = Lb € RY for some b € R®. Thereby, A\(8) = L shall be identifiable at X. To
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express this null hypothesis in the above form note that we have for the model under Hy:

Y=X3+Z2 LB=Lb

L=KX
<~
E(Y)= X8, KX(8-b) =0
PX=X
<~
E(Y - Xb) = X(8—-b), KPX(8—b)=0
<~
E(Y — Xb) € C(X), E(Y —= Xb)LC(PTKT)
—

E(Y - Xb) e C(X)NC(PK ).

9.3.6 Lemma
Xo = P — Pg with Pk = PK"(K PK")™ K P satisfies
C(P—Pg)=C(Xo)=C(X)nC(PK")*

and P — Pk is perpendicular projection matrix onto C(P — Pk).

Proof. Let be x € C(X)NC(PK"):. Then x = X for some 8 € Rf and 0 = KP"2z = KPx so

that Pgx = 0 and
(P—Pg)Xp=PXp—Pgx=Xp—-0=u,

which means « € C(P — Pg).
Conversely, let be z € C(P — Pk). Then z = (P — Pk)v for some v € RY and with this

r=P—-Pxv=XX"X)" X" -X(X"X)"X"K'"(KPK")"K P)v
X ((XTX)_XT ~(X"X) XK' (KPK') K P) v,

which implies z € C'(X). Moreover,
KP'z=KP"(P— Py

KP'Pv—KP'PK'(KPK'") K Pv

KP'w—KP'PK'(KP'PK")"KP"v

:KPT(Lem. 8.1.5 b))

KP'w—KP"v=0,

so that z € C(P K ")t
Furthermore, Py = PK (K PTPKT)"K P' is perpendicular projection matrix onto P K ' ac-
cording to Lemma 8.1.10, so that Px Px = Px. Since P Px = Pg and PxP = Py because of
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symmetry, we have
(P—PK)(P—PK) =PP—PxkP—PPg+ PgkPyx =P — Py — P+ Py = Pg

so that P — Pk is perpendicular projection matrix onto C'(P — Pk). O

9.3.7 Lemma R
Let be Py= P — Pg with Pk = PK'(KPK")"KP,L=KX,l=Lb,and = (X'X) X"y
Then

a) (y—Xb)"(P=P)y—Xb)= (LB [L(XTX) L] (LB -1),

b) (B—b)'XT(P—P)X(B-b)=(LA-1)T[LX X)L (LB-1),
¢) rk(P— PRy) =rk(Pk) = rk(L).

Xb)T(P = Po)(y— Xb) = (y— Xb) Px(y— Xb)
= (y—Xb)'PK'(KPK")"KP(y—Xb)
(KPy—KPXb)"(KPK") (KPy—KPXb)
(KX(X"X) " XTy— KX (KX(X'X) " XTK") (KX(X"X)"X"Ty—-KXb)
(LB - D)TLXTX) LT (LB -1).

K
K

The assertion b) follows analogously.
c¢) Moreover,

rk(Py) < rk(K P) = rk(K X(XTX)"XT) < rk(KX) = rk(L)
and

rk(L) = rk(KX) = k(KX (XTX)"X"X) <rk(KX(XTX)"XT)

— T
PR (kX (XXX TX (X)X TR = k(KX (X X)X KT

= rk(KPK")=1k(KPK'(KPK'")"KPK")
< rk(PKT(KPK")"K P) = rk(Pg). O

9.3.8 Theorem

)

o o2

_ A o
@) =5 (L7 —l>T[L<XTX>*LTHLﬁ—l>~x2 <rk<L>, (LG =D TILXTX)" LT (LB ”)

b) Under Hy: LB =1 (Lﬁ —)TL(XTX)" LT (LB —1) ~ X (rk(L),0) .
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Proof. Since 2(Y — X b) ~ Ny(2X(3 — b),Inxn), the assertion a) follows from Theorem 9.3.3
and Lemma 9.3.7. The assertion b) is a immediate consequence of a). O

9.3.9 Corollary
Let be q(1 — «) the 1 — a-quantile of the central F-distribution with rk(L) and rk(I — P) degrees
of freedom, L = KX, and l = Lb, then

s WA )R TX) LT (B )
with V(y) = T Py

rk(r—p)

H{V(y)>Q(1—a)} (¥)

is a-level test for Hy : LB =1 versus Hy : L{3 # 1. Its B-error is given by

FF(rk(L), rk(1—p), (Lﬁ—z)T[L(XTX)—LT]—(Lﬁ—l)) (¢(1—a)).

o

9.3.10 Remark (Designing experiments)
The aim of a good design is to minimize the B-error of the test. This means here that the non-
centrality parameter

(LB—1)T[L(XTX) LT (LB —1)

should be as large as possible for all g with LG # [. This is achieved if
L(X™Xx)"LT

is as small as possible. Since L(X " X)~ LT is the covariance matrix of the estimator L(X " X)~X Ty
(see Lemma 9.2.5), we realize that testing and estimation leads to the optimization problem for
designing experiments.
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10 ANOVA models

10.1 Further lemmas from linear algebra

10.1.1 Lemma
For A e N and Py := (IA><A — %1A1—£) it holds:

) A1)\ 0 0}
a - )
1a Taxa 0a Taxa

b) P/; = Py.

Proof.

A1) 0 0} A1)
< 1a Iaxa ) < 04 Taxa ) ( 1a Iaxa )
B A1) 0 0y \ (A 1}
; ( 1a Iaxa ) ( 1a Taxa ) ; ( 1a Taxa ) '

b) Since P4 is perpendicular projection matrix onto C(14)* (see Lemma 8.1.10 b)) we have
PAPXPA = PpsPsP4 = Py. ]

10.1.2 Lemma
If A € R4 js regular and symmetric, b € R4 with 14+b" A= # 0, then

A lppT AL
A Nl g -~ =
(A+ob) T+bTA 1D
Proof.
A~ lppT AL
A (a2 = &
(A+ob) ( 1+bTA—1b>
bbT AL b(bTA b)bT AT
= I boT A7 — —
Axa T+ T +0TA 1D T+ 0TA 1D
bb A1+ b A1)
_ T -1
= IA><A+bb A 1—|—bTA_1b

= Taxa. U
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10.1.3 Lemma
For A, B € N it holds

AB B1l} A1} 0 0} 05
Bls Blaxa 1al} =| 04 %Iaxa Oaxp |
Alg 1l Alpyp O Opxa +Pp

where PB = (IB><B - % 1B 1;)

Proof. Since Pp is perpendicular projection matrix onto C(15)* (see Lemma 8.1.10 b)), we have
Pplp = 0p and 1;Pg = 05. This implies

AB B1l} A1} 0 0} 05 AB B1l)  A1l}
Blsa Blaxa 1al} 04 Hlaxa Oaxn Bl4y Blaxa 1al}
Al 1pl}y Alpyp 0p Opxa =Pg Alg 1pl}  Alpysp
0 1) 05 AB B1l} A1}
= 04 Taxa Oaxn Blay Blaxa 1al}
0p $lpl) Pg Alg 1pl} Alpxs
AB B1) A1}
Bla Blixa 141}

A
Alp 1pl} 5 1l + APy

=AlpxB

10.2 Balanced one-way ANOVA

In the balanced one-way layout, there is only one factor A with A levels and each level is observed
M times so that N = M A is the total sample size. We will use here the singular parametrization:

Yin=p+ Qg+ Zgpn, forn=1,..., M.
Then (see Example 9.1.1)

X =0apm | Taxa @ 1n) = (1a | Laxa) ® 1y eRAMX(A‘Fl).
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The null hypothesis

Hjy : Factor A has no influence
Hy:a1=as=...=ay

HO : Lﬂ =0 with L = (0,471 | - 1A,1 | I(A—1)><(A—1))
shall be tested via the test statistic
L (LB~ )T [L(XTX)"LT) (LB - 1)

rk(r)
1 . T(T —

We have

T

T 14 T A1
X'X = @1y - (1a|Taxa) ® 1y = ® M
AxA 1a Taxa

so that according to Lemma 10.1.1

0 0} 1 1 0 0}
(XTX)" = 4 )e=== A
04 Taxa M M 0a Taxa

This implies

04 Taxa

o 1 0 0}
L(X ' X)"L =(0a-1| — a1 |I(A—1)><(A71)) 5V -
Ta—1yxa-1

T
OA—l

1 e 1

= (0a—1 ] = Ta—1 | Ta—1yx(a-1)) Aol = <1A—11L1 +I(A71)><(A71)) :

Iia—1yxa-1
Lemma 10.1.2 provides

Lol >

1
(L (XTX)_LT) =M (La-yx(a-1) — 7 —
1+ 1), 14

la_il) 1
= M (I(A—l)x(A—l) - é) =M (I(A—l)x(A—l) -7 1A—11£_1> .

1+A-1
Moreover, we have

_ 1 1)
L(XTX) XT:M(OA—l | — 141 |I(A—1)><(A—1)) < A ) ®1L
Taxa

1

= 37 (Fla [Hueyxa-n) ® 1y
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so that

X(XTX)" LT (L(XTX) LT>71L(XTX)*XT

—1T 1 .
) ( o ) (Fia-pecaon = 1aeath ) (Lt [aeay) © o7 1 L
_11; 1 A-1 1 - 1 .
— < » ) <—1A_1 + 1 la—1 | Ta—1yxa-1) — 1 las1ls ) ® i 1y 11,
1 1 1
1, T -
- —gtaa ] —— 1l 1y 1
<I Coeia )(AAl\(Al)x(Al) AA1A1>®MMM
_1T 1T 1
- 1 ! + A=l X — 1M 1—](/[
—alaa I(A 1)x(A— 1) T laal)y M
1

= P —1 11,
A®MM

T

Hence, we obtain for y = (y11, ..., Y1M, -+ -y YALs- - YaM) = (Y1,---,YN)

B
= My <PA®% > <PA®$ L)sz > Gow —7..)°

with 7,, = M Zm 1 Yam and g,, = AM Za 1 Zm 1 Yam. This provides the numerator of the test
statistic. For the denominator of the test statistic, we calculate

- 0 0} 1 1) T
PZX(X X) X Z((lA‘IAXA) ®1M) 04 Liua ®M I ® 1y,

= (1| Iaxn) 0 0 L 9 a1l = Taxa ® — 1a 1
A AxA OA IA)(A IA)(A M M Lpr AxA M M Lpr

so that

1
I—P=1Iaxa @ Ingxns — Iaxa @ MlMlL

1
= Taxa ® (IMXM - MlM 1}4) =Iaxa ® Py

and

A M
= Z Z (Yam — ya-

a=1m=1
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Since rk(Iaxa ® Py) = A(M —1) and rk(Py ® + 1M 17 ) = A—1 we obtain the ANOVA table:

Factor ‘ Matrix Sum of squares Rank
A | Pa® g luly MY w7, A-l
Brror | Lixa ® Py Yot gt (Wam — Far)® AM = 1)

Since the Grand Sum of Squares can be expressed as
A M ) .
Z (Yam — y.. = T <IA><A ® Inrxmr — (Z 1a 11;) b2y (M 1ps 1}\—4)) Y

a=1m=1

and

1
Iaxa ® Pyy+Pa® (M Lar 1&)

1 1 1 1
= Taxa @ Inscns — Taxa ® (M iy 1&) + Taxa ® (M Lo 1&) — (Z 1a 1}) ® (M Lo 1&)
1 T 1 T
= Taxa® Iyxm — ZlAlA & MlMlM )

we see the decomposition of the Grand Sum of Squares also via the matrices.

The same result is obtained if the other parametrizations are used. In particular, the derivation via
the non-singular parametrization is easy (Exercise!)

10.3 Balanced two-way ANOVA

In the two-way layout, we have two factors, factor A with A levels and factor B with B factors.
The observations are here:

Y11« = (Y111, .- Y11ny,) | the vector of observations for level combination (1,1),
Y12« = (Y121, - - - ,y12N12)T the vector of observations for level combination (1,2),
Y18« = (Y1B1, - - - ,leNlB)—r the vector of observations for level combination (1, B),
Y21« = (Y211, - - - ,y21N21)T the vector of observations for level combination (2,1),
Yo« = (Y2B1, - - - ,ygBNQB)T the vector of observations for level combination (2, B),
Yarx = (Yai1, - - ,yAlNAl)T the vector of observations for level combination (A, 1),

yap« = (YaB1,- .- ,yABNAB)T the vector of observations for level combination (A4, B).
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If the design is balanced, then each level combination a and b is observed M times so that Ny, = M
for all a = 1,...,A, b = 1,...,B and the total sample size is N = M AB. Here we will only
consider balanced designs.

Non-singular parametrization
E(Yopm) = pap forall a=1,...,A,b=1,...,.B,m=1,.... M
and

6: (M117--'7ﬂlB7M217~-aMQB,---7NA17---,MAB)T

X =1Iaxa @ Ipxp ® 1.

Singular parametrization
EYabn) =p+ g+ 0p+7ap forall a=1,...;4, b=1,...,B,m=1,....M

and

T 1+A+B+A-B
ﬂ:(Hyal)”'aaAaﬂl)'”7ﬁB)’ylla"'7rle)”°a’yAla"'a’YAB) GRJr o )

X=(14®1p® 1y | Taxa ® 1p @ 1y |14 ® Ipxp @ 1y | Taxa ® Ipxp @ 1n).
The following hypotheses are considered:

H{': There is no interaction between factor A and factor B

H{': Factor A has no effect
HY: ay=...=aa=0,

HéB : Factor B has no effect

The advantage of the singular parametrization is that the hypotheses can be easily formulated.

We start with the hypothesis Hé. We use the design matrix of the non-singular parametrization,
i.e. X =1Iaxa ® Ipxp ® 1) for the full model and express the reduced model of Hé via the design
matrix

Xir=1a®1p®@ 1y | Iaxa @ 1p @ 1p |14 ® Ipxp @ 1)
= X1 ® 1y
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with

Xr=(1a®1p | Iaxa ® 1p | 1a ® Ipxp).
Then we test in the model E(Y) = X3

HI:E(Y)e C(X;) versus HY:E(Y) ¢ C(X)).

To calculate the test statistic, note that

1 ®1}
X[ Xi=| Inixa® 1} | Q4@ 15| Taxa ® 15|14 ® Ipxp)
1} ® Ipxn
A®B 1,®B  A®1j AB B1l} A1}
= 14®@B Iaxa®B 1,®1}% = | Bla Blaxa 1al}
Al 1)l A®Ipxp Alp 1pl} Alp«p

Lemma 10.1.3 provides

L 0 0} 0% 00 0j®0 0®0f
(XITXI> = 04 £1axa Oaxp | =] 04®0 Iya®5 04®1]
O  Opxa %PB 0®0p 0}@03 %@PB

so that

Pri=X; (fcp},) X/

000 0,®0 0®0f 1} ®1}
= X7 | 0400 Inxa®f 04®15 Tnxa ® 1%
0®0p 0,®0p +®Pg 1} ® Ipxs
0}, ®0%
= (1a®1p|Iaxa @ 15|14 @ Ipxp) | Iaxa ® 31}
%1—£®PB

1.+ 1. 1

IAXA@ﬁlBlgﬂ-ZlAlA@PB.

For X := T4y 4 ® Igxp, it holds

P = X(XTX)i)}T = Iaxa ® IpxB
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so that
P—P

1 1
= Laxa®Ipup —Iaxa ® 5 lpl— 2141} © Pp

1
= Iaxa® PB—ZlAlz ® Pg =Py ® Pp.

Since any Xy = )Z'o ® 1,7 satisfies
Xo(Xg Xo) Xy = Xo® 1(Xy Xo@ M) X] ®@ 1},
- T 1) = S sTo o 1
= Xo® 1y ((XOTXO) ® M) X, @11, = Xo(Xg Xo0) X0 ® 7 Ians
we obtain for P = X(X"X)" X" and P; = X;(X] X;)~ X/

~ =~ 1 1
P_PI:(P_PI> & MlMlL:PAg’PB@ MlMlL.

Moreover

1
IapMmxaBm — P =Iaxa®IpxB @ Inixs — Taxa ® Ipxp ® i ian:
= IA><A®IB><B & PM

and
rk(Iaxa ® Ipxp ® Py) = AB (M — 1),
1
tk(Pa ® Pp @ 27 1m Ly) = (A-1)(B-1)
so that

anE Y (Pa®Pe®grlaly)y
m YT (Iaxa ®Ipxp ® Pu)y

is the test statistic for testing H{ : E(Y) € C(X ) versus Hf : E(Y) ¢ C(X;). It has a central
F-distribution with (A —1)(B — 1) and A B (M — 1) degrees of freedom under H{.

In next step, we derive the numerator of the test statistic for testing
HP . Factor B has no effect <= HP: E(Y) e C(Xp),
where

Xp=1a@1p@ 1y | Iaxa®@1p®@1p) = (1a | Iaxa) ® 1pum.
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The full model is the model without interactions, i.e. we test HP in the model E(Y) = X;3;. From
the results for the one-way layout with the singular parametrization, we obtain

_ 1 1 1
XB(XEXB) Xg =Iaxa® B 1pum 11TgM =Iaxa® B 1p 1; ® i 1 1}4

so that
Pr—Pp=X/(X] X))~ X] — Xp(XLXp)~ X}

1 1 1 1
— <IAXA® §1B1g+zu1} ®PB—IAX,4®§131§> ® MlMlL

1 T 1 T
= —1y1 P — 1a 14,
AAA® B®MMM

For testing

H{': Factor A has no effect <= H{': E(Y) e C(Xa)
in the model E(Y) = X0, where

Xa=(1a®@1p®@ 1y [1a®@Ipxp ® 1y),
we obtain analogously

Pr— Pa=X1(X] X1)"X] — Xa(X 1 X4)" X4

= PA® %1312 ® %hwl}m

However, we obtain this projection matrix also for testing

Hg': Factor A has no effect < H{': E(Y) e C(1ly)

in the model E(Y) = Xp[0p since this is the test problem of the one-way layout. Similarly,

1 1
— 141l @ P — 1 1]
) Al ® B®M MLy

is the projection matrix for testing

HP . Factor B has no effect <= HF: E(Y) € C(ly)

in the model E(Y) = X404. Hence, it does not matter in which order we regard the submodels.
Setting Jr = % 1p, 1; for any L € N, the ANOVA table has now the form
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Factor Matrix Sum of squares Rank
B Ja ® Pp ® Ju M A Y3 Fae — Tons)? B -1
A Py ® Jp ® Ju M B Y0 (Jaue = Tous)? A-1
AB | Pa@Pp @y M o 0 Fabe ~ Taee — Ture T )’ (A= 1)(B 1)
Error | Inxa ® Ipxp ® Pu S i oy (Yabm — Tapa)? AB(M —1)

Again, we obtain for the Grand Sum of Squares with Py, = Ir«r — Jr.

A

Z Z Z Yabm = Yaes)” =Y (Laxa @ Ipxp @ It = JA® Jp @ Jur) y
a=1 b=1 m=

= y' (Ja®Ipxp @ Ju—Ja @Jp @ Ju
+IAxA®JB ® Juy—Ja ® Jp @ Ju
+Iaxa ® IpxB @ Jy —Iaxa @ Jp @ Iy —Ja @ Ipxp @ Jy+Ja ® Jp @ Ju
+ Taxa @ IpxB @ Inxm —Iaxa ® Ipxp @ Ju) y

= 4 (Ja®Pp ® Ju+Pa®Jp® Jy+Pa® P @ Ju+1Iaxa @ Ipxp ® Pu) y

E

10.4 Balanced hierarchical models with two factors

Here we assume that the factor B is nested with the factor A. This means that the levels of factor
B appear only for specific levels of factor A. If for example the levels of A are some species and B
are subspecies of these species, then the subspecies belong only to one species. We can test then
whether the species have an effect and whether the subspecies have an effects. Hence we have a
hierarchy of the factors. Here we will regard only balanced hierarchical models which means for the
examples of species that the number of regarded subspecies is always the same. Then we have the
following model

Yoo = b+ g + Bap + Zapy, fora=1,... A, b=1,....B, m=1,..., M.

This is a singular model so that side conditions are necessary:
A B
Zaazo, Zﬁabzo foralla=1,...,A.

a=1 b=1

The model can be also written as
Y =X+ Z,
with

X=(1a@1® 1y | Iaxa®@ 1@ 1o | Iaxa ® Ipxp @ 1py) € RABM*1HATAB
B=(o1,....00,B11,. - B1Bs- s BaL,- .., Bap) € RIFATAB,
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The following hypothesis can be tested:

HEW By =0 forala=1,...,A, b=1,...,B,

<~ EY)e€ C(XB(A)) with XB(A) = ({axa®1p®1y),

HS‘: ag=0 foralla=1,... A,
<— EY)e(C(Xy) withXa=14®1p® 1.

