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1 Introduction

Steel is one of the most widely-used materials in the world due to its versatility. Its

properties, including hardness, ductility and tensile strength, are important to industries

such as engineering and architecture. Although steel is very robust, cracks do occur under

too much stress applied to it. The understanding of crack initiation and crack growth

is very important, e.g. for predicting the life time of products like wheels of trains or

hip replacement. Thus, it is crucial to know the significant characteristics of steel like its

behavior under stress and how this effects the life time of the material. Therefore, many

experiments are performed to examine how and when cracks occur and propagate. This

is often done by applying fatigue loading.

In this paper, a closer look is taken at data that were acquired during standard fatigue

experiments performed at the University of Kassel, Germany, where the relationship be-

tween load cycles and crack behavior in steel was investigated. The focus is set on two

different specimens of low carbon steel. While stress was applied to them, images were

taken with a long-distance microscope at different time points of the fatigue process.

Those pictures were then used to gain information of the cracks’ development along the

increasing number of load cycles. The data sets used in the following analysis contain in-

formation of each specimen at each point of time. The variables considered are the lengths

of the cracks paths, the sizes of the crack clusters, and the x - and y-coordinates of the

start and end points of the crack paths. Of interest is the crack orientation in each of

those two assays.

The underlying development of cracks is already known. According to Besel and

Brückner-Foit (2008), a general damage accumulation consists of three stages, namely

crack initiation, small crack propagation and stable crack propagation of long cracks. Es-

pecially, the latter two phases are the ones to be examined in terms of two hypotheses.

The first one is that micro cracks have an orientation with an angle of about 45° or 135°
with respect to the loading axis as they begin to grow. The second hypothesis refers to

the third stage. Fact is that eventually, i.e. after a certain number of load cycles has been

applied to the material, most micro cracks merge, forming long cracks. The hypothesis is

that those so-called macro cracks propagate perpendicular to the stress. Another aspect

to be analyzed in this paper is to find out whether it is possible to distinguish between

two specimens that obtained different stress levels at an early stage of the fatigue load-
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ing process. This is examined by comparing the crack orientations in both specimens per

number of load cycles.

Since it is dealt with orientations, using linear statistics is inappropriate. Special di-

rectional methods need to be applied in order to properly characterize the angular ob-

servations. Due to the fact that circular data arise in many scientific areas, e.g. Earth

Sciences, Meteorology, Biology, Physics, Psychology, Image Analysis, Medicine, Astron-

omy, the analysis of such information has become more and more important over the

last decades (Mardia and Jupp, 2000, pp. 7). Some basic statistical tools used in circular

statistics, such as the calculation of measures of location and dispersion, are applied to

both data sets in order to verify or to disprove the hypotheses.

The paper is organized as follows. Section 2 specifies the aim of the analysis conducted

and the problems that arise when handling circular data. In Section 3 the experimental

procedure is explained, which is followed by a detailed description of the data sets in

Section 4. Thereafter, the statistical methods commonly used in circular statistics will

be provided in Section 5. The statistical analysis can be found in Section 6. While both

specimens are analyzed individually in Subsections 6.2 and 6.3, the two are compared

with one another in Subsection 6.4. Finally, a discussion of the results, a conclusion and

an outlook are given in Section 7.

2 Problem

Cracks can roughly be distinguished between micro and macro cracks. The latter ones

originate from micro cracks, which in turn arise from plastic deformations of the material

and are so tiny that they are only visible with the help of a microscope (Gunkel et al.,

2011). Since micro cracks are always surrounded by plastic deformations, it is not seldom

difficult to tell the difference between them. However, they do differ in color, i.e. cracks are

darker, and hence, the crack paths in those so-called crack clusters can be determined by

following their darkest parts. To obtain only one main path per cluster is very important,

since their lengths are most relevant for the stability of the material, Gunkel et al. (2011)

point out.

There already exist several ways for determining cracks. A common method is to

describe crack clusters as ellipses or rectangles and to define the lengths of their main axes
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as the cracks’ lengths. Since this approximation only considers the start and end points of

the paths, but not its kinks and curves, it is not a very good approach. Also, skeletonization

and thinning methods are only slightly better approaches. Therefore, Gunkel et al. (2011)

developed an R package called crackrec, which provides an improved way of detecting

and analyzing micro cracks. This package was used to identify all cracks in the low carbon

steel assays, which are examined in this paper. An example is given in Figure 1, where an

image segment of one of the two specimens is shown. The original image is given on the

left hand side. On the right hand side, all cracks detected by crackrec are added to the

plot. The red lines denote the crack paths and the yellow lines connect the start and end

points of each crack.
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Figure 1: Image segment of Specimen 31. Left: original image after 18000 load cycles;

Right: detected cracks in that image

The data sets available consist of information of two steel specimens that were ex-

posed to stress and as a result developed cracks. During the experiments, hundreds of

images were taken of the assays’ surfaces. With the help of the statistical software R (R

Development Core Team, 2009) and the package crackrec, the images were then used to

identify the cracks. The information gained are utilized to examine the cracks’ behavior,

especially, how they behave when gradually more stress is applied.

The main focus of the analysis conducted was to investigate two assumptions. First,

to check whether micro cracks have an orientation with an angle of about 45° or 135° with
respect to the loading axis in the initial stage. Second, to find out whether the orientations

of the cracks are tending to be perpendicular to the stress after the micro cracks have
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become macro cracks. Those two theses are checked by looking at each specimen indi-

vidually. However, it is reasonable to compare both of them with one another to see how

the behavior of the cracks resembles or differs. This raised another interesting question,

namely whether it is possible to tell the difference between an assay exposed to a lower

stress level and an assay exposed to a higher stress level at an early stage of the damage

evolution. If this is feasible just by analyzing the orientations of the cracks, it would mean

that it is sufficient to only look at one image segment instead of a specimen’s composed

total image.

Since orientations describe directions and are given as either coordinates or angles, lin-

ear statistical analysis can not be applied. As a result of that, a special branch of statistics

is used: circular statistics. Consequently, different statistical methods are required for car-

rying out the analysis. Those methods are explained in Section 5.

3 Experimental Procedure

The data to be analyzed were obtained via standard fatigue experiments performed on a

servohydraulic testing machine (Besel and Brückner-Foit, 2008). On hand are information

of two assays, hereinafter referred to as Specimen 10 and Specimen 31, that were exposed

to different stress levels. While a nominal stress level of 400 MPa was applied to Specimen

31, Specimen 10 obtained a stress level of 360 MPa (Müller et al., 2011). The round

specimens examined were composed of low carbon steel, German designation 51CrV4