Since C(X) = C(X) with X = (Inxa ® Igxp ® 1y), the perpendicular projection matrices can be
obtained from those for the one-way ANOVA:

NN G — 1
P = X(XTX)_XT =IAxAa @ Ipxp ® MlM 1}/[’
_ 1 1
Py(ay = Xpay (X oy Xp4) Xpa) = Laxa ® B 15 ® el Ly,
1 1 1
_ T -y _ - T — T — T
PA—XA(XAXA) X, = A1A1A®BIB 1B®M1M1M,

so that with the same notations P4, Pg, Pjs as before

I —P=14x4®IpxB® P,

1
P = Ppa) = Iaxa® Pp ® 71u Ly,
1 1
PB(A)_PA:PA@)ElBlng@MlMlL.

This provides the following ANOVA table (J4, Jp, and Jys defined as before)

Factor ‘ Matrix Sum of squares Rank
A Py ® Jp ® Ju M B Y0 (Taee = Tusa)? A-1
B(A) | Iaxa® Pp @y M0 S0 Wa — Ta)®  AB 1)

Error | Iuxa ® Ipxp @ Pu Yoo by Som i (Yabm — Tape)?  AB(M —1)

Note that again the matrices sum up to Iaxa ® Ipxp @ Inixym — Ja ® Jp ® Jus.

10.5 General ANOVA models

In unbalanced models the order of the factors is important. Therefore the following hypotheses are
considered for example in the two-way layout

ﬁ—§+B D fab = M+ g + By VEersus I:jfprB:,U'ab:,U'"i_aa"i_ﬁb"i_’Yaba
7 A|A+B 7 A|A+B
H0| P ey =p+ By versus H1| P b = 1+ g + B,

Hég D lgh = b VErsus ﬁlB D lap = b+ Bp-



Christine Miiller Universitat Kassel, WS 2007/2008
Manuscript Linear Models and Ezperimental Design 175

Expressing the hypotheses via submodels, we obtain
H{*P L E(Y) e C(Xarp) versus  HATPE(Y) e O(X)\ C(Xarn),
HYWPLE(Y) € C(Xajarp)  versus  H{ P LE(Y) € C(Xayn) \ C(Xajasn),
HP E(Y)eC(ly) versus HP :E(Y) € C(Xajarn)\C(ly),
where X is the design mafrix for the model with interactions. Let be P, Paip, Pyayp, Io

the perpendicular projection matrices onto C(X), C(Xayp), C(Xaja+p), and C(1y) respectively.
Then the ANOVA uses the following test statistics

! y' (P — PayB)y

/\2 N ——_ ~
Vi = fQSSI = rk(P*PAl*B) for testing H™P,
055K w5y (I =Py
rk(I—pP)
9 1 "(Pyyp— P )
R o Tk _p Yy A+B AlA+B)Y _
V4= SSA|A+B _ (PayB A\AIrB) for testing ng\mB’

6-\%SE I'k([*P) yT(I - P)y

1 T
R ~2 kP ¥ (PA|A+B - Ry ~
Vg =295 _ 1 Paja+s—Fo) for testing HP.

O%sk T v - Py

Although the denominator of the last two test statistics is not given by the full model for these test
problems, the test statistics have F-distribution, since

(Pat+B) — PajayB)I — P) = Payp — Pajayp — PayB P+ Paarp P = Onxn,
(Pajays — Po)(I = P) = Pyjayp — Po — Pajayp P+ Po P = Onxn.

Since Py = Jy = % 1N 1} and I = Inxn, we still have the decomposition of the Grand Sum of
Squares

A B Ng
ZZ Z(yabm - g...)Q = yT (INXN - JN) y
a=1b=1m=1
= y' (Unxn = P)+ (P —=PaB) + (Parn — Pajasp) + (Pajass — R0)) v

For more than two factors, the Grand Sum of Squares can be decomposite analogously and the test
statistics are given for the corresponding sequence of submodels.

Note that in the balanced two-way model we have

P—Payp=P—Pr, Payp— Pyayp=PFPr—Pa, Pyarp— o= FPr— Pp.
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10.6 Models with random effects

It is often assumed that block factors have not fixed effects but random effects. Since there are
usually also treatment factors which should have fixed effects, we have models with random and
fixed effects. These models are called mixed models (German: Gemischte Modelle) and are given
by

Y =XB+VC+2Z

C1
Co
= Xﬁ—i—(Vl,Vg,...,VQ) ) +Z
Cq
Q
= XB+ ) ViCo+7Z
q=1

where X € RV*® is the known design matrix for the fixed effects, 8 = (31,...,08r)" € R is the
unknown vector of fixed effects, V4 € RV*F1 v, € RVXF2 V5 € RVXEQ are the known design
matrices for the random effects vectors Ci, Ca, ..., Cg. Each random effects vector corresponds to
a factor so that we have @) factors with random effects. R, is the number of observed levels of the
q’th factor with random effects. The simplest approach is to assume for the random vectors Cq, Co,
. Cg, Z

Cq ~ NR, (ORQ,O'ZIquRq) for ¢q=1,...,Q,
Z ~ Nn(0n,0° INxn),

where O'%, . ,05,02 € RT are unknown fixed parameters, and that

Ci1, Ca, ..., Cq, Z are stochastically independent .
Then
0= (ﬂla R aﬂR’O-%a R aU?Q, UQ)T S RR+Q+1

is the unknown parameter vector. Hence we have R + @ + 1 unknown parameters instead of
R+ 222:1 R, + 1 unknown parameters when we would assume fixed effects for the same design
matrices. This means that using random effects reduces the number of unknown parameters dras-
tically. The parameters o7, ... ,aé of the random effects are called variance components. If
a variance component satisfies 02 = 0 then the ¢’th factor with random effects has no influence
on the measurement variable Y, since C; ~ NRq (ORq,O'g IquRq) = NRq (ORq, OquRq) means that
Cy = Og, almost surely.

The estimation and testing of the variance components is more complicated than in a linear model
with only fixed effects. There are several approaches. Here only some of them:
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1. The ANOVA (Analysis Of Variance) approach which is treated here.

2. The MINQUE (Minimum Norm Quadratic Estimation) method (C.R. Rao, 1972, Journal of
the American Statistical Association).

3. The REML (Restricted Maximum Likelihood) method (R.R. Corbeil, and S.R. Searle, 1976,
Technometrics).

4. The minimum bias invariant estimation method (J. Hartung 1981, Annals of Statistics.).
The ANOVA approach
Under the above mentioned assumptions we have with Lemma 8.2.6

E(Y) = Xp,

Q L
Cov(Y) = ZO‘S quqT + 02 IngN =: Zpl T,
qg=1 =1

where 11, ...,y are pairwise orthogonal matrices, i.e. T; T, = Onyxn if [ # k, which are symmetric
and idempotent, i.e. they are perpendicular projection matrices satisfying 7;7; = 1; for all | =
1,..., L. The coefficients p1,...,pr, € R are linear combinations of the variance components.

10.6.1 Theorem
If p; and py, are positive, then

1 XX
a) =YTTiY ~ 2 (tr(Tl), M) :
Pl Pl
pe gy Y TY BTXTT X8
b) if T X3 =0 then, == = ~F <tr(Tl), tr(Ty), 7> ,
Py Y TRY Pl
Y 1Y BTXTTIXB
¢) ifTpX(B =0 and p; = py then, 1l—T ~ F <tr(Tl), tr(Ty), 7> )

d) BY'TY)=ptr(T}) + 8" X T, XB.

Proof.
a) Note that Y ~ Ny(X3, W) with W =1 o T,

L

W1/2 ::Z\//Tlﬂa

=1



Christine Miiller Universitat Kassel, WS 2007/2008

Manuscript Linear Models and Ezperimental Design

178

satisfies
L L
W2 = (Zmn) (Zmn)
=1 =1
L L
= YD Voerdes TiTy

=1 k=1

L L

T} Tp=0, it Ik

LI ST TG =Y T =W
=1 =1

The symmetry of the matrices 7} implies the symmetry of V/2. Since W = Z?:l 02 V;IVqT—i-J2 Inun

is positive definite and thus regular, there exists W ~!. Moreover,

(£ v (£

=1 Pl =1 k=1

L L L L

Ty Tp=0, it 14k Ty Tp=0, it Ik

2 WETzzg EPszTklk: EPlTl:Wv
=1 I=1 k=1 =1

which implies W1 =W~ =Y}, L Ti. Similarly, we obtain
Lo
w2 =3"—T,.
2

Then it holds
W—l/QY NNN(W_1/2 X/B, W_1/2W1/2W1/2W_1/2) :NN(W—1/2 X/B, INXN)
Moreover, we have

2
(} W1/2T1W1/2> (} W1/2T1W1/2> _ (}) W2 T W T W
Pl Pl Pi

1\2 L 1\2
= (—) W”%(ZM@EW“Q:(—) W2 Ty p T, T, W2
Pi el P
TLT=T, 1 W1/2TlW1/2,
Pi

so that %l W12 T, W'/2 is idempotent. Theorem 8.3.11 implies
Lo “12v) (L 1/2 1/2 —~1/2
vy = (W Y) S W (W Y)

~ X2 <I‘k (l W1/2T11W1/2> ’ ﬂTXT W—1/2 <1 Wl/Qz“'lwl/Q) W—1/2 Xﬁ)
P P

5TXTT1X5)

= 2 (k(T)),
X<(l) p
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b) and c) follow from a), the definition of the F-distribution and the fact that Y TT}Y and Y TT,Y
are stochastically independent according to Theorem 8.3.6 because of

L
W T =T (> pi Tj | Ti=TipeTe = Onun
j=1

for I # k.
d) Lemma 8.2.6 provides

EYTTY) = (T, W)+ 8" X T, X3

L
= (T} > pr Te) + BT XTTIXB = prtx(Ty) + BT X TT1X 5. 0
k=1

The quadratic forms Y T T}Y are always nonnegative since the matrices T} are positive semidefinite.
Hence tr(lTl) Y TT}Y can be used as estimator for p;. This estimator is even unbiased for p; according
to Theorem MixedModelTheo d) if T; X = 0. Since p1, ..., pr, are linear combinations of the variance
components o2, ... ,aé, we also obtain estimators for the variance components by solving the linear
equation system. However, the it could happen that some variance component estimators are
negative which makes no sense since the variance components as variances should be nonnegative.

The following example of the one-way layout with random effects demonstrate this problem.

10.6.2 Example (One-way layout with random effects)
The factor A has A levels which are chosen randomly so that their effects are random as well. We
assume again a balanced design so that we have

Yam:,u+.»1a+Zam fora=1,...,A, m=1,..., M,

X =1n,

V=V1=1sxa® 1,

A=A = (A1,..., A0 ~ N(04,0% Lixa),

Z=(Zw, s Zasts s Zats s Zang) ~ N(On,02 Ingn) with N = A M,
W =Cov(Y) =04 Taxa @ 1ar 13, 4+ 02 Taxa @ Ingxar.

The spectral decomposition of W is

1 1 1
W:(MaiJra?)ZulZ ® M1M1L+(Mai+a2)PA ® M1M1L+021Am ® Py

with P4 = Iaxa — 5141}, Py = Inpxmr — 37 1a 1, again, and
2

p1=pa= Mo +0° and p3 =0

Estimators for these coefficients are

~ I 7 1 T — 2
p2=3—7Y (A®MMM>y A_1§(ya. Yaa)”s

A M
P 1 1 —
p3 = ot = m yT (Iaxa ® Py) y = m Z Z(yam - ya.)2-
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Then
5 = s,
%= 27 (72— 7o)
A M 3

are estimators for o2 and ai, respectivly. The estimate 52 is always nonnegative, while this is not
the case for 82‘ which can be seen with a simple example: Let be y11 = 1, y12 = 5, y21 = 4, Yoo = 2.
Then 3 =7,, = ¥, = Y. S0 that p2 = 0 and 5% = p3 = 5, which implies 54 = —2.5.

Although the estimators are often not reasonable, we can derive reasonable tests for the following

hypotheses:

H} :p=0,

Hg‘: factor A has no effect <= 04 =0 <= Mo’ +0°=0> < py=ps.
According to Theorem 10.6.1, we can use the following test statistics:
for testing Hy : p =0

1 1 T (1 T 1 T
PN TC TSV T TR (Glaly ® 27 Larly) y yT (L1n1]) v
12 = 1 1 T T T T 1T il T
p2 r(Paw L i1y, J (Pa® 371m15,) y froasn Y (Pa® 37 1m1}) y

210 (141 @ L 1y10)1 2N
~F<1,A—1,M N(AAA MMM)N ZF(LA—LM >7
P1 P1

where Fiy ~ F(1, A —1,0) under Hg,

for testing Hg‘ : 0124 =0 <= p2=0p3

L ! T L1l L1 T 1 T
Fou = P2 r(Pae & v i) Y (PA®M1M1M)y_p_2my (PA®M1M1M)y_P3
23— 1 1 = —

Do3

T 1 1 T
23 TTara®Pap) Y (Iaxa @ Pu)y o ranrmy ¥ (axa ® Py)y  p2

=F(A—1,AM —1),0),

210 (Py @ L 1p011) 1
with D23~F<A—1,A(M—1),'u N (Pa @ 3 L Ly) v

P1

. 1 T 1 T

since PA®M1M1M 1y = PA®M1M1M 1a®@1pyy=Pys-14 ® 1y =0,
where Fy3 ~ F(A—1, A(M —1),0) under Hg'.

This provides the following ANOVA table

Factor Matrix Sum of squares Rank
11417 @ L 117 72 1
/"L A A A ® M M M yoo
A Py ® g7 Iy, M Y0 (Fow — 7o) A-1
Error Lixa ©® Py Yoy Somet Wam — Faa)? A(M — 1)




Christine Miiller Universitat Kassel, WS 2007/2008

Manuscript Linear Models and Ezperimental Design

181

This is the same ANOVA table as for the one-way layout with fixed effects.

10.6.3 Example (Two-way layout with random effects)
For

Yabm:H+Ava+gb+TBab+Zabm for a=1,...,A,b=1,...,B,m=1,...

we obtain the same ANOVA table as for the two-way layout with fixed effects.

We obtain the same ANOVA tables also for mixed models and hierarchical models if the design is

balanced.
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11 Regression

11.1 Linear regression
The linear regression model is given by

Y, = Bo + Bitn + Z,, with Z, ~ N(0,0?),
forallm=1,...,N, so that

z(t)=(1,t)" € R? and 8= (6, 3)" R

We assume here always that there exists n, m € {1,..., N} with ¢, # ¢,,. Then estimators for [,
B1, and o2 are given by

Bo=DBow) =7-Fit. Bi=PR = — (18)
R S
5% =0°(y) = Gesp = N2 ;(yn — Bo — Bita)?, (19)
where
R R
Sty = N7 nzzl(yn Y)(tn —1), s;= N_1 nz:l(tn —1)?

11.1.1 Theorem (LgastA squares eitimatorAfor linear regression)
The estimator 3 = (By,31)" with 3y and (3, given by (18) is the least squares estimator for 3, i.e.
satisfies

N
AEar min — By — B1tn)>.
€ gﬁewnzl(y” Bo = P tn)

Proof. Here we have

1t
2ty
X=1 . .
N ty

and

N
3 € a i n— Po— P1tn 2=a i —XB3) " (y— XB).
§ € arg min T;(y Bo = Pr ta)* = arg min (y = XB) ' (y - XB)
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(XTX)~XTy. Because there exists n, m €

According to Theorem 9.2.3, B is given by B =
= (X TX)~!. Hence we have to calculate (X T X)~! and

{1,..., N} with t, # t,,, we have (X T X)~
XTy:

-1
N N ot
(XTX)—I — N Zr]{[ 1 ;
anltn Zn ltn

_ L ( St —zi&m)

N N
N ZTL 1 Tl_ Zn:ltn)Q _anl tn N

N N
- 1 ( S —znzltn>
- N
N Zn 1 n N2t Zn:ltn N

_ Yaoitn  —Laiitn
N(N-1Dsz \ =N ¢, N ’

= (B et 1 SN2 N g, SN
5‘(@)‘“”” XTy_iNW—l)s%(—fo;tn N ) (z;;inyn)
1 ( (N 2) (2N yn) = (2N ) (2N tayn) )
N Zn:1 tnYn — (ZnNzl tn) (ZnNzl yn)

1 N YN N2 PG+ N2 Py —NT (XN tayn)
N anl nyn_N2yt

B 1 N(N-1)ysi—N(N—1)Tsy
N(N—l)sty
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11.1.2 Theorem
The estimators given by (18) and (19) satisfy

Eﬁ07ﬁ1702 (//B\O(Y)) = /807 Eﬁo,ﬁ1,02 (Bl(Y)) = /817

and
~ 12 ZNf t
) 2 =1"n 2
05, = varg, g, 2(Bo(Y)) = . - 7
Bo B0,81,0 (N —1)s? N YN (t, —7)?
- 1 1
2 Y)) = 2= ’
0% = var 2(61(Y)) 3 —f
61 ﬁo,ﬁhd (N 1)81‘,2 fl\;l(tn t)

for all ﬂo, ﬂl’ 0'2.

Proof. The unbiasedness of EO(Y), Bl(Y), and 52(Y) follows at once from Theorem 9.2.4. Note

that rk(X) = 2. Lemma 9.2.5 provides that
Cov(LA(Y)) = L(X"X) LT 62
Since

— it
N

N
Zn:l t%

X'x) =
(%) SN

1
N (N —1)s?

)

(see the proof of Theorem 11.1.1), the formulas for the variances follow with L = (1,0) and L =

i

(0,1).

We define the following test statistics

g

~ Bo(y) — bo with 52 _ SN2 52

W= T T e i T
and

10 e I S

M =TS T W S T T

11.1.3 Theorem (t-tests for for linear regression)
Let Y ~ N(Xﬁ, UzINxN)- Then:

a) o(y) = H{IJo(y)|>tN_2,1_a/2}(y) is a-level test for Hy : By = by versus Hy : By # by.

b) o(y) = Uya, )

I>tn_2,1—a/2}

(y) is a-level test for Hy : 1 = by versus Hy : 31 # b;.
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Proof. According to Corollary 9.3.9,

= (LB =) [L(X T X)L (LB~ 1)

~ . 5oy rk()
H{V(y)>Q(1—a)}(y) with  V(y) = 1 yT(I— P)y

rk(r—p)

is an a-level test for Hy : LB =1 versus Hy : L{ # I, where ¢(1 — «) is the 1 — a-quantile of the
central F-distribution with rk(L) and rk( — P) = N — rk(X) degrees of freedom, L = KX, and
l=1Lb.

a) Set L = (1,0) and [ = bp. Then rk(L) =1, N —rk(X) = N — 2, m y' (I — P)y = 52(y),
and

2 ~ ~ N 2 -1
g (L8 = DTIL(XTX) LT~ (LB - 1) (o) —bo) &ﬁ] o) =bo)
L TI-P - =2 = (do(y))".

ka-p ¥ L~ Py 52(y)

Since (c/l\o(y))z has a F-distribution with 1 and N — 2 degrees of freedom under Hy : By = by, we
obtain that dy(y) has a t-distribution with N — 2 degrees of freedom under Hy : 5y = by which
provides the assertion.

b) Setting L = (0,1) and [ = by, we have

en (LTI LT (8- (i) -0 [serbem] By — )

TPy i} Z0 - (B

-

1
rk(I—pP) Yy

Hence the assertion follows as in a). 0

11.2 Regression with random regressors

If the explanatory variables (regressors) t1,...,ty are random, i.e. they are realizations of random
variables T1,..., Ty, then we can model the conditional expectation with a linear model, i.e.

E(Yn|Tn = tn) = .’E(tn)—rﬂ,

where again 3 € R is the unknown parameter vector and z : 7 — R® is the known regression
function. A justification for this approach is given by the following theorem.

11.2.1 Theorem
If'Y,, is a p-dimensional random vector and T}, is a q-dimensional random vector with

by by
(YnT’ Tr—zr)T ~ /Np+q Y ) vy yr 5
ur X1y XrT

where E(Y,,) = uy, E(T,) = ur, Cov(Yy,) = Syy, Cov(T,,) = Xrr, Cov(Y,,T,) = Xy, then the
conditional distribution of Y,, given T,, = t, is a multivariate normal distribution with

E(Yn‘Tn = tn) = py + EYTZ;%“(tn - ,U'T)-
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Proof. See for example Rencher (1998), P. 47, Theorem 2.2E. O

In particular, if Y;, is univariate, then

E(YalTy = tn) = py + SyrSpk(ts — pr)
= py — Sy Sonpir + Syr Sprtn = Bo + (Biy -, By) tn = 2(tn) ' B

with 3 = (B0, B1,---.8¢) " Bo = py — SyrSpppr, (Br,-...0) = SyrSrp € RY a(t,) =
(1, 711y Tqn) T € RITL for ¢, = (741,...,74n) T, i.e. we have a model of multiple regression.

If (Y1,71),...,(Yn,Tn) are independent and identically distributed, we have two possibilities to
estimate (:

1. Estimate uy, ur, Yvy, Xy, and Xpr with methods of multivariate analysis.

2. Estimate 8 with the methods of linear models by using the conditional distribution of ¥ =
(Yi,...,YN)" given T = (T3,...,Ty)" =t = (t1,...,ty) . However, assertions obtained
with this approach concern only the conditional distribution. Under this condition also the
tests given by Corollary 9.3.5 and 9.3.9 can be used.

The second approach can be used also without assuming a normal distribution or a multiple regres-
sion model since the following approach is always possible:

f(Yn,Tn)(ynatn) = f(Yn|Tn:tn)(yn) : an (tn)

where f(y, 1,) is common density of (Y,,,T},) and f(y, |7, —,) is the density of the condition distrib-
ution of Y,, given T;, = t,, with

E(Ya|Ty = t,) = / U STty () () = 2(ta) .

This makes in particular sense if the random process for choosing the experimental conditions is
independent from the observation process. This is the case for “randomized designs” where the
experimental conditions are chosen according a random process. An example is the allocation of
medicaments according to the patient number, e.g. patients of a specific disease with even number
get medicament A and patients of the same disease with odd number the medicament B.

However, for many other problems, the approach fiy, 7,,)(Un,tn) = fva|Tu=tn)(Wn) - f1,.(tn) with
E(Y,|T;, = t,) = z(t,)" 3 makes no sense. If for example Y,, is the height of a person and T, its
weight, then the role of Y}, and T}, is exchangeable. Then the approach of errors-in-variables can be
used.

Errors-in-variables

Here we assume
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where Z is a g-dimensional random vector with E(Z) = 04, V}, a one-dimensional random variable,
W, a g-dimensional random vector so that

V,
a’ ( " ) =aoV, + a,;rWn =b almost surely , (20)

1.e.

v
where a = (ao,aqT)T € R9"! and b € R are unknown. It is further assumed that ( Wil > and Z
n

n

V
are stochastically independent. The assumption (20) means that ( " ) lies in the hyperplane

Hyp={z R aTox=b} ={zg+2; a'2 =0} with a'zy=0.

If ag # 0, then

agp’ ag 4

-
with 8 = (i —ia—r) , 2(tn) = (1,711,...,7gn) . But ag = 0 is also possible. The condition

v
a’ ( " = b implies in particular for ¢ = 1 the exchangeability of Y, and T,,.

The aim is then to find (a”,b)T € R*? such the perpendicular distance between the points
(y1,t{)7,..., (yn,t5) " and the hyperplane H, is as small as possible. Thereby |la|| = 1 is required
since otherwise (a',b)” € R9%2 is not identifiable. The perpendicular projection P((y,,t,})T") of
(Yn,t,. )" onto Hy,y is given by

P((ynat;zr)T) = Pa (ynat;zr)T + (.%'0 - Pa .%'0)

where
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is the perpendicular projection matrix onto C'(a)* = {z € R*!; Tz = 0}. Hence

1, t0) " = Py tn) DI

- H(ynvt;lz—)—r - (I - aTa)(ynat;zr)T — o + (I - aTa) xOH

a’ Yn —aTxo
tn
laj=t | 7T 9\ _,
tn

is the smallest distance between (yn,t} )" and H,p. Now (a',b)" is determined such that the sum
of the squared distances is minimized.

11.2.2 Definition (Least squares estimator for orthogonal regression)
B=(a',b)" is least squares estimator for orthogonal regression if and only if

N 2
3=(@",b)" €argmin Z (aT ( Zt/n ) — b) s (a", D) eRIT2 a|| =1

n=1 n

The estimator E = (&\T,E)T must be determined numerically. Therefore, its distribution is unknown
and this is the case also if Z has normal distribution. Hence tests about a and b can be only obtained
via asymptotic distributions.
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12 Experimental design

The first aim of an experimental design is that all interesting aspects of the assumed model are
identifiable. If there are many factors of quantitative and qualitative type, then this is no simple
task. The theory of fractional factorial designs leads to designs where given aspects of the model
are identifiable (see the book of Mukerjee and Wu, 2006). For more complex models also algebraic
methods are helpful. In particular it can decided with the theory of Grobner bases which models
and which aspects of models are identifiable if a design is already given (see the book of Pistone,
Riccomagno, and Wynn 2001). These concepts however are beyond this lecture.

Another practical aspect of designing experiments are balanced designs. Balanced complete designs
provide a design matrix where the columns are orthogonal so that the parameter can be estimated
independently of the other parameters. Because of this property, the analysis of variance is not
dependent of the order of the factors. Moreover models with random effects can be treated with
the analysis of variance like models with fixed effects.

Additionally, a good design should provide precise estimates and a small 3 error for testing. How
this can be achieved, it treated in this section.

12.1 Generalized designs

12.1.1 Definition
Let be T the experimental region and x : T — R® the known regression function.

d=(t,...,dy) e TV

is called concrete design and

X=X4= , € RVXH
.%'(tN)T
is the corresponding design matrix.
The aim of a good design d is to maximize the power of the test for testing Hy : L3 = [ or/and
to minimize the covariance matrix of the Gauss-Markov estimator L(X] X4)~ X ]y for \(8) =

L §. Fortunately the problem for testing as well as the problem for estimation leads to the same
optimization problem, namely to minimize

L(X]X4) LT,

see Remark 9.3.10. The only problem is, that L € RS*® implies L(X;—Xd)_LT € R%*9 50 that we
have to minimize a matrix as soon as S > 1. On the set of S x S-matrices we have only a partial
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ordering by
A< B CT(B—A)CZOfOI‘aHCERS.

Partial ordering means that there are matrices which cannot be compared. If we have a special set
of matrices {A4; A € A}, it could be that there is no matrix Ay € A with

Ag < A forall Aec A

This happens in particular, if we compare different designs.

To reduce the dimension S, we always will assume here, that L is of full rank and that A\(3) = Lf
is identifiable at d.

12.1.2 Lemma
If \(8) = L@ is identifiable at d and L € R*F js of full rank, i.e. tk(L) = S, then L(X] X4)~"L"

is invertible.

Proof. We always have rk(L(X] X4)"L") < rk(L) = S. Conversely, the identifiability implies
with Theorem 9.1.4

( Lemma 8.1.5 b))
= I

S =rk(L) = rk(K X,) k(K Xq4(X] Xq)" X} Xq)

T T =r
< k(K Xo(X] Xa)" X]) "L (K X (] Xa) " X] Xa (X] Xa)"X] KT)
= rk(L(X] Xq)"L").
Hence L(X] X4)~ LT is of rank S and thus invertible. O

The design problem
Find a design

deAC Ayy:={dy e T"; X\(B) is identifiable at d}

such that (L(X] X4)"L")™! is maximal.

12.1.3 Definition (Information matrix)
a) I\(d) :== (L(X] Xq)~L")™! is called information matrix for \(8) = L at d.

b) I3(d) := X, X is called information matrix for 3 at d.

12.1.4 Remark
IfY ~ N(X48, 0?Inxn) and o? is known, then

(e (OWfay) O faly)
g Iﬁ(d)‘@ﬁ( 95, 08 ))1 %’

,$=1,...,

i.e. 072 15(d) is the Fisher information matrix.
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The maximization of the information matrix I\ (d) within the concrete designs is a complicated task.
Therefore the designs are generalized:

1 N

d=(t1,...,ty) — oy = N Zetn — § probability measure on(7,D),

n=1

where D is a o-algebra on 7 and e; denotes the Dirac measure, the one-point measure, at ¢, i.e.
er(A) = 14(t) for all A € D.

12.1.5 Definition (Generalized design)
A probability measure 6 on (7, D) is called generalized design.

12.1.6 Definition (Information matrix for generalized designs)
a) I5(8) := [x(t)z(t) " §(dt) is called information matrix for 3 at .

b) I\(6) := (L Ig(é)_LT)fl is called information matrix for \(3) = LS at ¢.

To define the identifiability for generalized designs, note:

12.1.7 Lemma
A(B) = L is identifiable at the concrete design d if and only if there exists K € RS*® such that
L = K Iy(d).

Proof. According to Theorem 9.1.4, \(3) = Lp is identifiable at d if and only if L = Ky X, for
some Ky € R¥*N. Hence, if L = K I5(d) = K X] Xq = Ko Xy, then A\(8) = L3 is identifiable at d.
Conversely, if A\(8) = L is identifiable at d, then there exists Ky € R¥*Y with

( Lemma 8.1.5 b))

L=KyXg4 Ko Xq(X] X4)~ X, X = K I3(d). 0

12.1.8 Definition (Identifiability at generalized designs)
A(B) = LB is called identifiable at the generalized design ¢ if and only if there exists K € RI*F
such that L = K I(9).

12.1.9 Lemma
If tk(L) = S and L = K 13(5), then rk(L13(0)"L") = S and L1g(6)~ L' is independent of the
choice of the g-inverse.

Proof. At first note, that the identifiability implies

LIg(6) LT = KI5(8)I3(0) I3(0) KT = KI4(0) KT,
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so that L I(6)"LT does not depend on the choice of the g-inverse. Since

aTI5(8)a = / o 2(t) 2(t) T a (dt) = / (T 2(8)25(dt) > 0,

I5(6) is positive semidefinite and symmetric so that there exists A € R@* such that I5(0) = A" A.
Hence the assertion follows as in the proof of Lemma 12.1.2. [J

The design problem for generalized designs
Find a generalized design

0 € A C Ay :={; AP) is identifiable at ¢}

such that (L I5(0) — L")~! is maximal.

If an optimal generalized design ¢ is found and if z : 7 — R is continous, (7,d,,) is a compact
metric space with metric d,, and corresponding Borel-o-algebra D, then there exists a discrete
probability measure (discrete design) 0 with

Ig(0) = Ip(d)

and finite support {71, ..., 77} with I < @. This is a consequence of the Theorem of Caratheo-

dory (see e.g. the book of Silvey 1980, P. 72) and the fact that the set of all probability measures
with finite support is dense within all probability measures under the weak topology on the space
of all probability measures on (7,D) (see e.g. the book of Billingsley 1968, P. 237).

Often it is also possible to find a concrete design d for a discrete design ¢ such that
LIs()"L" =NLIsd)"L".

If this is not possible, then § must be approximated by an appropriate concrete design d.

The main reason for regarding the generalized designs is that the set of generalized designs is convex.

12.1.10 Lemma
If rk(L) = S, then

Ay = {9; A\(0) is identifiable at ¢}
is convex. In particular we have
a51+(1—a)52 SANY

for all o € (0,1), if &1 € Ay and Ig(d2) is finite.
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Proof. If §; € Ay, then Ig(d2) is in particular finite. Since Ig(d2) is finite, we have

Ig(ady + (1 —a)de) = alg(d)+ (1 —a)lg(dz) > als(dr)
since I3(d2) is positive semidefinite. In general, it holds for symmetric matrices A, B:

A>B>0 = C(B)cCC(A). (21)
For, if v € C(A)*,then0 =xz"Aand thus0 =2' Az > 2" Bz, sothat 0 = ' B. Hence 2 € C(A)*
implies = € C(B)*. Since C(A)* c C(B)* implies C(B) C C(A), the assertion (21) is proved.

This means that we have C(I5(61)) C C(Ig(ady + (1 — @) d2)) so that with L = K I5(61) also a K
exists with L = K Ig(ady + (1 — ) d2). Hence, ady + (1 —a)dr € Ay. O

12.2 Optimality criteria for designs

12.2.1 Definition
Let be A C Ay. The generalized design 6, is called

a) Uy-optimal in A <= 1,(6,)"' < I\(6)7! for all § € A,

b) Dy-optimal in A <= det I(0,)"" < det I,(0)~! for all § € A,
c) Ay-optimal in A <= trI\(0,)"! < trI,(6)~! forall 6 € A,

d) Ex-optimal in A <= Apaen(0:) 71 < Anae In(0) 7! for all § € A.

Thereby det denotes the determinat, tr the trace, and A\,q,; the maximum eigenvalue of a matrix.

12.2.2 Lemma
Let A and B be symmetric S X S matrices and A positive definite, i.e. A > 0. Then there exists a
regular matrix U € RS> with

A=U"U and B=U"diag(u,...,ps)U,

where i (z) 0fors=1,...,5ifB (E) 0.

Proof. According to the spectral decomposition, there exists an orthogonal matrix P with
A = PTdiag(\1,...,\s) P,

where A\ > 0 for s = 1,...,.5 because of A > 0. Set
DY? .= diag (\/AT .. \/7) D~Y2 = (pY/2)~!

and

C:=D V2pppTp-1/2
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C is symmetric and C (2) 0if B (2) 0. There exists also an orthogonal matrix () with

QC Q" =diag(u,...,us),

where pig (2) 0fors=1,...,5if B (2) 0. Set U := Q DY2P. Then we have

UTU =P TDV2QTQ DY?P = PTdiag(\1,..., Ag)P = A
and

UT diag(p1,...,us)U=U"QCQTU =P DV2QTQCQ" QDV?P O
P'DV2cDYV?2p =P DYV2p"YV2pBpPp "D 12DV2p - PTPBP"P=B.

12.2.3 Lemma
Let A and B be symmetric S x S matrices with A > B > 0. Then it holds

a) A=t < B~
b) det A > det B,
c) trA > trB.

Proof. According to Lemma 12.2.2, there exists a regular matrix U € RS*S with
A=U"U and B=U"diag(u,...,ps)U.

A > B implies
Isxs = (U) AU > (U)'BU! = diag(u, - .-, ps),

ie. 1>pus>0fors=1,...,5.
Isxs < diag(ui?,... ,,ugl) implies

AT =U g5 (U <U M diag(py ', ug ) UT)H =B
Moreover, we have
det A = (det U)? det Isxs > (det U)? det diag(u1, ..., us) = det B,

and

S S
trA:Ze;rAes > Ze;rBes = tr B,

s=1 s=1

where eq,...,eg are the unit vectors. [J
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12.2.4 Remark
If

then

tr I5(8) ™! = tr L Ig(5) ZL I5(6)

! is equivalent with the minimization of & Z L Ls I5(8)" L],

—1 is called

Hence the minimization of tr I ()~
the “average” of Ls I5(6)~ L. The is the reason that a design which minimlzes tr IA(é)
Ajx-optimal.

For the estimation of LG it is reasonable that all components L;3 of LG are estimated with high
precision, i.e. with small variance. Since tr I,(6)~! is the sum of the variances of the estimators for
L3, the Ay-optimal designs are in particular appropriate for estimation.

However, the Ay-optimal designs are not appropriate for testing since they are not invariant with
respect to regular transformations of A(5) = Lf, i.e. to transformations of )\(5) Lﬁ with L= H L
where H is a regular matrix. They are only invariant with respect to orthogonal transformations
where H is an orthogonal matrix. For testing, the optimal design should not depend on the special
form how the hypothesis is formulated. Since Ho : LS = [ is equivalent to Hp : LS = | with
L=HLandl = HI if H is regular, the optimal design should be invariant with respect to
transformations with regular designs. This is satisfies for Dy-optimal designs.

12.2.5 Theorem _ B B
Let be \(8) = L 8 with rk(L) = S and \(3) = L3 with L = H L for H € R5*5,

a) If H is a regular matrix, then d, is Dy-optimal in A if and only if . is Dy-optimal in A.
b) If H is an orthogonal matrix, then d, is Ax-optimal in A if and only if §, is Az-optimal in A.

Proof.

a) detI;(8) "' =det LIg(d) LT =det H LIg(6) LTH'
= (detH)? detL 15(8)" LT = (detH)? detI5(5)~"
b) trIz(6) ' =trLIg(0) LT =tr HLIs(8) L' H'
Lemma SIS b L Ig(8) LTH T H T e LI(5) LT = tr I, (8) O

Besides the invariance with respect to regular transformations of A\(3) = L 3, the Dy-optimal designs
have the advantage that they minimize the volume of the confidence ellipsoid which is derived from
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the F-test. Because of the relation between tests and confidence regions, this confidence ellipsoid
is given according to Corollary 9.3.9 by

B - frews, GBTMIGI0IND £y )

where ¢(1 —«) is the 1 — a-quantile of the central F-distribution with rk(L) and N —rk(X,) degrees
of freedom. The volume of this confidence ellipsoid depends only via det I)(d)~! on the design,
since in general the volume V°(E) of an ellipsoid

b= {x €R% (z—p)'=7 @ —p) < (J}
VS(E) = (qm)S"? (r (§ " 1)) (det £)1/2,

where I' is the I'-function. (see e.g. the book of Pazman 1986, P. 79).

Moreover, Djy-optimal designs minimizes the volume of ellipsoids where the power of the F-test
given in Corollary 9.3.9 is bounded by given values. Namely, on the ellipsoid

Eala) i= { LB € R (LB~ 1) I\(d) (LB~ 1) < 0k},
the power function (German: Giitefunktion) is given by
'Vd(ﬂ) <1- Fp(rk(L)7 rk(1—p), k;) (Q(l - a))

(see Corollary 9.3.9).

12.3 Characterizations of optimal designs

The characterizations of optimal designs based on the fact that the optimality criteria leads to
convex functionals on the set of generalized designs. We consider here the following functionals:
Dar: Ay30 — Pan(0):=tr[\(8) P =tr LIg(0) LT €R,
Ppyr: Ay36— ®py(0) :=1Indet I (6) "' =Indet LIz(5)"L" €R.
Note that minimizing ®p x(d) leads to the Dy-optimal designs since the logarithm is a monotone

increasing function. However the logarithm is necessary to provide the convexity of the functional.
To prove the convexity of the functionals, we need the following lemmas.
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12.3.1 Lemma
If My, My € REXE are symmetric and positive semidefinite and L € RS*E with L = KM, and
L= KQMQ, then

L(aMy+(1—-a)My)” LT < aLM; L"+(1—a)LM; L".

Proof. At first let be Mj, My positive definite. Then also M := a M; + (1 — o) My is symmetric
and positive definite. Hence we have for all z,y € RF

0< (xT — yTM_1> M (z— M_ly) =y M Yy—22"y—az ' Muz),
where equality holds if and only if x — M1y =0, i.e. © = M ~'y. This means
y' M~ 'y = max {2 y—ax Mz x € RR} ,
which implies for all [ € RS

ITLM LTI = max {QxTLTl — 2 Mz z € RR}

= max {a Qe"LTl—2"Miz)+(1—a)2z ' LTl—2"M2z); z € RR}

< o max{2 2 LT — xTMl T, T E RR}

+ (1 — @) max {2 e "Ll -2 Myx; x € RR}
=ML T b o=MTLTE (2 "ML - 1TL M;lLTl>
+(1—a) (20TLM; LT LMy LT
= Ql"LM'LT I+ (1 —a) ITL ML

For the case that Mj or M, is not positive definite, see Kiefer (Journal of the Royal Statistical Soci-

ety, B 21, P. 272ff) or Gaffke/Krafft (Modern Applied Mathematics - Optimization and Operation
Research, Korte (eds.), North Holland 1981). O

12.3.2 Lemma
If A, B € RE*E are symmetric and positive definite and o € (0, 1), then

det(a A+ (1 — o) B) > (det A)® (det B)'™.
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Proof. If A and B are diagonal matrices, then the concavity of the logarithm provides

R
In(det(@ A+ (1 —a)B)) =In [[(a A + (1 - a) B,,)
R ! R
= Zln (wApr + (1 —a)Byy) > Z(a In Ay +(1—«) In B,,)
r=1 r=1

R R R o R Lt
= aln l:IlA”+(1_a) In l:IlB” = In (1:[1Aw> +1n (1:[131",) .

To prove the assertion for the general case, we use the fact that according to Lemma 12.2.2 there
exists a regular matrix U and diagonal matrix D such that

A=U'U and B=U'DU.
Then we obtain with the above result

det(a A+ (1 —a)B) =det(U" (aIpxgr + (1 — a) D) U)
= (detU)? det(alrxr + (1 —a) D) > (detU)? (det Irxpr)® (det D)}~
— ((detU)? det Ipxp)® ((detU)? det D)™ = (detUTU)* (det UT DU~
= (det A)® (det B)'™.

12.3.3 Theorem

a) 4 ) is convex on Ay.

b) ®p. \ is convex on Ay.

Proof.
a) Lemma 12.3.1 provides for all §;,02 € Ay

LIg(ady+(1—a)d) LT < aLIgd) L'+ (1—a)LIg(d) LT
so that with Lemma 12.2.3 we obtain

(I)AM\((X(Sl + (1 — 04)52) = tr LIﬁ(aél + (1 — 04)52)_LT
< tr (a LIs(6) LT +(1-a) LIB(62)_LT>
= atr LIg01) LT +(1—a)tr LIg(02) LT = a®4,(61) + (1 — ) ®ar(02).
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b) We show here the assertion only for A\(3) = §. Lemma 12.3.2 and the definition of () provide
for all 61,02 € Aﬁ

®pglady + (1 —a)dz) = In det (I (a51 + (1 —a)d)™)
= In(det Ig(ad; + (1 —a)da))* —1In (det Ig(ad; + (1 — @)d2))
= —In(det a Ig(d1)+ (1 — ) I/g( 5)) < —In((det I5(61))™ (det I5(d2))' ™)
= —aln(det 15(51)) (1 —a) In(det I5(d2))
= aln(det I5(61)"") + (1 —a) In(det I5(52)"")
@ Dpp(6) + (1) D).

The proof for general \(3) = Lf is much more complicated and can be found in the books of
Pézman (1986) and Pukelsheim (1993). O

Since Ig(6) is a linear function in § and the inverse, the trace, and the determinant are differentiable
functions, the functionals ®4 ) and ®p ) are Fréchet differentiable with respect to matric on Ay
which provides the weak topology. The directional derivatives, the Gateaux derivatives, have rather
simple forms. To derive these forms, we need the following lemma.

12.3.4 Lemma

a)IfA:R>t— A(t) e RV*M and B: R >t — A(t) € RMXK are differentiable in tq, then

tm=<%me)Bm»+mm<%BmtJ.

b) If A:R>t— A(t) € RV*N js differentiable in tq and A(ty) is regular, then

5 A7 mml(%mwﬂjA%w
and
In det A(t) = tr <A(t0)_1 <§A(t) ))
Proof.

a) The assertion follows from the product rule.
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b) Set B(t) = A(t) A(t)~! = Inxn. The assertion a) implies
0 0
AT = 5 AW TIB()
ot =t Ot =t
= DA07| +AG) T (2 AWm| ) A+ A Al 2 A
ot t=to ot t=t ot t=to
0 0
= 2 AWM +A)T | 5 AW A(to)™"
ot =t ot =t

To prove the second

=2

mell

det A(t

Z Akn

forall k=1,..., N,

Z Apn(t)

assertion in b), let II the set of all permutations of {1,..., N}. Then we have

t)-.

Sgn Alﬂ'(l - ANTI’(N) (t)

N
Z Sgn(’”) H Amw(m) (t)

well, w(k)=n m=1, m#k

akn

where

N
Akn (t) = Z Sgn(ﬂ-) H Amw(m) (t)

mell, ©

is the cofactor of A(t

% In det A(t)

1
(to)
1

1

1

det A

det A(to)

det A(to)

det A(to)

(k)=n m=1, m#k

) with respect to (k,n). It follows

1 0
= —— — det A(t
t=to det A(to) 0Ot ) t=to
N N
0
Z Z Sgn(ﬂ) (a Ak}ﬂ'(k‘) (t) > H Amw(m) (t)
k=1mell t=t0/ m=1, m#k
N N N
0

>N sgn () (5 Apn(t) ) II Aweem®
k=1n=1r€ll, n(k)=n t=to/ m=1, m#k
N N N

0
S (gan] ) ¥ s T w0
k=1n=1 t=to/ rell, =(k)=n m=1, m#k
N N

0
33 (5 ] o
k=1n=1 t=to

0
)7 5 AW
ot t=t
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since A(to)’1 = ﬁ(to)(akn)k,nzl,...,N- O

To define Gateaux differentiability, let A be a subset of all probability measure on (7, D) and define
for 6, € A

A(0y) := {0 € A; there exists k > 0 with (1 — «)d, +ad € A for all a« < k}.

12.3.5 Definition (Directional derivative and Géateaux differentiability)
a) The directional derivative of the functional ® : A — R at 0, in direction of  is defined as

®'(6,,06) := lim (1~ a)ds +ad) — (4) — lim (b +a(6—0")) — ‘13(5*).

al0 « al0 «

b) The functional ® : A — R is Gateaux differentiable at §, if and only if ®'(d,d) exists for all
d € A(04) and

' (5,,6) = /@’(6*,et) o(dt)
for all 6 € A(d4), where e, is the Dirac measure on t, i.e. e (A) = 1 4(t) for all A € D.

12.3.6 Theorem
If rk(L) = s, then we have for all 6 with (1 — «)d. + ad € Ay for sufficient small « the following
directional derivatives

a) Oy \(0.,0) = trLlﬁ(é*)_LT—/]Llﬁ(é*)_x(t)]2 5(dt),

) Bpr(0:0) =S [ a0 10 LT (L1(6.) LT) ™ L1y(8) a(t) 8(dr)

Proof. Let be §(a) = (1 — a) 0, + ad. Since I5(9) is linear in § we have

Lrao(e)| = lim Lol = )b +ad) - Iy0)
a=0
_ i Jo@2OT (= a)b +ad)(d) - [a(®)2(t)T ou(d)
al0 e
_ o @U@ @) 0(d) — Ja(t)2(t) 5.(d1))
al0 o
= I5(0) — I5(ds). )

At first we assume that Ig(d,) is regular.
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a) Lemma 12.3.4 provides

Py 1(04,6) = 2trLfﬁ(é(oz))*lLT

o a=0
= tr L 3Iﬁ(a(oé))*l L’
Oa =0
ety LI5(8,) 7! (% I5(6(c)) ) Ig(6) ' LT
22 _ _
B wLI6)7 (1p(6) — Tp(0) To(6.) 7 LT

= tr L1g(6,) 'L — tr L1g(6,) " 15(8) Ig(6,) ' LT
= tr LIg(6,)'LT — tr/ LIg(5,)7"

— wLI6) LT —/\ng(é*)lx(t)lz 5(dt).
b) Lemma 12.3.4 and Lemma 8.1.3 provide

'3 (0,0) = aﬁ Indet L I5(6(c)) 'L
’ (0%

a=0
L L) LT

Oa

Lemma 12.3.4

tr ((LIg(6)7 L")

(
- tr ((L[g(é*)lLT)l L (a% I5(6(a)) ™

Lemma 1284 ((Lfg((s*)_lLT)_l Lfg(5*)_1 (3 I3(0(w))

Oa

(22) _ _ _ _

2t ()T LT L5007 (T5(0) ~ I5(0.) T5(0.) 7' LT)

-t ((ng(é*)_lLT)_l ng(é*)_lLT)

— tr (LI L) LIa(6.) 7" 15(6) I5(6.) 7" LT)
- tr Tgxg — / tr ((L Is(6) 'LV LIg(8) () () T5(6.) 7" LT> 5(dt)
femma 1.3 g / w(t) " I5(8.) " LT (L I5(6,) 'L7) ™ L1(6,)~" () (dt).

The proof for singular Ig(d,) follows from the above properties with the fact that there exists always
a regression function 7 : 7 — R? and L € RS*? so that I5(6,) = [T(t) Z(t) " 6.(dt) is regular and

L13(8,) LT = LIg(6,) 'L and L I3(8,)" x(t) = L I(6,) ' &(t) for all t € supp((1 — @) b, + @ d),
where supp(d) denotes the support of 4, i.e. the smallest set A € D with 6(A) = 1. O

12.3.7 Corollary
If rk(L) = s, then @', \ and ®, | are Gateaux differentiable at d,.
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Proof. Theorem 12.3.6 implies

&y \(51,8) = / &\ (61 r) 5(d)

and

1r(6.,0) = / (B er) 5(dt),

which are the additional conditions for Gateaux differentiability. U

12.3.8 Theorem (Theorem of Whittle)
Let be A a convex subset of all probability measure on (7,D), §, € A, e, € A(d,) for allt € T, and
® : A — R convex and Gateaux differentiable at d,. Then the following assertions are equivalent:

a) P4, = gl’élil o(9),

b) ®'(6,,0) >0 forall §e€A,
c) ®(6.,e0) >0 forall teT.

Each of the assertion a), b), and c) implies
d) ®'(0.,e;) =0 forall te supp(dy).

Thereby, supp(d) denotes the support of 0, i.e. the smallest set A € D with 6(A) = 1.

Proof.
a) = b) : If ®(0,) = mingea ®(J), then

B(6,) < B((1 — a) 8, + ad)

for all 6 € A(d) for sufficient small .. This implies

/(6. 5) = lim (1 — )y +ad) — P(0s) >0

al0 (e

for all 6 € A(dy).

b) = ¢) : This follows at once with 6 = e, and e; € A(d,) for all t € 7.

¢) => a) : Let be § € A arbitrary. Since A and ® are convex, it holds (1 — )0, + ad € A for all
a € [0,1] and

B(5) — (5.) — (1-a)2() +a2(d) ~2(@)  2((1=a)d: +ad) — 2()

« «
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for all @ € (0,1). The Gateaux differentiability implies then

o(5) — ®(5,) > lim P((1=a)d +ad) = 2() _ 4

al0 «

(6.,5) = / (82, e0) 5(dt) 2 0.
c)=d): ®(ds,e;) >0 for all t € T and

0= ¥(5,,0.) = /@’(5*, e)) 6., (dt)
implies ®'(0,,e;) = 0 for all ¢ € supp(ds). O

12.3.9 Theorem (Equivalence theorem for A-optimality)
Let be A C Ay convex, §, € A, e, € A(dx) for all t € T, and rk(L) = S. Then the following
assertions are equivalent:

a) d. is Ay optimal in A,
b) |LIs(5.) x(t)]* < trLIg(6,) "L forall teT.

If b, is Ax-optimal in A, then

¢) |LIg(6.)"x(t)]> =trLIg(6,)" LT forall t € supp(d.).

Proof. The assertion follows at once from Theorem 12.3.6 a) and Theorem 12.3.8. g

12.3.10 Theorem (Equivalence theorem for D-optimality)
Let be A C Ay convex, 0, € A, e € A(0,) for all t € T, and rk(L) = S. Then the following

assertions are equivalent:

a) 04 Is Dy optimal in A,
b) a(t) Ig(0.) LT (LIg(8.) LT LIg(0.) 2(t)<S forall teT.

If 6, is Dy-optimal in A, then
¢) () I5(6.) LT (LIs(6,) L") LIs(6,)"x(t) =S forall te supp(dy).

Proof. The assertion follows at once from Theorem 12.3.6 b) and Theorem 12.3.8. O

12.3.11 Remark
The condition e; € A(d,) for all ¢ € T is satisfied for example for A = A (see Lemma 12.1.10).
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12.4 Optimal designs for linear regression

In the linear regression model we have
z(t)=(1,t)7 with teT cR
and

6 - (/80751)T7

where [y is the intercept and (3; the slope of the regression line.

12.4.1 Lemma
If T =[—a,a] for 0 < a € R, then 6, = 1 (e_, + ¢,) is Ag-optimal and Dg-optimal in Ag.

Proof. We have z(t) = (1,#)" so that

I5(04) = /:c(t):c(t)T 0x(dt) = % (m(—a)x(—a)T + x(a)x(a)T)
1

() e () )2

Since L = Isx2, we obtain for all t € [—a, a]

L15(6) a0 = ‘( ol ) ( 1 )

= 1+a " <1+a?=trlz(s)"

2

and

2() 1560 LT (L1580 LT) ™ LI5(3.) a(t) = 2(t) 15(5.) a(t)

= (1¢) <(1) a%) <1>:1+a2t2§2

so that d, is Ag-optimal and Dg-optimal in Ag according to Theorem 12.3.9 and Theorem 12.3.10,
respectively. O

12.4.2 Lemma
If T =[0,a] for 0 < a € R, then dp = %(eo +e4) is Dg-optimal in Ag but not Ag-optimal. The

Ag-optimal design in Ag is 4 = m (\/ 1+a?ey+ ea).
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Proof. Because of

1 1 1 1
- 3((0) am=(2) 00)=
CL2 —a
zﬁ(aD)1=%<_a ) )

we have for all ¢ € [0, d]

so that 6p is Dg-optimal according to Theorem 12.3.10. Moreover, we obtain

L 15(0p) " w(t)* = [I5(dp) ™ a(t)|”

)

4 t=0 4 1

= (a® —ta)? + (2t —a)2) = (a4 +a2) =— (4a2 + 4)
1 2

> o) (20> +4) = E(a2 +2) = trI5(0p) 1,

so that condition b) of Theorem 12.3.9 is violated which means that dp is not Ag-optimal. To show
that 04 is Ag-optimal, set { = m Then we have

1(0a) = [ a(t) (07 datde) = (1= € 2(0) (0)T +€ x(@)a(a)7)

_ ((1_5)(é)uo)m(i)(m)):(; ;;)
1 a? —¢fa
Iﬁ(éD)1:m<f£a f >,

so that

€a®>+1

tr Iﬁ(éA)_l = m
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Now the condition b) of Theorem 12.3.9,
L I5(6) " 2 (t)|* = [I(64) " 2 (t)* < tr Ip(6a) ™"

for all ¢ € [0, al, is equivalent with

1 £a®> —fa 1 2_ 1 €a®> —Eat ?
ca21-6)\ —¢a 1 t )| €21 -6\ t—¢a
_aa— 1P+ (- _ Ealt1

- a® —Eat)? —¢a)?) =
Sgan g (GO TN =T i S0

Ea*(a—t)°+(t—¢a)’ < (Ea®+1) (£a°(1-9))
2a*(a® —2at + %) + (£ —2t€a+ & a?) < (€a® +1) (aP(E— &)
t2(§2a2+1)—2t§a(§a2+1)+§2a4+§2a2§§2a4+§a2—§3a4—§2a2

t2(E%a? +1) —2t€a(€a® +1)+28%a®> —€a®> +3a* <0. (23)

v

Using the special form of

¢ = 1 B vVi4a? —1 _\/1—i—a2 -1
Y e A Bl OV, e TV, prar: B S

we obtain

2(V14+a2-1? (\/14-—@2—1>+ (V1+a2-1)?(V1+a2-1)

26202 —ca? +€3at = — .

20 +a?> —2vV1+a2+1)—a’>V1i+a2+a?+(1+a®>-2vV1+a2+1)(V1+a2—-1)

a2

1
= = <4+2a2—4\/1+a2—a2 1+ a2+ a?
a

n \/1+a2+a2\/1+a2—2—2&2—1—\/1+a2—1—a2+2\/1+a2—1>

= 0.

Hence the inequality (23) is equivalent with
t2(€%a®>+1) —2t€a(€a®+1) <0.
We see at once that equality holds if £ = 0. The second root of the quadratic function

fA)=t(a*+1)—2tla(a®+1)
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is given by

a1l 20 VI4d? 20 (VIZ A —1) VIt
a?+1 Wte 1P 1 (VI+aZ —1)2+a?

a2<1+a2—\/1+a2) a2<1+a2—\/1+a2>

14+a2 —2vV1+4+a2+1+a? 242a2 —2+/1+a?

This means that the quadratic function f is zero for ¢ = 0 and ¢t = a and smaller than zero for all
t € [0,a]. Hence inequality (23) holds for all ¢ € [0, a], so that the criterion b) of Theorem 12.3.9
for Ag-optimality of d4 is satisfied. O

12.4.3 Remark

The somehow surprising result of Lemma 12.4.2 for the Ag-optimal design can be explained as
follows: The A-optimality criterion is in particular appropriate for estimation since it is the average
of the variance of the estimators for the single components. Since the intercept can be estimated
only with observations at 0, while the slope can be estimated only with observations at 0 and a, it
is advantageous to have more observations at 0.

Nevertheless the Ag-optimal design has the disadvantage that it depends on the scale of the exper-
imental region 7. If we use another unit of measurement, we obtain a different optimal design.

12.4.4 Lemma
If T = [0,a] for 0 < a € R and the interesting aspect is the slope of the regression line, i.e.
A(B) = B1, then §, = % (eg + €q) is Ax-optimal and Dy-optimal in Ay.

Proof. In the proof of Lemma 12.4.2 it was shown

_ 2 a® —a
Iﬁ(é*)1:$<_a 2)5

so that with L = (0, 1) we obtain

2 1
e (1)

4
= — (At —4ta+a®) < — =LIg(6,) 'LT
a

2

L 15(5.)  2(t))* = = % (2t — a)?

a

4
a2

for all t € [0, a] since the 4t — 4ta < 0 for t € [0,1]. Hence Theorem 12.3.9 provides the Aj-
optimality of J,. Since LIg(é*)_lLT is one-dimensional, the Ay-optimal design coincides with the
Dy-optimal design. O
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12.5 Optimal designs for the one-way layout

In the one-way layout, we have only one factor with A levels so that

z(t) = (I (t),...,Ta(t)T € RA for teT ={1,...,A},
B=(p1,..,pa)’ €RA

If the first level is a control level (the standard crop, the placebo), then the interesting aspect of 3
is

H2 — H1
A(B) = : =LA with L=(—1a-1]|la-1xa-1)€ RA-1xA (24)
HA = H1

12.5.1 Lemma
If T ={1,..., A} and the interesting aspect is given by (24), then op = %Zfil eq 1s Dy-optimal

in Ay and 64 = ﬁ (\/A —le + ZGA:2 ea) is Ax-optimal in Ay.

Proof. For proving the Dy-optimality of dp, note

1
I3(0p) = Z]AXA,
17T T 1AT
Ligp) 'L'=ALL" = A (=141 | Tac1xa-1) L,
Ta-1xa-1

= A (lacixa1+1Ia1xa-1),

_ 1 Lemmat012 1 1
(L16(5D) 1LT> i ZIOMZ (IAlel_ZlAlel>

I506p)~ L7 (L Iﬁ(éD)*lLT) L Iyp) !

A2 _1T 1
— ( A-1 > <IA_1><A_1 — ZlA_lXA_1> (_1A—1 ’ IA—lXA_l)

Ta—1xa-1
—1% A—1 1
= A A=l <—1+—1I = >
(IA1><A1> A-1 T A1|A1><A1AA1><A1
(A-1
— 4 A) Ly + A4
~Tac1 A3 14 Tacisa — Slacixaa
A—

—1F
_ A1 .
141 Alsixa—1—la—ixa—1
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Hence for all t € {1,..., A}, we have

o(t)T I5(0p) LT (L Iﬁ(aD)*lLU L Lp) ) = A1,

so that dp is Dy-optimal according to Theorem 12.3.10. The proof of the Ay-optimality of §4 bases
on the following calculations:

) 1 A-1 0],
a) = ’
8 VA-1+A-1 04—1 Ta1xa-1

—1 1, O:gfl
I5(5.4) :(\/A—1 +A—1) AT ,

0a—1 JTa—1xa-1

1 OT_
LIg0a)™ = (VA=T +A=1) (~lay [ Laoixan) | VAT A7
0a-1 Ta—1xa—1

la_q | IA—1><A—1> ,

= (\/ﬁ +A—1) (— A1—1

1 1T
LIg(64) 'L = (VA -1 +A- 1) <—ﬁ Lot | IA1><A1) ( / A=l )
- A—1xA-1

= (\/ﬁ +A— 1) <ﬁ1A—1><A—1 + IA—1><A—1) ;
LI LT = (VAT +4-1) (\/%(A—l)Jr(A—l)) — (VAT A1)

2

1a_q | IA—1><A—1>

L I5(64) " 2(1)] = (\/ﬁ A 1) <_ A-1

1

= (VATT+4-1) oA,

2
L I5(00) ()| = (\/A 1A 1) for te{2,..., A}
Hence for all ¢ € {1,..., A} it holds

L I5(64) a(t)|* = tr L I5(64) 'L

so that Theorem 12.3.9 provides the Ay-optimality of d 4. ]

12.5.2 Remark
For testing the hypothesis Hg : 1 = p2 = ... = pa the design should not depend on equivalent

formulations of the hypothesis. Since

M2 — H1 H1— A
Hy: =04-1 and Hjy: =041

HA — M1 HA-1 — KA
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are two equivalent formulation of Hy : uy = pg = ... = u4, the optimal design should not depend
which level is chosen as control. This is satisfied by the D-optimal design, so that this shows again
that D-optimal designs are in particular appropriate for testing. Since the D-optimal design is the
balanced design, we see that balanced designs have also optimality properties with respect to the
power of the test.

However, if we want to estimate the additional effects of the new treatments compared with the
standard treatment given by level 1, then the interest lies really in estimating

p2 — 1
L3 = :
nA — p1
and this should be done as precisely as possible. Hence the sum of the variances of the single
component estimates should be as small as possible. Since p; is involved in each component, the
precision of each component estimate will be high if the precision of the estimate of uy is high. Hence
a high precision of the estimate of p; influences the precision of all component estimates. This is

achieved by more observations at level 1 than at the other levels. Since A-optimal designs provide
this property, we see again that A-optimal designs are in particular appropriate for estimation.
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Part III

Solutions

13 Solutions of methodical exercises

13.1 Solution of Exercise 1.4.1

chickenC<-chickenO[,c(1,2)]
chickenC<-cbind(chickenO[,c(1,2)],"Control")
chickenlL<-cbind(chickenO[,c(1,3)],"Low")
chickenH<-cbind(chickenO[,c(1,4)],"High")
names (chickenC)<-c("Block","Weight","Feed")
names (chickenL)<-c("Block","Weight","Feed")
names (chickenH)<-c("Block","Weight","Feed")
chicken<-rbind(chickenC,chickenL,chickenH)
row.names (chicken)<-1:24

vV V V V V V V V V

13.2 Solution of Exercise 1.5.1

> splitO<-read.table("SPLIT.DAT")
> str(split0)
‘data.frame’: 36 obs. of 8 variables:

$vi:int 1111111111

$V2: int 1111222233 ...

$Vv3: int 0124012401

$ V4: int 111 130 157 174 117 114 161 141 105 140 ...
$Vs: int 44444444414 ...

$Vve: int 1111222233 ...

$V7: int 0124012401 ...

$ v8: int 74 89 81 122 64 103 132 133 70 89 ...

> splitO1<-splitO[1:4]

> split02<-split0[5:8]

> names(split01)<-c("Block","Variety","Manure","Yield")
> names(split02)<-c("Block","Variety","Manure","Yield")
> split<-rbind(split01,split02)

> str(split)

‘data.frame’: 72 obs. of 4 variables:

$Block :int 1111111111
$ Variety: int 1111222233 ...
$ Manure : int 0124012401

$ Yield : int 111 130 157 174 117 114 161 141 105 140 ...

> row.names(split)<-1:72
> split$Block<-as.factor(split$Block)
> split$Variety<-as.factor(split$Variety)
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> split$Manure<-as.numeric(split$Manure)/100

> split$Yield<-as.numeric(split$Yield)

> str(split)

‘data.frame’: 72 obs. of 4 variables:

$ Block : Factor w/ 6 levels "i","2","3","4",..: 1111111111 ...
$ Variety: Factor w/ 3 levels "1","2" "3": 1111222233 ...

$ Manure : num O 0.01 0.02 0.04 0 0.01 0.02 0.04 0 0.01 ...

$ Yield : num 111 130 157 174 117 114 161 141 105 140 ...

> split.b<-split

> split.b$Manure<-as.factor(split.b$Manure)

> str(split.b)

‘data.frame’: 72 obs. of 4 variables:

$ Block : Factor w/ 6 levels "iM",m2m, "3, "4 .. 1111111111 ...
$ Variety: Factor w/ 3 levels "1","2" ,"3": 1111222233 ...

$ Manure : Factor w/ 4 levels '"O","0.01","0.02",..: 123 4123412...
$ Yield : num 111 130 157 174 117 114 161 141 105 140 ...

13.3 Solution of Exercise 1.5.2

At first a data file PEPPERS3.DAT of the following form is created:
0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

114 132 104 - 137 - 12.0 125
- 84 65 6.1 108 94 - 91
- 137 - - 146 165 128 129
- - - - - 154 - -
- 107 - - 109 109 9.0 10.2
- - - - - - 101 -

> pepper0O<-read.table("PEPPERS3.DAT",na.strings="-")

> pepperl<-data.frame(pepperO[-c(1,2,3),],c("yL", "yLr, ny2n ny2n ny2" "ya"),
+ c("B1","B2","B1","B1","B2","B2"))

> str(pepperl)

‘data.frame’: 6 obs. of 10 variables:

$ V1 : num 11.4 NA NA NA NA NA

$ V2 : num 13.2 8.4 13.7 NA 10.7 NA

$ V3 : num 10.4 6.5 NA NA NA NA

$ va : num NA 6.1 NA NA NA NA

$ V5 : num 13.7 10.8 14.6 NA 10.9 NA

$ vé : num NA 9.4 16.5 15.4 10.9 NA

$ v7 : num 12 NA 12.8 NA 9 10.1

$ v8 : num 12.5 9.1 12.9 NA 10.2 NA

$ c..¥Y1....¥1....¥Y2....¥Y2....Y2....Y2..: Factor w/ 2 levels "Yi","Y2": 11 2 2 2 2
$ ¢c..B1....B2....B1....B1....B2....B2..: Factor w/ 2 levels "Bi1","B2": 1 2 11 2 2
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pepper<-rbind(P1,P2,P3,P4,P5,P6,P7,P8)
pepper<-pepper[!is.na(pepperl[,1]),]

row.names (pepper)<-1:length(pepper[,1])
str (pepper)
ata.frame’:

~V V V V V V V V V V V V V V V V V V V.V

24 obs. of 6 variables:

d
$ Excess : num 11.4 13.2 8.4 13.7 10.7 10.
$ Year : Factor w/ 2 levels "Y1i","Y2": 1
$ Block : Factor w/ 2 levels "Bi","B2": 1
$ Heating : Factor w/ 2 levels "O","1": 11
$ Lighting: Factor w/ 2 levels "O","1": 1 1
$ co2 : Factor w/ 2 levels "O","1": 1 2
> pepper
Excess Year Block Heating Lighting CO02
1 11.4 Y1 B1 0 0 ©0
2 13.2 1M B1 0 0o 1
3 8.4 Y1 B2 0 o 1
4 13.7 Y2 B1 0 0o 1
5 10.7 Y2 B2 0 0o 1
6 10.4 Y1 B1 0 1 0
7 6.5 Y1 B2 0 1 0
8 6.1 Y1 B2 0 1 1
9 13.7 Y1 B1 1 0 O
10 10.8 Y1 B2 1 0 ©0
11 14.6 Y2 B1 1 0 0
12 10.9 Y2 B2 1 0 ©0
13 9.4 Y1 B2 1 0o 1
14 16.5 Y2 B1 1 o 1
15 15.4 Y2 B1 1 0o 1
16 10.9 Y2 B2 1 0o 1
17 12.0 Y1 B1 1 1 0
18 12.8 Y2 B1 1 1 0
19 9.0 Y2 B2 1 1 0

names (P1)<-c("Excess","Year","Block","Heating
names (P2)<-c("Excess","Year","Block","Heating
names (P3)<-c("Excess","Year","Block","Heating
names (P4)<-c("Excess","Year","Block","Heating
names (P5)<-c("Excess","Year","Block","Heating
names (P6)<-c("Excess","Year","Block","Heating
names (P7)<-c("Excess","Year","Block","Heating
names (P8)<-c("Excess","Year","Block","Heating

N P, PP

Pi<-data.frame(pepperi[,c(1,9,10)],"0","0","0")
P2<-data.frame (pepperi[,c(2,9,10)],"0","0","1")
P3<-data.frame(pepperi[,c(3,9,10)],"0","1","0")
P4<-data.frame (pepperi[,c(4,9,10)],"0","1", "1")
P5<-data.frame(pepperi[,c(5,9,10)],"1","0","0")
P6<-data.frame (pepperi[,c(6,9,10)],"1","0","1")
P7<-data.frame(pepperi[,c(7,9,10)],"1", "1, "0")
P8<-data.frame (pepperi[,c(8,9,10)],"1", "1 1)

3

3

3

3

3

3

3

N~ = N~ O

3

N = = = N Ol

= N = DN OO

[ S I e e e

13.7 1

N N =

= o= NN e

=R N R e

N =~ O

Lighting","C02")
Lighting","C02")
Lighting","C02")
Lighting","C02")
Lighting","C02")
Lighting","C02")
Lighting","C02")
Lighting","C02")

8 ...
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20 10.1 Y2 B2
21 12.5 Y1 Bl
22 9.1 Y1 B2
23 12.9 Y2 Bl
24 10.2 Y2 B2

e
e e
e )

13.4 Solution of Exercise 1.7.2

> str(mustard0)

‘data.frame’: 10 obs. of 4 variables:
$ Vi: int 21 39 31 13 52 39 55 50 29 17
$ V2: int 27 21 26 12 11 8 NA NA NA NA
$ V3: int 22 16 20 14 32 28 36 41 17 22
$ V4: int 21 39 20 24 20 NA NA NA NA NA

> summary(mustardO)

Vi V2 V3 V4
Min. :13.00  Min. : 8.00 Min. :14.00 Min. :20.0
1st Qu.:23.00 1st Qu.:11.25 1st Qu.:17.75 1st Qu.:20.0
Median :35.00 Median :16.50 Median :22.00 Median :21.0
Mean :34.60 Mean :17.50 Mean :24.80 Mean :24.8
3rd Qu.:47.25 3rd Qu.:24.75 3rd Qu.:31.00 3rd Qu.:24.0
Max. :55.00 Max. :27.00 Max. :41.00 Max. :39.0
NA’s : 4.00 NA’s : 5.0
> str(mustard)
‘data.frame’: 31 obs. of 3 variables:
$ length : num 21 39 31 13 52 39 55 50 29 17 ...
$ grow.conditions: Factor w/ 2 levels "light","dark": 1111111111
$ cutting : Factor w/ 2 levels "cut","noncut": 1111111111
> summary(mustard)
length grow.conditions  cutting
Min. : 8.00 1light:16 cut :20
1st Qu.:18.50 dark :15 noncut:11

Median :22.00
Mean :26.55
3rd Qu.:34.00
Max. :55.00

Starting from the data table mustard, we obtain the same results for the 4 treatment groups as
using mustard0 using the following steps:

mustardll<-mustard[mustard$grow.conditions=="1light" &
mustard$cutting=="cut","length"]
mustardl12<-mustard[mustard$grow.conditions=="1light"&mustard $
cutting=="noncut","length"]

mustard21<-mustard [mustard$grow.conditions=="dark"&mustard $
cutting=="cut","length"]

mustard22<-mustard [mustard$grow.conditions=="dark" &

vV + VvV + VvV + V
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+ mustard$cutting=="noncut","length"]
> cbind (summary(mustardil),summary(mustardi2),
+ summary(mustard21) ,summary (mustard22))

(,11 [,2]1 [,3] [,4]

Min. 13.00 8.00 14.00 20.0
1st Qu. 23.00 11.25 17.75 20.0
Median 35.00 16.50 22.00 21.0
Mean 34.60 17.50 24.80 24.8
3rd Qu. 47.25 24.75 31.00 24.0
Max. 55.00 27.00 41.00 39.0

The box-and-whisker plots are easily calculated.

> boxplot(length~™grow.conditions*cutting,data=mustard)
> boxplot(length”cutting*grow.conditions,data=mustard)

50
|
50

40
o
40
|

30
|
30

o _| 0 ; o _|
N N

—_—

‘ —_—

—_—

T T T T
light.cut dark.cut light.noncut  dark.noncut

Figure 13.1: Box plots with grow.conditions*cutting

> boxplot(length™grow.conditions,data=mustard)
> boxplot(length™cutting,data=mustard)

13.5 Solution of Exercise 1.7.3

> str(darwin)

‘data.frame’: 30 obs. of 3 variables:
$ Pair :int 123456789 10 ...
$ Height : num 23.5 12 21 22 19.1 21.5 22.1

$ Fertilization: Factor w/ 2 levels '"Cross",'"Self":

> summary(darwin)
Pair Height Fertilization
Min. : 1.00 Min. :12.00 Cross:15

T T T T
cut.light noncut.light cut.dark noncut.dark

and cutting*grow.conditions

20.4 18.3 21.6 ...
1111111111
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Figure 13.2: Box plots for grow.conditions and cutting

1st Qu.: 4.25 1st Qu.:17.55
Median : 8.00 Median :18.85

Mean : 8.00 Mean :18.89
3rd Qu.:11.75 3rd Qu.:21.38
Max. :15.00 Max. :23.50

Self :15

I
noncut

The heights for the two different kinds of fertilization can be also be obtained as follows:

> summary(darwin[darwin$Fertilization=="Cross","Height"])
Min. 1st Qu. Median Mean 3rd Qu. Max.
12.00 19.75 21.50 20.19 22.10 23.50

> summary(darwin[darwin$Fertilization=="Self","Height"])
Min. 1st Qu. Median Mean 3rd Qu. Max.
12.80 16.40 18.00 17.59 18.60 20.40

This we would also obtain with the originally form of the data set:

> str(darwinO)
‘data.frame’: 15 obs. of 3 variables:
$ Pair :int 12345678910 ...

$ Cross.fertilized: num 23.5 12 21 22 19.1 21.5 22.1 20.4 18.3 21.6 ...
$ Self.fertilized : num 17.4 20.4 20 20 18.4 18.6 18.6 15.3 16.5 18 ...

> summary(darwinO)

Pair Cross.fertilized Self.fertilized
Min. : 1.0 Min. :12.00 Min. :12.80
1st Qu.: 4.5 1st Qu.:19.75 1st Qu.:16.40
Median : 8.0 Median :21.50 Median :18.00
Mean 8.0 Mean :20.19 Mean :17.59
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3rd Qu.:11.5
Max. :15.0 Max.

3rd Qu.:22.10 3rd Qu.:18.60
:23.50 Max. :20.40

> boxplot(Height Fertilization,darwin)

> plot(darwin[darwin$Fertilization=="Cross","Height"],

+ darwin[darwin$Fertilization=="Self","Height"],
+ xlab="Height for Cross",ylab="Height for Self")

22
|

20

18

Height for Self
16

16

14

o

12

Cross

T
Self

T
12

Figure 13.3: Box plot and scatter plot

13.6 Solution of Exercise 2.2.2

growingO<-read.table ("GROWING.DAT")
Fert<-growingO[,1]
Ster<-growingO[,2]
FertO<-data.frame(Fert,"Fertile")
SterO<-data.frame(Ster,"Sterile")
names (Fert0)<-c("Height","Pollen")
names (Ster0)<-c("Height","Pollen")
growing<-rbind(Fert0,Ster0)
str(growing)
data.frame’: 24 obs. of 2 variables:
$ Height: int 92 107 98 97 95 94 92 96 98 104 ...

~V V V V V V V V V

T
14

T
16

T
18

Height for Cross

$ Pollen: Factor w/ 2 levels "Fertile","Sterile": 1 111111111

> boxplot (Height~“Pollen,growing)

The analysis can be done in a short version:

> shapiro.test(Fert)$p.value
[1] 0.4524324

20

22
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Figure 13.4: Box plots for the growing data

> shapiro.test(Ster)$p.value

[1] 0.51354

> var.test(Height™Pollen,growing)$p.value

[1] 0.8190027

> t.test(Height™Pollen,growing,var.equal=T)$p.value

[1] 0.01407609

> wilcox.test(Height™Pollen,growing,var.equal=T)$p.value
[1] 0.02567722

Warnmeldung:

cannot compute exact p-value with ties in: wilcox.test.default(x = c(92, 107, 98,

97, 95, 94, 92, 96, 98,

or in an extended version:

> shapiro.test(Fert)
Shapiro-Wilk normality test
data: Fert
W = 0.9364, p-value = 0.4524
> shapiro.test(Ster)
Shapiro-Wilk normality test
data: Ster
W =0.9412, p-value = 0.5135
> var.test(Fert,Ster)
F test to compare two variances
data: Fert and Ster
F =0.8683, num df = 11, denom df = 11, p-value = 0.819
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.2499653 3.0162273
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sample estimates:
ratio of variances
0.8683042
> t.test(Fert,Ster,var.equal=T)
Two Sample t-test

data: Fert and Ster
t = 2.6672, df = 22, p-value = 0.01408
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:

1.260534 10.072800
sample estimates:
mean of x mean of y

96.58333 90.91667
> wilcox.test(Fert,Ster)
Wilcoxon rank sum test with continuity correction

data: Fert and Ster
W =111, p-value = 0.02568
alternative hypothesis: true mu is not equal to O
Warnmeldung:
cannot compute exact p-value with ties in: wilcox.test.default(Fert, Ster)

The Wilcoxon tests provides a worse p-value, but still would also reject the hypothesis of equal
means.

13.7 Solution of Exercise 2.2.3
At first we check the normality assumtion:

> shapiro.test(darwin[darwin$Fertilization=="Cross","Height"])$p.value
[1] 0.0009706594

> shapiro.test(darwin[darwin$Fertilization=="Self","Height"])$p.value
[1] 0.3838259

Hence the t-test cannot be used.

> wilcox.test(Height Fertilization,data=darwin)$p.value

[1] 0.002608089

Warnmeldung:

cannot compute exact p-value with ties in: wilcox.test.default(x = c(23.5, 12, 21,
22, 19.1, 21.5, 22.1,

We can conclude that the heights under cross- and self-fertilitzation differ significantly. The differ-
ence between the means is given by

> darwinC<-darwin[darwin$Fertilization=="Cross","Height"]
> darwinS<-darwin[darwin$Fertilization=="Self","Height"]
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> mean(darwinC) -mean(darwin$S)
[1] 2.606667

The boxplots in Figure 13.3 show the difference between the two groups. The extreme outlier in
the cross-fertilized plants explains that the normal distribution is rejected there.

13.8 Solution of Exercise 2.3.1

> beta.error(mul=3,mu2=4,sigma=2,N1=10,N2=12)
$beta.error

[1] 0.8028

> beta.error(mul=3,mu2=3.5,sigma=2,N1=10,N2=12)
$beta.error

[1] 0.916

> beta.error(mul=3,mu2=3.1,sigma=2,N1=10,N2=12)
$beta.error

[1] 0.947

> beta.error(mul=3,mu2=3.01,sigma=2,N1=10,N2=12)
$beta.error

[1] 0.9484

> beta.error(mul=6,mu2=7,sigma=2,N1=10,N2=12)
$beta.error

[1] 0.8002

> beta.error(mul=6,mu2=6.5,sigma=2,N1=10,N2=12)
$beta.error

[1] 0.9192

> beta.error(mul=6,mu2=6.1,sigma=2,N1=10,N2=12)
$beta.error

[1] 0.9469

> beta.error(mul=6,mu2=6.01,sigma=2,N1=10,N2=12)
$beta.error

[1] 0.9505

> beta.error(mul=6,mu2=7,sigma=1,N1=10,N2=12)
$beta.error

[1] 0.3974

> beta.error(mul=6,mu2=6.5,sigma=1,N1=10,N2=12)
$beta.error

[1] 0.8037

> beta.error(mul=6,mu2=6.1,sigma=1,N1=10,N2=12)
$beta.error

[1] 0.9448

> beta.error(mul=6,mu2=6.01,sigma=1,N1=10,N2=12)
$beta.error

[1] 0.9499

The B-error depends only on the absolute difference |p; — 2| and on the variance o2. The smaller
the absolute difference |p1 — uo| is the greater the -error is and the S-error approaches 0.95=1-0.05.



Christine Miiller Universitat Kassel, WS 2007/2008
Manuscript Linear Models and Ezperimental Design 222

If the variance is smaller then the (-error is also smaller.

> pt(qt(0.975,20),20,ncp=sqrt(120/22)*1/2)

+ -pt(-qt(0.975,20),20,ncp=sqrt (120/22) *1/2)
[1] 0.800646

> pt(qt(0.975,20),20,ncp=sqrt (120/22)*0.5/2)

+ -pt(-qt(0.975,20),20,ncp=sqrt (120/22)%0.5/2)
[1] 0.9138582

> pt(qt(0.975,20),20,ncp=sqrt (120/22)%0.1/2)

+ -pt(-qt(0.975,20),20,ncp=sqrt(120/22)*0.1/2)
[1] 0.9485803

> pt(qt(0.975,20),20,ncp=sqrt (120/22)*0.01/2)
+ -pt(-qt(0.975,20),20,ncp=sqrt (120/22)*0.01/2)
[1] 0.9499858

> pt(qt(0.975,20),20,ncp=sqrt(120/22)*1/1)

+ -pt(-qt(0.975,20),20,ncp=sqrt (120/22)*1/1)
[1] 0.3964526

> pt(qt(0.975,20),20,ncp=sqrt (120/22)%0.5/1)

+ -pt(-qt(0.975,20),20,ncp=sqrt(120/22)*0.5/1)
[1] 0.800646

> pt(qt(0.975,20),20,ncp=sqrt (120/22)*0.1/1)

+ -pt(-qt(0.975,20),20,ncp=sqrt (120/22)%0.1/1)
[1] 0.9443069

> pt(qt(0.975,20),20,ncp=sqrt (120/22)%0.01/1)
+ -pt(-qt(0.975,20),20,ncp=sqrt(120/22)*0.01/1)
[1] 0.9499433

The simulated values are very similar to the theoretical values although there are some small dif-
ferences due to randomness.

13.9 Solution of Exercise 2.4.1

> beta.error.exact(1,15,15)
[1] 0.2593674

> beta.error.exact(1,16,14)
[1] 0.2612445

> beta.error.exact(1,17,13)
[1] 0.2669429

> beta.error.exact(1,18,12)
[1] 0.2766668

> beta.error.exact(1,19,11)
[1] 0.2907635

> beta.error.exact(1,20,10)
[1] 0.3097332

> beta.error.exact(1,25,5)
[1] 0.5067606

> beta.error.exact(1,29,1)
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[1] 0.8450542

> beta.error.exact(3,15,15)
[1] 2.888766e-09

> beta.error.exact(3,16,14)
[1] 3.201754e-09

> beta.error.exact(3,17,13)
[1] 4.35778e-09

> beta.error.exact(3,20,10)
[1] 3.71341e-08

> beta.error.exact(3,25,5)
[1] 5.898017e-05

> beta.error.exact(3,29,1)
[1] 0.19891

The parameter ¢ has no influence. The best choice of N7 and Ny is N1 = 15 and Ny = 15. One can

even prove that the minimum [-error is always attained by N; = % = Ns.

13.10 Solution of Exercise 2.4.2

> N<-10

> beta.error.exact(2,N/2,N/2)
[1] 0.1474736

> N<-100

> beta.error.exact(2,N/2,N/2)
[1] 3.164278e-14

> N<-50

> beta.error.exact(2,N/2,N/2)
[1] 1.045841e-06

> N<-20

> beta.error.exact(2,N/2,N/2)
[1] 0.01104945

> N<-18

> beta.error.exact(2,N/2,N/2)
[1] 0.01916283

> N<-16

> beta.error.exact(2,N/2,N/2)
[1] 0.03277304

> N<-14

> beta.error.exact(2,N/2,N/2)
[1] 0.05516538

> N<-15

> beta.error.exact(2,N/2,N/2)
[1] 0.04261038

> beta.error.exact(2,7,8)

[1] 0.04335619

> beta.error.exact(2,7,7)

[1] 0.05516538
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Hence the minimum sample size is N = 15 = 7+ 8 for |1 — 2| > 20. We see that the t-distribution
is also defined for degrees of freedom which are not integers. With the same procedure we obtain

> N<-230

> beta.error.exact(1/2,N/2,N/2)
[1] 0.05009967

> N<-231

> beta.error.exact(1/2,N/2,N/2)
[1] 0.0492988

> beta.error.exact(1/2,115,116)
[1] 0.04930224

Hence the minimum sample size is N = 231 = 115 4 116 for |3 — pa| > 0 /2.

13.11 Solution of Exercise 3.2.3

As for the uncovered boxes, we can expect that the normal distribution is not rejected based on
four measurements so that we have only to test the homogeneity of the variances:

> germin.c<-germin[germin$box=="covered",]

> bartlett.test(seed.numbers~watering,data=germin.c[germin.c$watering!="6",]1)
Bartlett test for homogeneity of variances

data: seed.numbers by watering

Bartlett’s K-squared = 6.6995, df = 4, p-value = 0.1526

Since the homogeneity of the variances is not rejected, we can apply the ANOVA test:

> anova(lm(seed.numbers”watering,data=germin.c[germin.c$watering!="6",]))
Analysis of Variance Table

Response: seed.numbers

Df Sum Sq Mean Sq F value Pr(>F)
watering 4 4839.9 1210.0 31.016 8.037e-07 x*x*x
Residuals 14 ©546.2 39.0

Signif. codes: O ’***’ 0.001 ’*x> 0.01 ’x> 0.05 *>.” 0.1 > * 1
With

> var(germin.c[germin.c$watering!="6","seed.numbers"])

[1] 299.2281

> 18*var(germin.c[germin.c$watering!="6","seed.numbers"])
[1] 5386.105
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we obtain the complete ANOAVA table:

Cause of variability Degrees of freedom Sum of squares Variance estimates

Differences
between 4 YgsT = 4839.9 O0ggr = 1210.0
factor levels
Measurement ~

14 PN = 546.2 =39.0
error SSE 0SSE
Total 18 Yssq =b386.1 Trg, = 299.2281

Since the p-value is 8.037e-07, there is again a significant watering effect.

13.12 Solution of Exercise 3.2.4

> library(agricolae)

> data(trees)

> shapiro.test(trees[trees$species=="GUABA","diameter"])$p.value
[1] 0.1548390

> shapiro.test(trees[trees$species=="LAUREL","diameter"])$p.value
[1] 0.2396723

> shapiro.test(trees[trees$species=="ROBLE","diameter"])$p.value
[1] 0.1887661

> shapiro.test(trees[trees$species=="TERMINALIA","diameter"])$p.value
[1] 0.8486412

> bartlett.test(diameter~species,data=trees)$p.value

[1] 0.1361938

Hence the assumptions of the ANOVA test are not rejected.

> anova(lm(diameter~species,data=trees))
Analysis of Variance Table

Response: diameter

Df Sum Sq Mean Sq F value Pr(>F)
species 3 79.097 26.366 4.2975 0.01787 *
Residuals 19 116.569 6.135

Signif. codes: O ’***’ 0.001 ’*x> 0.01 ’x> 0.05 *>.” 0.1 > *> 1
We can conclude that the four species have significantly different stem diameters.

> kruskal.test(diameter~species,data=trees)
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Kruskal-Wallis rank sum test

data: diameter by species
Kruskal-Wallis chi-squared = 7.8414, df = 3, p-value = 0.04941

Again the distribution-free test provides a larger p-value although it is still less 0.05.

13.13 Solution of Exercise 3.3.2

> germin.c<-germin[germin$box=="covered",]
> TukeyHSD(aov(seed.numbers”watering,data=germin.c[germin.c$watering!="6",1))
Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = seed.numbers ~ watering, data = germin.c[germin.c$watering != "6", 1)
$watering

diff lwr upr p adj
2-1 32.500000 18.738266 46.2617340 0.0000301
3-1 33.250000 19.488266 47.0117340 0.0000233
4-1 9.250000 -4.511734 23.0117340 0.2753769
-1 -5.416667 -20.281038 9.4477049 0.7857254
3-2 0.750000 -13.011734 14.5117340 0.9997884
4-2 -23.250000 -37.011734 -9.4882660 0.0009555
5-2 -37.916667 -52.781038 -23.0522951 0.0000126
4-3 -24.000000 -37.761734 -10.2382660 0.0007077
5-3 -38.666667 -53.531038 -23.8022951 0.0000100
5-4 -14.666667 -29.531038 0.1977049 0.0538955

There are only significant differences for the watering levels 1-2, 1-3, 2-4, 2-5, 3-4, 3-5. The same
result is obtained via HSD.test from the newest version of the agricolae package:

> library(agricolae)
> attach(germin.c[germin.c$watering!="6",])
> model<-aov(seed.numbers~watering)
> df<-df.residual (model)
> MSerror<-deviance(model)/df
> comparison<-HSD.test(seed.numbers,watering,df ,MSerror,group=TRUE,main="title")
> comparison
trt means M N std.err
1 3 76.00000 a 3.75 1.7795130
2 2 75.25000 a 3.75 3.4731110
3 4 52.00000 b 3.75 4.6007246
4 1 42.75000 bc 3.75 0.8539126
5 5 37.33333 c 3.75 4.0960686
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The Waller-Duncan method provides:

> Fc<-anova(model) [1,4]
> comparison<-waller.test(seed.numbers,watering,df,MSerror,
+ Fc,group=TRUE,main="title")
> comparison
trt means M N std.err
1 3 76.00000 a 3.75 1.7795130
2 2 75.25000 a 3.75 3.4731110
3 4 52.00000 b 3.75 4.6007246
4 1 42.75000 c 3.75 0.8539126
5 5 37.33333 c 3.75 4.0960686

Here additionally the watering levels 1-4 show significant differences.

> boxplot(seed.numbers~watering,data=germin.c[germin.c$watering!="6",])
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Figure 13.5: Box plots for the covered boxes

> gerS.c<-germin.c[,"seed.numbers"]

> gerW.c<-germin.c[,"watering"]

> t.test(gerS.c[gerW.c=="1"],gerS.c[gerW.c=="2"]1)$p.value
[1] 0.001763613

> t.test(gerS.c[gerW.c=="1"],gerS.c[gerW.c=="3"]1)$p.value
[1] 4.241045e-05

> t.test(gerS.c[gerW.c=="1"],gerS.c[gerW.c=="4"])$p.value
[1] 0.1365746

> t.test(gerS.clgerW.c=="1"],gerS.c[gerW.c=="5"])$p.value
[1] 0.3158338

> t.test(gerS.clgerW.c=="2"],gerS.c[gerW.c=="3"]1)$p.value
[1] 0.8560103

> t.test(gerS.clgerW.c=="2"],gerS.clgerW.c=="4"])8$p.value



Christine Miiller Universitat Kassel, WS 2007/2008
Manuscript Linear Models and Ezperimental Design 228

[1] 0.007963777

> t.test(gerS.clgerW.c=="2"],gerS.c[gerW.c=="5"])$p.value
[1] 0.001479392

> t.test(gerS.c[gerW.c=="3"],gerS.c[gerW.c=="4"])$p.value
[1] 0.008917755

> t.test(gerS.c[gerW.c=="3"],gerS.c[gerW.c=="5"])$p.value
[1] 0.004431519

> t.test(gerS.c[gerW.c=="4"],gerS.c[gerW.c=="5"])$p.value
[1] 0.06346417

With the significant level 0.05/10 = 0.005, we obtain only significant differences for the watering
levels 1-2, 1-3, 2-5, 3-5. Again we obtain less significant differences than with Tukey’s Honest
Significant Difference method and the Waller-Duncan method.

13.14 Solution of Exercise 3.3.3

> library(agricolae)
> data(trees)
> TukeyHSD(aov(diameter~species,data=trees))
Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = diameter ~ species, data = trees)

$species

diff lwr upr p adj
LAUREL-GUABA 1.8733333 -2.344033 6.090700 0.6047337
ROBLE-GUABA 2.3500000 -1.671101 6.371101 0.3795158
TERMINALTIA-GUABA 5.0833333 1.062232 9.104435 0.0104236
ROBLE-LAUREL 0.4766667 -3.740700 4.694033 0.9885329
TERMINALTA-LAUREL 3.2100000 -1.007367 7.427367 0.1764053
TERMINALIA-ROBLE 2.7333333 -1.287768 6.754435 0.2565468

> boxplot(diameter~species,data=trees)

Only the species Terminalia and Guaba have significantly different stem diameters.
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Figure 13.6: Box plots for the stem diameters

13.15 Solution of Exercise 3.4.1

Since we have 12 units and 4 treatments, the replication number of each treatment is 3. Then we

obtain for example the following design:

> library(agricolae)

> design.crd(c("TR1","TR2","TR3","TR4"),3)
r

plots c("TR1", "TR2", "TR3", "TR4")
TR2 1

1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
11 11
12 12

13.16 Solution of Exercise 4.3.3

a)

—
=]
w
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> shapiro.test(Im(length™cutting*grow.conditions,data=mustard)$residuals)$p.value

[1] 0.5210626

Hence the ANOVA test can be used:
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> anova(lm(length~cutting*grow.conditions,data=mustard))
Analysis of Variance Table

Response: length
Df Sum Sq Mean Sq F value Pr(>F)

cutting 1 559.8 559.8 4.5198 0.04280 *

grow.conditions 1 109.5 109. 0.8842 0.35539

5
cutting:grow.conditions 1 516.0 516.0 4.1660 0.05113 .
9

Residuals 27 3344.3 123.

Signif. codes: O ’*%*’ 0.001 ’*x> 0.01 °’x’ 0.05 *.” 0.1’

1

Hence only the cutting has a significant influence on the length. The hypothesis of no interactions

between cutting and growing conditions is not rejected.

The ANOVA table is obtained as follows:

> length(mustard[,"length"])
[1] 31

> var(mustard[,"length"])

[1] 150.9892

> 30*var (mustard[,"length"])
[1] 4529.677

Cause of variability Degrees of freedom ~ Sum of squares

Variance estimates

cutting 1 Yss4 = 559.8 0ggy = 559.8
grow.conditions 1 Ssspla+n = 1095 Glgpiayp = 109.5
Interaction 1 Ygs1 = 516.0 G%4; = 516.0
Measurement . ~9

27 Yok = 3344.3 oigp = 123.9
error
Total 30 Yssa = 4529.677  Gign = 150.9892

b)

> anova(lm(length~grow.conditions*cutting,data=mustard))
Analysis of Variance Table
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Response: length
Df Sum Sq Mean Sq F value Pr(>F)

grow.conditions 1 88.8 88.8 0.7172 0.40449
cutting 1 580.5 580.5 4.6868 0.03940 *
grow.conditions:cutting 1 516.0 516.0 4.1660 0.05113 .
Residuals 27 3344.3 123.9

Signif. codes: O ’**x*x’ 0.001 ’*x> 0.01 °’x> 0.05 *.” 0.1 > *> 1

Here the order of the treatments is important since the design is very unbalanced with samples sizes
Ny of 10, 6, 10, and 5.

c¢) Since the hypothesis of no interactions is not rejected, the two-way layout without interactions
can be used. At first the assumption of normal distribution is tested:

> shapiro.test(Im(length™grow.conditions+cutting,data=mustard)$residuals)$p.value
[1] 0.2221986

The p-value is now smaller than in the model with interactions but still greater than 0.05. Hence
the ANOVA test can be used.

> anova(lm(length™grow.conditions+cutting,data=mustard))
Analysis of Variance Table

Response: length

Df Sum Sq Mean Sq F value Pr(>F)
grow.conditions 1 88.8 88.8 0.6444 0.42889
cutting 1 580.5 580.5 4.2107 0.04963 x*
Residuals 28 3860.3 137.9

Signif. codes: O ’***’ 0.001 ’*x> 0.01 ’x> 0.05 *>.” 0.1 > *> 1

The test statistics, F values, are smaller and the p-values are larger. This is due to the fact that
(516.0 + 3344.3)/28 = 3860.3/28 = 137.9 instead of 3344.3/27 = 123.9 is used in the denominator
of the test statistic.

13.17 Solution of Exercise 4.5.4
a)

> design.ab(1:6,1:4,2)
plots block 1:6 1:4

1 1 1 2 3
2 2 1 4 1
3 3 1 3 4
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> design.rcbd(1:6,4)
plots block 1:6

1 1 1 3
2 2 1 5
3 3 1 4
4 4 1 2
5 5 1 1
6 6 1 6
7 7 2 3
8 8 2 1
9 9 2 2
10 10 2 4
11 11 2 5
12 12 2 6
13 13 3 4
14 14 3 3
15 15 3 2
16 16 3 1
17 17 3 6
18 18 3 5
19 19 4 6
20 20 4 2
21 21 4 3
22 22 4 4
23 23 4 5
24 24 4 1

c¢) There exists no balanced incomplete block design since condition (9) means 6 - r = 4 - 3 which
implies r = 2. Then condition (10) means A -5 = 2-2. But there exists no A in the integers which

satisfies this equation.
d)

> design.bib(1:6,3)

Parameters BIB

Lambda : 4
treatmeans : 6
Block size : 3
Blocks : 20
Replication: 10

Efficiency factor 0.8

<<< Book >>>

plots block 1:6
1 1 1 1
2 2 1 5



Christine Miiller Universitat Kassel, WS 2007/2008

Manuscript Linear Models and Ezperimental Design 234
3 3 1 6
4 4 2 1
5 5 2 3
6 6 2 5
7 7 3 4
8 8 3 2
9 9 3 5
10 10 4 1
11 11 4 2
12 12 4 4
13 13 5 2
14 14 5 3
15 15 5 5
16 16 6 5
17 17 6 4
18 18 6 3
19 19 7 6
20 20 7 1
21 21 7 4
22 22 8 4
23 23 8 3
24 24 8 2
25 25 9 6
26 26 9 3
27 27 9 4
28 28 10 4
29 29 10 1
30 30 10 3
31 31 11 6
32 32 11 2
33 33 11 5
34 34 12 6
35 35 12 2
36 36 12 4
37 37 13 5
38 38 13 6
39 39 13 3
40 40 14 6
41 41 14 4
42 42 14 5
43 43 15 1
44 44 15 2
45 45 15 5
46 46 16 3
47 47 16 6
48 48 16 1
49 49 17 1
50 50 17 2
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51 51 17
52 52 18
53 53 18
54 54 18
55 55 19
56 56 19
57 57 19
58 58 20
59 59 20
60 60 20

N O WL O b, WO

13.18 Solution of Exercise 4.5.5

> pepper.design<-design.bib(1:8,6)

Parameters BIB

Lambda : 15
treatmeans : 8
Block size : 6
Blocks : 28
Replication: 21

Efficiency factor 0.952381

<<< Book >>>

168 = 8 x 21 = 6 * 28 blocks are needed, which means that the experiment would have a duration
of 84 years.

> anova(lm(yield”Block*Clon*Treat, data=huasahuasi))
Analysis of Variance Table

Response: yield
Df Sum Sq Mean Sq F value Pr(>F)

Block 2 7.5 3.8
Clon 4 5435.8 1359.0
Treat 2 280.6 140.3
Block:Clon 8 299.7 37.5
Block:Treat 4 65.8 16.4
Clon:Treat 8 194.1 24.3
Block:Clon:Treat 16 280.8 17.6
Residuals 0 0.0
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13.19 Solution of Exercise 5.1.2

> aov(Excess™Year+Block*Heating*Lighting*C02,data=pepper)

Call:
aov(formula = Excess ~ Year + Block * Heating * Lighting * CO02,
data = pepper)

Terms:
Year Block Heating Lighting C02 Block:Heating

Sum of Squares 24.40167 92.04167 7.62881 20.36507 1.19428 0.03541

Deg. of Freedom 1 1 1 1 1 1
Block:Lighting Heating:Lighting Block:C02 Heating:C02

Sum of Squares 0.26877 0.22369  0.74872 0.02326

Deg. of Freedom 1 1 1 1
Lighting:C02 Block:Heating:Lighting Block:Heating:C02

Sum of Squares 0.14940 1.65698 0.26978

Deg. of Freedom 1 1 1
Block:Lighting:C02 Residuals

Sum of Squares 1.32250  2.91000

Deg. of Freedom 1 9

Residual standard error: 0.5686241
2 out of 17 effects not estimable
Estimated effects may be unbalanced

In this model not all parameters are estimable. The interactions Heating*Lighting*C02 and
Block*Heating*Lighting*C02 are not estimable.

> aov(Excess~Year*Block+Heating*Lighting*C02,data=pepper)

Call:
aov(formula = Excess ~ Year * Block + Heating * Lighting * CO02,
data = pepper)

Terms:
Year Block Heating Lighting C02 Year:Block
Sum of Squares 24.40167 92.04167 7.62881 20.36507 1.19428 0.17964
Deg. of Freedom 1 1 1 1 1 1
Heating:Lighting Heating:C02 Lighting:C02 Heating:Lighting:C02
Sum of Squares 0.11168 0.04689 0.13298 1.17600
Deg. of Freedom 1 1 1 1
Residuals
Sum of Squares 5.96131
Deg. of Freedom 13

Residual standard error: 0.6771723
Estimated effects may be unbalanced
> shapiro.test(aov(Excess”Year*Block+Heating*Lighting*C02,data=pepper) $residuals
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+ )$p.value

[1] 0.6033543

> anova(lm(Excess~Year*Block+Heating*Lighting*C02,data=pepper))
Analysis of Variance Table

Response: Excess
Df Sum Sq Mean Sq F value Pr(>F)
Year 1 24.402 24.402 53.2134 6.050e-06 **x

Block 1 92.042 92.042 200.7179 2.787e-09 *x*x
Heating 1 7.629 7.629 16.6364 0.001304 x**
Lighting 1 20.365 20.365 44.4107 1.554e-05 **x
Cc02 1 1.194 1.194 2.6044 0.130567
Year:Block 1 0.180 0.180 0.3918 0.542213
Heating:Lighting 1 0.112 0.112 0.2436 0.629886
Heating:C02 1 0.047 0.047 0.1022 0.754228
Lighting:C02 1 0.133 0.133 0.2900 0.599329
Heating:Lighting:C02 1 1.176 1.176 2.5645 0.133294
Residuals 13 5.961  0.459

Signif. codes: O ’**x*x’ 0.001 ’*x> 0.01 °’x> 0.05 *.” 0.1 > * 1

> aov(Excess~Year+Block+Heating+Lighting+C02,data=pepper)

Call:
aov(formula = Excess ~ Year + Block + Heating + Lighting + CO2,
data = pepper)

Terms:

Year Block Heating Lighting C02 Residuals
Sum of Squares 24.40167 92.04167 7.62881 20.36507 1.19428 7.60850
Deg. of Freedom 1 1 1 1 1 18

Residual standard error: 0.6501496

Estimated effects may be unbalanced

> shapiro.test(aov(Excess”Year+Block+Heating+Lighting+C02,data=pepper) $residuals
+ )$p.value

[1] 0.5144351

> anova(lm(Excess~Year+Block+Heating+Lighting+C02,data=pepper))

Analysis of Variance Table

Response: Excess
Df Sum Sq Mean Sq F value Pr(>F)

Year 1 24.402 24.402 57.7289 5.067e-07 ***
Block 1 92.042 92.042 217.7499 1.695e-11 *%x*
Heating 1 7.629 7.629 18.0480 0.0004835 x*x*x*
Lighting 1 20.365 20.365 48.1792 1.739e-06 ***
c02 1 1.194 1.194  2.8254 0.1100532

Residuals 18 7.609  0.423
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Signif. codes: O ’**x*x’ 0.001 ’*x> 0.01 °’x> 0.05 *.” 0.1 > > 1

In practice, the model Excess~Year*Block+Heating*Lighting*C02 should be used since it allows
the most interactions, even one more interaction, namely the interaction between Year and Block,
than the model Excess~Year+Block+Heating*Lighting*C02 used in Example 5.1.1. Since no inter-
action has a significant effect, also the additive model Excess~Year+Block+Heating+Lighting+C02
might be used. But that the interactions are not significant, cannot be known before analyzing the
data. Hence the additive model should be not used.

13.20 Solution of Exercise 5.1.3

> aov(yield"Block*Clon*Treat,data=huasahuasi)
Call:
aov(formula = yield ~ Block * Clon * Treat, data = huasahuasi)

Terms:
Block Clon Treat Block:Clon Block:Treat Clon:Treat
Sum of Squares 7.509 5435.843 280.645 299.699 65.754 194.067
Deg. of Freedom 2 4 2 8 4 8
Block:Clon:Treat
Sum of Squares 280.840
Deg. of Freedom 16

Estimated effects may be unbalanced

Hence in the largest possible model, which includes all interactions, all parameters are estimable.

> shapiro.test(aov(yield”Block*Clon*Treat,data=huasahuasi)$residuals)$p.value

Fehler in shapiro.test(aov(yield ~ Block * Clon * Treat, data = huasahuasi)$residuals)
all ’x’ values are identical

> anova(lm(yield"Block*Clon*Treat,data=huasahuasi))

Analysis of Variance Table

Response: yield

Df Sum Sq Mean Sq F value Pr(>F)

Block 2 7.5 3.8
Clon 4 5435.8 1359.0
Treat 2 280.6 140.3
Block:Clon 8 299.7 37.5
Block:Treat 4 65.8 16.4
Clon:Treat 8 194.1 24.3
Block:Clon:Treat 16 280.8 17.6
Residuals 0 0.0

Since there are 3-5-3 = 45 parameter and only 45 observations, all hypotheses of the largest model
are not testable. This indicates also the residual sum of squares (the sum of squares for errors
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J?s gp) which is zero with zero degree of freedom. Therefore the Shapiro-Wilk test provides an error
message.

> aov(yield"Block+Clon*Treat,data=huasahuasi)
Call:

aov(formula = yield ~ Block + Clon * Treat, data = huasahuasi)
Terms:
Block Clon Treat Clon:Treat Residuals
Sum of Squares 7.509 5435.843 280.645 194.067 646.293
Deg. of Freedom 2 4 2 8 28
Residual standard error: 4.804362
Estimated effects may be unbalanced
> aov(yield"Block*Clon+Treat,data=huasahuasi)
Call:
aov(formula = yield ~ Block * Clon + Treat, data = huasahuasi)
Terms:
Block Clon Treat Block:Clon Residuals
Sum of Squares 7.509 5435.843 280.645 299.699  540.662
Deg. of Freedom 2 4 2 8 28

Residual standard error: 4.394239
Estimated effects may be unbalanced

Both models have 2 +4 4+ 2 4+ 4 %« 2 = 16 parameters. The model with interactions could be more
reasonable because an interaction between treatment and clone may be of interest. However, the
normal distribution is rejected in this model:

> shapiro.test(aov(yield”Block+Clon*Treat,data=huasahuasi)$residuals)$p.value
[1] 0.04501483
> shapiro.test(aov(yield”Block*Clon+Treat,data=huasahuasi)$residuals)$p.value
[1] 0.2980998

Hence the model with interactions between blocks and clones should be used.

> anova(lm(yield”Block*Clon+Treat,data=huasahuasi))
Analysis of Variance Table

Response: yield
Df Sum Sq Mean Sq F value Pr(>F)

Block 2 7.5 3.8 0.1944  0.82439
Clon 4 5435.8 1359.0 70.3784 3.377e-14 *x**
Treat 2 280.6 140.3 7.2671  0.00287 x*x

Block:Clon 8 299.7 37.5 1.9401 0.09316 .
Residuals 28 540.7 19.3
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Signif. codes: O ’***’ 0.001 ’*x> 0.01 ’x> 0.05 *>.” 0.1 > * 1
Set B =Block, C' =Clon, and T =Treat.

1) Hy*¢ fbet =+ B+C+T
VEersus
HEPC . Lot =pp+B+C+T+BxC

HéB*C is not rejected.
2) Hg : fber =+ B+ C
versus
HY fbr =+ B+C+T

There is a significant treatment effect.

3)HOC: ot = 4+ B
versus
HY : Phet =+ B+ C

There is a significant clone effect.

4) H(? : Mbet = 1
Versus

HY fpet = 11+ B

There is a no significant block effect.

13.21 Solution of Exercise 5.2.1

> design.graeco(c(llAll s IIBII s IICII s IIDII s IIEII) ,C("a" s I|b|| s "C" s I|d|| s I|e||))

plots row col c("A", "B", "C", "D", "E") c("a", "b", "c", "d", "e")
1 1 1 1 B c
2 2 1 2 E d
3 3 1 3 C b
4 4 1 4 A e
5 5 1 5 D a
6 6 2 1 E b
7 7 2 2 C e
8 8 2 3 A a
9 9 2 4 D C
10 10 2 5 B d
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11 11 3 1 C a
12 12 3 2 A c
13 13 3 3 D d
14 14 3 4 B b
15 15 3 5 E e
16 16 4 1 A d
17 17 4 2 D b
18 18 4 3 B e
19 19 4 4 E a
20 20 4 5 C c
21 21 5 1 D e
22 22 5 2 B a
23 23 5 3 E c
24 24 5 4 C d
25 25 5 5 A b
1 2 3 4 5

Be Ed Cb Ae Da

Dd Bb Ee
Ad Db Be Ea Cc
De Ba Ec¢ Cd Ab

Tl W N
@)
<
>
1)

13.22 Solution of Exercise 5.2.2

vandalO<-read.table ("VANDAL.DAT",na.string="4")
vandali<-as.factor(c(vandalO[ ,1],vandalO[ ,3],vandalO[ ,5],
vandalO[ ,7],vandalO[ ,9],vandalO[ ,11]))
levels(vandall)<-c("A","B","C","D" ,"E" "F")

vandal2<-c(vandalO[ ,2],vandalO[ ,4],vandalO[ ,5],vandalO[ ,8],
vandalO[ ,10],vandalO[ ,12])

vandal3<-rep(as.factor(1:6),6)
vandal4<-as.factor(c(rep(1,6),rep(2,6),rep(3,6),rep(4,6),rep(5,6) ,rep(6,6)))
vandal<-data.frame(vandal3,vandal4,vandall,vandal?2)

names (vandal)<-c("row","col","treat","weight")

vandal[1:3,]

row col treat weight

V V V V V 4+ V V 4+ V V

1 1 1 E 29.0
2 2 1 B 17.5
3 3 1 F 17.0
> shapiro.test(aov(weight“row+col+treat,data=vandal)$residuals)$p.value

[1] 0.1449412
> anova(lm(weight row+col+treat,data=vandal))
Analysis of Variance Table

Response: weight



Christine Miiller
Manuscript Linear Models and Ezperimental Design

Universitat Kassel, WS 2007/2008

242

Df Sum Sq Mean Sq F value Pr(>F)
row 5 232.15 46.43 1.6471 0.201324
col 5 1651.86 330.37 11.7199 5.066e-05 *x**
treat 5 672.78 134.56 4.7734 0.006592 *x
Residuals 17 479.21  28.19
Signif. codes: O ’**x” 0.001 %%’ 0.01 ’%’ 0.05 >.” 0.1’
> anova(lm(weight~col+treat+row,data=vandal))
Analysis of Variance Table
Response: weight
Df Sum Sq Mean Sq F value Pr(>F)
col 5 1636.95 327.39 11.6142 5.363e-05 **x*
treat 5 741.19 148.24 5.2588 0.004239 *x
row 5 178.64 35.73 1.2674 0.322716
Residuals 17 479.21  28.19
Signif. codes: 0 ’**x” 0.001 %%’ 0.01 ’%’ 0.05 >.” 0.1’

* 1

* 1

Because of the missing values the design is not balanced and therefore the order of the factors
matters. However, adding the missing value, provides a balanced design:

vandal.complete<-vandal
vandal.complete[30,"weight"]<-21.5
vandal.complete[35,"weight"]<-20.8
vandal.complete[36,"weight"]<-13.5

anova(lm(weight row+col+treat,data=vandal.complete))
Analysis of Variance Table

vV V V V V

Response: weight

Df Sum Sq Mean Sq F value Pr(>F)
row 5 185.93 37.19 1.4000 0.266699
col 5 1631.66 326.33 12.2860 1.552e-05 *x*x*
treat 5 731.56 146.31 5.5085 0.002393 **
Residuals 20 531.23 26.56

Signif. codes: O ’*xx’ 0.001 ’xx’ 0.01 ’x’ 0.05 .7 0.1 7
> anova(lm(weight~col+row+treat,data=vandal.complete))
Analysis of Variance Table

Response: weight

Df Sum Sq Mean Sq F value Pr(>F)
col 5 1631.66 326.33 12.2860 1.552e-05 *x*x*
row 5 185.93 37.19 1.4000 0.266699
treat 5 731.56 146.31 5.5085 0.002393 **
Residuals 20 531.23 26.56

Signif. codes: O ’*xx’ 0.001 ’xx’ 0.01 ’x’ 0.05 .7 0.1 7

* 1

* 1
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> anova(lm(weight~row+treat+col,data=vandal.complete))
Analysis of Variance Table

Response: weight

Df Sum Sq Mean Sq F value Pr(>F)
row 5 185.93 37.19 1.4000 0.266699
treat 5 731.56 146.31 5.5085 0.002393 *x
col 5 1631.66 326.33 12.2860 1.552e-05 **x*
Residuals 20 531.23 26.56
Signif. codes: O ’**x’> 0.001 ’**’ 0.01 ’%> 0.05 >.”> 0.1 > > 1

> anova(lm(weight~col+treat+row,data=vandal.complete))
Analysis of Variance Table

Response: weight

Df Sum Sq Mean
5 1631.66 326.

treat 5 731.56 146.

row 5 185.93  37.

Residuals 20 531.23  26.

Sq F value Pr(>F)

33 12.2860 1.552e-05 #**
31 5.5085 0.002393 *x
19 1.4000 0.266699

56

col

Signif. codes: O ’***’ 0.001 ’*x> 0.01 ’x> 0.05 *>.” 0.1 > *> 1
> anova(lm(weight~treat+row+col,data=vandal.complete))
Analysis of Variance Table

Response: weight

Df Sum Sq Mean Sq F value Pr(>F)
treat 5 731.56 146.31 5.5085 0.002393 **
row 5 185.93 37.19 1.4000 0.266699
col 5 1631.66 326.33 12.2860 1.552e-05 **x*
Residuals 20 531.23 26.56

Signif. codes: O ’**x*x’ 0.001 ’*x> 0.01 °’x> 0.05 *.” 0.1 > *> 1
> anova(lm(weight~treat+col+row,data=vandal.complete))
Analysis of Variance Table

Response: weight
Df Sum Sq Mean Sq F value Pr(>F)
treat 5 731.56 146.31 5.5085 0.002393 *x
col 5 1631.66 326.33 12.2860 1.552e-05 *xx
row 5 185.93 37.19 1.4000 0.266699
Residuals 20 531.23 26.56
Signif. codes: O ’**x*x’ 0.001 ’*x> 0.01 °’x> 0.05 *.” 0.1 > * 1

For the complete latin square design, the order of the factors does not matter.
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13.23 Solution of Exercise 6.1.1

At first we regard 0[230. Since the variance o2 does not matter, we calculate only ﬁ

> x<-¢(0,0.1,0.2,0.3,0.4,0.5,0.5,0.6,0.7,0.8,0.9,1)

> 1/(9%var(x))
[1] 1.111111

> x<-¢(0,0,0.2,0.2,0.4,0.4,0.6,0.6,0.8,0.8,1,1)

> 1/(9%var(x))
[1] 0.8730159

> %<-¢(0,0,0,0.3,0.3,0.3,0.7,0.7,0.7,1,1,1)

> 1/(9%var(x))
[1] 0.7024266

> x<-¢(0,0,0,0.5,0.5,0.5,0.5,0.5,0.5,1,1,1)

> 1/(9*%var(x))
[1] 0.8148148

> x<-¢(0,0,0,0,0.5,0.5,0.5,0.5,1,1,1,1)

> 1/(9*%var(x))
[1] 0.6111111

> %<-¢(0,0,0,0,0,0.5,0.5,1,1,1,1,1)

> 1/(9%var(x))
[1] 0.4888889

> x<-¢(0,0,0,0,0,0,1,1,1,1,1,1)

> 1/(9%var(x))
[1] 0.4074074

The proposal is that the design with smallest variance o

> %<-¢(0,0.1,0.2,0.3,0.4,0.5,0.5,0.6,0.7,0.8,0.9,1)

> mean(x~2)/(9*var(x))
[1] 0.3796296

> %<-¢(0,0,0.2,0.2,0.4,0.4,0.6,0.6,0.8,0.8,1,1)

> mean(x~2)/(9*var(x))
[1] 0.3201058

> x<-¢(0,0,0,0.3,0.3,0.3,0.7,0.7,0.7,1,1,1)

> mean(x~2)/(9*var(x))
[1] 0.2774585

> %<-¢(0,0,0,0.5,0.5,0.5,0.5,0.5,0.5,1,1,1)

> mean (x~2)/(9*var(x))
[1] 0.3055556

> x<-¢(0,0,0,0,0.5,0.5,0.5,0.5,1,1,1,1)

> mean(x~2)/(9*var(x))
[1] 0.2546296

> x<-¢(0,0,0,0,0,0.5,0.5,1,1,1,1,1)

> mean(x~2)/(9*var(x))
[1] 0.2240741

2

Bo
observations at 0 and the other half of the observations at 1. For 0%1 we calculate

5.
SIE

is the design which puts half of the

1 N
N Z:'n,:1 33,21 .
(N-1)s3 -
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> x<-c¢(0,0,0,0,0,0,1,1,1,1,1,1)
> mean(x~2)/(9*var(x))
[1] 0.2037037

Again, the proposal is that the design with smallest variance O'%l is the design which puts half of

the observations at 0 and the other half of the observations at 1.

13.24 Solution of Exercise 6.1.3

At first the normal distributions are checked:

> shapiro.test(aov(protein™L2,data=ground)$residuals)$p.value
[1] 0.8573912

> shapiro.test(aov(protein~™L3,data=ground)$residuals)$p.value
[1] 0.8441344

> shapiro.test(aov(protein~L4,data=ground) $residuals)$p.value
[1] 0.3232782

> shapiro.test(aov(protein~L5,data=ground) $residuals) $p.value
[1] 0.366428

> shapiro.test(aov(protein~L6,data=ground) $residuals)$p.value
[1] 0.6450972

Hence the t- and F-tests can be performed.

> summary(lm(protein~L2,data=ground))

Call:
lm(formula = protein ~ L2, data = ground)

Residuals:
Min 1Q Median 3Q Max
-2.02800 -0.75285 0.09001 1.02295 2.40733

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 6.089647 1.274136 4.779 9e-05 *xx*
L2 0.027591 0.008897 3.101 0.00521 *x

Signif. codes: O ’#xx’ 0.001 ’%x> 0.01 ’%” 0.05 ’.” 0.1 > * 1
Residual standard error: 1.209 on 22 degrees of freedom
Multiple R-Squared: 0.3042, Adjusted R-squared: 0.2726
F-statistic: 9.618 on 1 and 22 DF, p-value: 0.005209

> summary(lm(protein~L3,data=ground))
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Call:
lm(formula = protein ~ L3, data = ground)

Residuals:
Min 1Q Median 3Q Max
-2.0385 -0.7785 0.1001 0.9945 2.4207

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 3.320697 2.237690 1.484 0.15200
L3 0.025121 0.008406 2.988 0.00677 *x

Signif. codes: O ’***’ 0.001 ’*x> 0.01 ’x> 0.05 *>.” 0.1 > * 1

Residual standard error: 1.223 on 22 degrees of freedom
Multiple R-Squared: 0.2887, Adjusted R-squared: 0.2564
F-statistic: 8.931 on 1 and 22 DF, p-value: 0.006773

> summary(lm(protein~L4,data=ground))

Call:
lm(formula = protein ~ L4, data = ground)

Residuals:
Min 1Q Median 3Q Max
-2.1671 -1.0127 0.1710 0.9547 2.3899

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 3.02711 3.58059 0.845 0.4070
L4 0.01776 0.00914 1.944 0.0648 .

Signif. codes: O ’**x*x’ 0.001 ’*x> 0.01 °’x> 0.05 *.” 0.1 > * 1
Residual standard error: 1.339 on 22 degrees of freedom
Multiple R-Squared: 0.1466, Adjusted R-squared: 0.1078
F-statistic: 3.778 on 1 and 22 DF, p-value: 0.06484

> summary(lm(protein~L5,data=ground))

Call:
Im(formula = protein ~ L5, data = ground)

Residuals:
Min 1Q Median 3Q Max
-2.4576 -1.1006 0.1763 1.1459 2.3939

Coefficients:
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Estimate Std. Error t value Pr(>|t])
(Intercept) 5.381606 2.557850 2.104 0.0470 *
L5 0.011454 0.006353 1.803 0.0851

Signif. codes: O ’**x*x’ 0.001 ’*x> 0.01 °’x> 0.05 *.” 0.1 > > 1

Residual standard error: 1.353 on 22 degrees of freedom
Multiple R-Squared: 0.1287, Adjusted R-squared: 0.08913
F-statistic: 3.251 on 1 and 22 DF, p-value: 0.08512

> summary(lm(protein~L6,data=ground))

Call:
Im(formula = protein ~ L6, data = ground)

Residuals:
Min 1Q Median 3Q Max
-2.2824 -0.9135 0.1954 1.0541 2.2762

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 9.95841 0.26408 37.710 <2e-16 *x*x
L6 0.03764 0.01587 2.372 0.0268 =*

Signif. codes: O ’***x’ 0.001 ’*x> 0.01 °’x> 0.05 *.” 0.1 > * 1

Residual standard error: 1.294 on 22 degrees of freedom
Multiple R-Squared: 0.2037, Adjusted R-squared: 0.1675
F-statistic: 5.628 on 1 and 22 DF, p-value: 0.02684

Since we have 6 tests, we compare the results of the tests with e = 0.05/6 = 0.008333333. The
following conclusions are possible then: The variable L2 has a significant influence on protein and
the intercept of the regression line differs significantly from zero. Variable L3 has also a significant
influence however there is no evidence that the intercept differs from zero. There is no evidence
that L4 has an influence on protein nor that the corresponding regression line has an intercept
different from zero. The same holds for the variable L5. Variable L6 shows no significant influence
on protein, but the regression line has an intercept which differs significantly from zero.

> plot(ground$L2,ground$protein,xlab="L2",ylab="Protein")
> abline(1lsfit(ground$L2,ground$protein)$coef)
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Figure 13.7: Scatter plot with regression line

13.25 Solution of Exercise 6.2.2

> x<-¢(0,0.1,0.2,0.3,0.4,0.5,0.5,0.6,0.7,0.8,0.9,1)
> X<-cbind(rep(1,12),x,x°2)

> ginv(t (X)%*%X) [1,1]+ginv (£ (X)%*%X) [2,2]+ginv (t (X) %*%X) [3,3]

[1] 22.5437
> x<-¢(0,0,0.2,0.2,0.4,0.4,0.6,0.6,0.8,0.8,1,1)
> X<-cbind(rep(1,12),x,x"2)

> ginv(t (X)%*%X) [1,1]1+ginv (t (X)%*%X) [2,2] +ginv (t (X) %*%X) [3,3]

[1] 17.86607
> x<-¢(0,0,0,0.3,0.3,0.3,0.7,0.7,0.7,1,1,1)
> X<-cbind(rep(1,12),x,x"2)

> ginv(t (X)%*%X) [1,1]1+ginv (t (X)%*%X) [2,2] +ginv (t (X) %*%X) [3,3]

[1] 16.00222
x<-¢(0,0,0,0.5,0.5,0.5,0.5,0.5,0.5,1,1,1)
> X<-cbind(rep(1,12),x,x"2)

> ginv (£ (X)%*%X) [1,1]+ginv (¢t (X)%*%X) [2,2] +ginv (t (X) %*%X) [3, 3]

[1] 11.66667
> x<-¢(0,0,0,0,0.5,0.5,0.5,0.5,1,1,1,1)
> X<-cbind(rep(1,12),x,x°2)

> ginv(t (X)%*%X) [1,1]+ginv (£ (X)%*%X) [2,2]+ginv (£ (X) %*%X) [3,3]

[1] 12.75
> x<-c¢(0,0,0,0,0,0.5,0.5,1,1,1,1,1)
> X<-cbind(rep(1,12),x,x"2)

> ginv(t (X)%*%X) [1,1]+ginv (£ (X)%*%X) [2,2]+ginv (¢t (X) %*%X) [3,3]

[1] 19.8
> x<-¢(0,0,0,0.5,0.5,0.5,0.5,0.5,1,1,1,1)

220
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> X<-cbind(rep(1,12),x,x"2)

> ginv(t(X)%*%X) [1,1]+ginv (t (X)%*%X) [2,2] +ginv (t (X) %*%X) [3,3]
[1] 12.31667

> %<-¢(0,0,0,0.5,0.5,0.5,0.5,0.5,0.6,1,1,1)

> X<-cbind(rep(1,12),x,x"2)

> ginv(t (X)%*%X) [1,1]+ginv (t (X) %*%X) [2,2] +ginv (t (X) %*%X) [3,3]
[1] 11.72335

The best design is that with = = (0,0,0,0.5,0.5,0.5,0.5,0.5,0.5,1,1,1) T, i.e. a design with three
observations at 0, six at 0.5, and three at 1.

13.26 Solution of Exercise 6.2.6

> summary(1lm(Yield~poly(Manure,3),data=split))

Call:
Im(formula = Yield ~ poly(Manure, 3), data = split)

Residuals:
Min 1Q Median 3Q Max
-37.389 -16.889 -2.306 15.486 50.611

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 103.972 2.555 40.691 < 2e-16 x**x*
poly (Manure, 3)1 133.507 21.681 6.158 4.5e-08 *xx
poly (Manure, 3)2 -46.724 21.681 -2.155 0.0347 *
poly (Manure, 3)3 -3.641 21.681 -0.168 0.8671

Signif. codes: O ’#*%*’ 0.001 ’*%> 0.01 ’%’> 0.056 .2 0.1 * * 1
Residual standard error: 21.68 on 68 degrees of freedom

Multiple R-Squared: 0.3851, Adjusted R-squared: 0.358
F-statistic: 14.2 on 3 and 68 DF, p-value: 2.782e-07

Hence a quadratic model is an appropriate model. This can be seen also without the function poly:

> summary(1lm(Yield Manure+I(Manure~2)+I(Manure~3) ,data=split))

Call:
Im(formula = Yield ~ Manure + I(Manure~2) + I(Manure~3), data = split)

Residuals:
Min 1Q Median 3Q Max
-37.389 -16.889 -2.306 15.486 50.611
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Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 79.39 5.11 15.535 <2e-16 *xx*
Manure 2083.33 1708.76 1.219 0.227
I(Manure~2) -9583.33 128713.08 -0.074 0.941
I(Manure~3) -375000.00 2233236.75 -0.168 0.867

Signif. codes: O ’***’ 0.001 ’*x> 0.01 ’x> 0.05 *>.” 0.1 > *> 1

Residual standard error: 21.68 on 68 degrees of freedom
Multiple R-Squared: 0.3851, Adjusted R-squared: 0.358
F-statistic: 14.2 on 3 and 68 DF, p-value: 2.782e-07

> summary(lm(Yield“Manure+I(Manure~2) ,data=split))

Call:
lm(formula = Yield ~ Manure + I(Manure~2), data = split)

Residuals:
Min 1Q Median 3Q Max
-37.471 -16.834 -2.101 15.057 50.529

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 79.143 4.862 16.277 <2e-16 *xx*x
Manure 2350.606 617.211 3.808 0.0003 *x*x

I(Manure~2) -31060.606 14311.241 -2.170 0.0334 *

Signif. codes: O ’**x*x’ 0.001 ’*x> 0.01 °’x> 0.05 *.” 0.1 > * 1

Residual standard error: 21.53 on 69 degrees of freedom
Multiple R-Squared: 0.3849, Adjusted R-squared: 0.367
F-statistic: 21.58 on 2 and 69 DF, p-value: 5.244e-08

Here we see advance that the estimate for §y is 79.143, the estimate for (1 is 2350.606, and the
estimate for By is -31060.606.

plot (split$Manure,split$Yield,xlab="Manure",ylab="Yield")
abline(lsfit (split$Manure,split$Yield)$coef)
x<-seq(-0.1,0.5,by=0.002)

X<-cbind(rep(1,length(x)) ,x,x~2)
beta<-1lsfit(cbind(split$Manure,split$Manure~2),split$Yield)$coef
y<-Xl)*%beta

lines(x,y)

V V V V V V V
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13.27 Solution of Exercise 6.3.2

Manure

> anova(lm(protein~L1+L2+L3+L4+L5+L6,data=ground))
Analysis of Variance Table

Response: protein
Sum Sq Mean Sq F value

Df

L1 1 10.
L2 1 29.
L3 1 0
L4 1 5
L5 1 0
L6 1 0
Residuals 17 O
Signif. codes:

0688 10
0890 29
.7896 0
.2074 5
.2243 0
.0297 O
.8263 0
0 7%%%?

.0688 207.3930
.0890 599.1666
.7896 16.2630
.2074 107.2602
.2243  4.6193
.0297 0.6108
.0485

O O © O = U

0.001 ’xx’ 0.01

Pr (>F)

.900e-11
.077e-14
.0008637
.241e-09
.0463073
.4452214

* k%
Xk Xk
* k%
Xk Xk

%7 0.05 7.

Figure 13.8: Scatter plot with linear and quadratic regression line

> 0.1°

Hence a model with the variables L1, L2, L3, L4, L5 is appropriate.

> summary(lm(protein~L1+L2+L3+L4+L5,data=ground))

Call:

Im(formula = protein ~ L1 + L2 + L3 + L4 + L5, data

Residuals:
Min

-0.3734980 -0.1297629 0.0006976 0.1089368 0.3370486

1Q

Median

3Q

ground)
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Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 18.66952 8.04964 2.319 0.03234 *
L1 0.07756 0.05180 1.497 0.15165

L2 -0.04578 0.06186 -0.740 0.46880

L3 0.24552 0.07537 3.258 0.00437 **
L4 -0.28204 0.03375 -8.357 1.31e-07 *x*x
L5 0.01286 0.00592 2.173 0.04339 *

Signif. codes: O ’***’ 0.001 ’*x> 0.01 ’x> 0.05 *>.” 0.1 > * 1

Residual standard error: 0.2179 on 18 degrees of freedom
Multiple R-Squared: 0.9815, Adjusted R-squared: 0.9764
F-statistic: 191.1 on 5 and 18 DF, p-value: 6.084e-15

Since the p-value for testing Hp : 3 = 0 is 6.084e-15, 8 = (B0, 51, B2, 33, B4, B5) | differs significantly
from the zero vector. Hence we can do the tests for the single variables. It turns out that the
intercept differs significantly from zero and that the variables L3, L4, L5 have significant influence.

13.28 Solution of Exercise 6.3.4

> anova(lm(protein~L1*L2*L3*L4*L5%L6,data=ground))
Analysis of Variance Table

Response: protein
Df Sum Sq Mean Sq F value Pr(>F)

L1 1 10.0688 10.0688
L2 1 29.0890 29.0890
L3 1 0.7896 0.7896
L4 1 5.2074 5.2074
L5 1 0.2243 0.2243
L6 1 0.0297 0.0297
L1:L2 1 0.0052 0.0052
L1:L3 1 0.0232 0.0232
L2:L3 1 0.0050 0.0050
L1:L4 1 0.2500 0.2500
L2:14 1 0.1841 0.1841
L3:L4 1 0.0014 0.0014
L1:15 1 0.0232 0.0232
L2:L5 1 0.1010 0.1010
L3:L5 1 0.0042 0.0042
L4:L5 1 0.1179 0.1179
L1:L6 1 0.0459 0.0459
L2:16 1 0.0040 0.0040
L3:L6 1 0.0010 0.0010
L4:16 1 0.0010 0.0010
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L5:L6 1 0.0282 0.0282

L1:12:13 1 0.0197 0.0197

L1:L2:14 1 0.0105 0.0105

Residuals O 0.0000

> anova(lm(protein~L1*L2*L3*L4*L5+L6,data=ground))
Analysis of Variance Table

Response: protein
Df Sum Sq Mean Sq F value Pr(>F)

L1 1 10.0688 10.0688
L2 1 29.0890 29.0890
L3 1 0.7896 0.7896
L4 1 5.2074 5.2074
L5 1 0.2243 0.2243
L6 1 0.0297 0.0297
L1:L2 1 0.0052 0.0052
L1:L3 1 0.0232 0.0232
L2:13 1 0.0050 0.0050
L1:L4 1 0.2500 0.2500
L2:14 1 0.1841 0.1841
L3:L4 1 0.0014 0.0014
L1:L5 1 0.0232 0.0232
L2:L5 1 0.1010 0.1010
L3:L5 1 0.0042 0.0042
L4:L5 1 0.1179 0.1179
L1:L2:L3 1 0.0730 0.0730
L1:L2:14 1 0.0034 0.0034
L1:L3:L4 1 0.0001 0.0001
L2:13:I14 1 0.0001 0.0001
L1:L2:L5 1 0.0174 0.0174
L1:13:L5 1 0.0086 0.0086
L2:L3:L5 1 0.0078 0.0078

Residuals O 0.0000
> anova(lm(protein~L1*L2*L3%L4+L5*L6,data=ground))
Analysis of Variance Table

Response: protein
Df Sum Sq Mean Sq F value Pr(>F)

L1 1 10.0688 10.0688 905.7282 7.598e-07 x***
L2 1 29.0890 29.0890 2616.6841 5.397e-08 *x*x*
L3 1 0.7896 0.7896  71.0238 0.0003858 x*x*x*
L4 1 5.2074 5.2074 468.4273 3.907e-06 **x*
L5 1 0.2243 0.2243 20.1735 0.0064499 x*x
L6 1 0.0297 0.0297 2.6677 0.1633348
L1:L2 1 0.0052 0.0052 0.4689 0.5239244
L1:L3 1 0.0232 0.0232 2.0835 0.2084936
L2:13 1 0.0050 0.0050 0.4471 0.5333354
L1:L4 1 0.2500 0.2500 22.4842 0.0051421 x*x
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L2:1L4 1
L3:1L4 1
L5:1L6 1
L1:L2:L3 1
L1:L2:L4 1
L1:L3:1L4 1
L2:L3:1L4 1
L1:L2:L3:14 1
Residuals 5

Signif. codes:

.1841
.0014
.1666
.1135
.0032
.0039
.0080
.0057
.0556

O O O OO OO O o

0 2%k

Response: protein
Sum Sq Mean Sq

Df
L1 11
L2 1
L3 1
L4 1
L5 1
L6 1
L1:L2 1
L1:L3 1
L2:1L3 1
L4:L5 1
L4:1L6 1
L5:L6 1
L1:L2:L3 1
L4:15:L6 1
Residuals 9

Signif. codes:

0.

.0890 2
.7896
.2074
.2243
.0297
.0052
.0232
.0050
.0822
.0830
.1549
.0966
.0039
.3715

)

O O O O O OO O O O O o1 O

.1841
.0014
.1666
.1135
.0032
.0039
.0080
.0057
.0111

O O O O O O O O o

16.5569

0.1259
14.9890
10.2129
.2904
.3464
L7217
.5155

O O O O

.0096433
.7371602
.0117417

.6131020
.5817152
.4343597
.5049145

O O OO O O oo

0.001 ’%x%’ 0.01 ’%’ 0.05 7.
> anova(lm(protein~L1*L2*L3+L4*L5*L6,data=ground))
Analysis of Variance Table

0688 10.0688 2
9.
.7896
.2074 1
.2243
.0297
.0052
.0232
.0050
.0822
.0830
.1549
.0966
.0039
.0413

0890 7

F value

Pr (>F)

43.9593 7.935e-08 *x*x

04.8080 7.379e-10 **x*
19.1304 0.001787 x*x*
26.1716 1.349e-06 ***
5.4338 0.044671 *
0.7185 0.418595
0.1263 0.730478
0.5612 0.472903
0.1204 0.736545
1.9908 0.191871
2.0111 0.189834
3.7527 0.084691 .
2.3397 0.160467
0.0950 0.764876

0 ’%%x’ 0.001 ’*x’ 0.01 ’x’ 0.05 7.
> anova(lm(protein~L1*L2*L3%L4+L5+L6,data=ground))
Analysis of Variance Table

Response: protein
Sum Sq Mean Sq
10.0688 10.0688

Df
L1
L2
L3
L4
L5
L6
L1:L2
L1:L3
L2:1L3
L1:14

T e

29.0890 29.0890
0.7896 0.7896
5.2074 5.2074
0.2243 0.2243
0.0297 0.0297
0.0052 0.0052
0.0232 0.0232
0.0050 0.0050
0.2500 0.2500

F value
1086.4467
3138.7870
85.1951
561.8918
24,1987
3.1999
0.5625
2.4992
0.5363

26.9705

Pr(>F)
5.188e-08
2.172e-09
9.129e-05
3.700e-07
.002659
.123852
.481618
.164985
.491566
.002028

O O O O O O

* 3k

*

.0241092 *

> 0.1

> 0.1°

* %k %
* %k %k
* %k %
* %k %k

)

)

1

1
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L2:1L4 1 0.1841 0.1841 19.8605 0.004299 =*x*

L3:L4 1 0.0014 0.0014 0.1511 0.710937

L1:L2:L3 1 0.2798 0.2798 30.1932 0.001522 *x*

L1:L2:1L4 1 0.0030 0.0030 0.3201 0.592038

L1:1L3:1L4 1 0.0044 0.0044 0.4786 0.514931

L2:1L3:1L4 1 0.0080 0.0080 0.8607 0.389345

L1:L2:1L3:L4 1 0.0058 0.0058 0.6234 0.459845

Residuals 6 0.0556 0.0093

Signif. codes: O ’***’ 0.001 ’*x> 0.01 ’x> 0.05 *>.” 0.1 > * 1
> anova(lm(protein~L1*L2*L3+L4+L5+L6,data=ground))
Analysis of Variance Table

Response: protein
Df Sum Sq Mean Sq F value Pr(>F)

L1 1 10.0688 10.0688 294.2838 2.608e-10 *x*x
L2 1 29.0890 29.0890 850.1973 3.129e-13 *x*x
L3 1 0.7896 0.7896 23.0766 0.0003445 x*x*x
L4 1 5.2074 5.2074 152.1986 1.498e-08 *x*x
L5 1 0.2243 0.2243 6.5546 0.0237299 *
L6 1 0.0297 0.0297 0.8668 0.3688215
L1:L2 1 0.0052 0.0052 0.1524 0.7026080
L1:13 1 0.0232 0.0232 0.6770 0.4254704
L2:L3 1 0.0050 0.0050 0.1453 0.7092506
L1:L2:L3 1 0.3472 0.3472 10.1478 0.0071639 x*x*
Residuals 13 0.4448 0.0342

Signif. codes: O ’***’ 0.001 ’*x> 0.01 ’x> 0.05 *>.” 0.1 > * 1

The models protein~L1*L2*L3*L4*L5*L6 and protein~L1%L2+L3%L4*L5+L6 cannot be used since
they have

(g)—i—(?)—i—(g)—i——i—(g) =1+6+15+20+15+6+1=064

and

5 ) 5
(0>+<1>—|—...+(5>+1:1+5+10+10+5+1+1:33,

respectively, model parameters, but the sample size is only N = 24. All other models can be used.
The largest model is protein~L1*L2*L3*L4+L5*L6 which has

4 4 4
<0>+(1>+...+<4>+2+1:1+4+6+4+1+2+1:19

model parameters. It can be reduced to the model
protein~L1*L2+L1*L3+L2*L3+L1*L4+L2*L4+L3*L4+L5*L6+L1:1L2:L3.
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The model protein~L1*L2*L3+L4*L5*L6 has

)+ ()4 ()0 () () () () -ressas 0303011

model parameter and can be reduced to the model
protein~L1+L2+L3+L4+L5.
The model protein~L1*L2*L3*L4+L5+L6 has

4 4 4
(Y (Yot () 2 2m15as0 5051021

model parameters. It can be reduced to the model
protein~L1*L2+L1*L3+L2*L3+L1*L4+L2%L4+L3*L4+L5+L6+L1:L2:L3.
The model protein~L1*L2*L3+L4+L5+L6 has

3 3 3 3
=1 1 =11
)+ () ()« () +s=rsrsrres

model parameters. This model cannot be reduced.

13.29 Solution of Exercise 6.4.2

> anova(lm(Yield"Manure*Variety,data=split))
Analysis of Variance Table

Response: Yield
Df Sum Sq Mean Sq F value Pr(>F)

Manure 1 17824 17824 36.5035 7.842e-08 ***
Variety 2 1786 893 1.8292 0.1686
Manure:Variety 2 149 74 0.1522 0.8591
Residuals 66 32227 488

Signif. codes: O ’**x*x’ 0.001 ’*x> 0.01 °’x> 0.05 *.” 0.1 > * 1

The variety has no significant influence and there is also no significant interaction between variety
and manure.

plot (split$Manure,split$Yield,type="n",xlab="Manure",ylab="Yield")
text (split$Manure,split$Yield,as.character(split$Variety))
co<-coefficients(Im(Yield Manure*Variety,data=split))
abline(co[1],co[2])

abline(co[1]+co[3],co[2]+co[5],1ty=2)
abline(co[1]+co[4],co[2]+co[6],1ty=3)
legend(0.025,70,c("1","2","3"),1ty=c(1,2,3))

V V V V V Vv V
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Figure 13.9: Scatter plot with regression lines for the four varieties

Since the three varieties have no significant influence, the intercept of the three lines are very similar.
Since also the interactions between variety and manure are not significant also the slopes of the three

lines are very similar.

13.30 Solution of Exercise 6.5.2

> coefficients(Im(Yield“Manurex*Variety,data=split))

(Intercept) Manure Variety?2 Variety3 Manure:Variety2
77.233333 1165.238095 8.133333 16.233333 -71.904762
Manure:Variety3
-232.380952
> coefficients(Im(Yield~Variety*Manure,data=split))
(Intercept) Variety?2 Variety3 Manure Variety2:Manure
77.233333 8.133333 16.233333 1165.238095 -71.904762
Variety3:Manure
-232.380952

> anova(lm(Yield"Manure*Variety,data=split))
Analysis of Variance Table

Response: Yield
Df Sum Sq Mean Sq F value Pr(>F)

Manure 1 17824 17824 36.5035 7.842e-08 ***
Variety 2 1786 893 1.8292 0.1686
Manure:Variety 2 149 74 0.1522 0.8591

Residuals 66 32227 488



Christine Miiller Universitat Kassel, WS 2007/2008
Manuscript Linear Models and Ezperimental Design 258

Signif. codes: O ’**x*x’ 0.001 ’*x> 0.01 °’x> 0.05 *.” 0.1 > > 1
> anova(lm(Yield~Variety#*Manure,data=split))
Analysis of Variance Table

Response: Yield
Df Sum Sq Mean Sq F value Pr(>F)

Variety 2 1786 893 1.8292 0.1686
Manure 1 17824 17824 36.5035 7.842e-08 ***
Variety:Manure 2 149 74 0.1522 0.8591
Residuals 66 32227 488

Signif. codes: O ’**x*x’ 0.001 ’*x> 0.01 °’x> 0.05 *.” 0.1 > *> 1

> coefficients(Im(Yield“Block+ManurexVariety,data=split))

(Intercept) Block2 Block3 Block4 Blockb
108.594444 -28.083333 -39.416667 -37.166667 -44.416667
Block6 Manure Variety2 Variety3 Manure:Variety2
-39.083333 1165.238095 8.133333 16.233333 -71.904762
Manure:Variety3
-232.380952
> coefficients(Im(Yield“Block+Variety*Manure,data=split))
(Intercept) Block2 Block3 Block4 Blockb
108.594444 -28.083333 -39.416667 -37.166667 -44.416667
Block6 Variety2 Variety3 Manure VarietyZ2:Manure
-39.083333 8.133333 16.233333 1165.238095 -71.904762
Variety3:Manure
-232.380952

> anova(lm(Yield”Block+Manure*Variety,data=split))
Analysis of Variance Table

Response: Yield
Df Sum Sq Mean Sq F value Pr(>F)

Block 5 156875.3 3175.1 11.8446 5.032e-08 *x*x*
Manure 1 17824.1 17824.1 66.4935 2.387e-11 *x*x
Variety 2 1786.4 893.2 3.3320 0.04233 *
Manure:Variety 2 148.6 74.3 0.2772 0.75885
Residuals 61 16351.6 268.1

Signif. codes: O ’**x*x’ 0.001 ’*x> 0.01 °’x> 0.05 *.” 0.1 > * 1
> anova(lm(Yield"Block+Variety*Manure,data=split))
Analysis of Variance Table

Response: Yield
Df Sum Sq Mean Sq F value Pr(>F)

Block 5 156875.3 3175.1 11.8446 5.032e-08 **x*
Variety 2 1786.4 893.2 3.3320 0.04233 *
Manure 1 17824.1 17824.1 66.4935 2.387e-11 **x

Variety:Manure 2 148.6 74.3 0.2772 0.75885
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Residuals 61 16351.6 268.1

Signif. codes: O ’**x*x’ 0.001 ’*x> 0.01 °’x> 0.05 *.” 0.1 > > 1

> anova(lm(Yield”Block*Manure*Variety,data=split))
Analysis of Variance Table

Response: Yield
Df Sum Sq Mean Sq F value Pr(>F)

Block 5 156875.3 3175.1 14.1487 1.136e-07 #*x**
Manure 1 17824.1 17824.1 79.4279 1.227e-10 **x
Variety 2 1786.4 893.2 3.9802 0.02744 *
Block:Manure 5 817.5 163.5 0.7286 0.60660
Block:Variety 10 6013.3 601.3 2.6797 0.01462 *
Manure:Variety 2 148.6 74.3 0.3311  0.72027
Block:Manure:Variety 10 1442.1 144.2 0.6426 0.76763
Residuals 36 8078.6 224.4

Signif. codes: O ’**x*x’ 0.001 ’*x> 0.01 °’x> 0.05 *.” 0.1 > * 1
> anova(lm(Yield~Variety*Block*Manure,data=split))
Analysis of Variance Table

Response: Yield
Df Sum Sq Mean Sq F value Pr(>F)

Variety 2 1786.4 893.2 3.9802 0.02744 *
Block 5 15875.3 3175.1 14.1487 1.136e-07 *x*
Manure 1 17824.1 17824.1 79.4279 1.227e-10 *x*x
Variety:Block 10 6013.3 601.3 2.6797 0.01462 *
Variety:Manure 2 148.6 74.3 0.3311 0.72027
Block:Manure 5 817.5 163.5 0.7286 0.60660
Variety:Block:Manure 10 1442.1 144.2 0.6426 0.76763
Residuals 36 8078.6 224 .4

Signif. codes: O ’**x*x’ 0.001 ’*x> 0.01 °’x> 0.05 *.” 0.1 > * 1

The order of the variables has no influenced since it is balanced design.
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14 Solutions of mathematical exercises

14.1 Solution of Exercise 2.4.1

Proposal: Ny = % =Ny
Proof: The larger the noncentrality parameter is the smaller the S-error is. Hence we have to

Ny No .. . NyNo - . .. . o
w75 The maximization of -3 is equivalent to the minimization of f(n) =

% + Nl_n with respect to n = Np. Differentiation of f yields

maximize K =

-1 1 —(N —n)? +n?
/
= — = 0
fn) n? * (N —n)? n?(N —n)?
N
& nQ:(N—n)Qﬁn:N—n@)n:E
Since
2 2
"
=—=4+——=>0
the minimum is attained at n = %
14.2 Solution of Exercise 4.3.1
A B Ny
D556 = 3 > (Yabn — Tusa)’
a=1 b=1 n=1
A B Ny
= Z Z Z yab’ﬂ - gabo + gabo - yaoo - yobo + gooo + yaoo - yooo + yobo - gooo)2
a=1 b=1 n=1

= ESSE Y551+ X554+ XssB-



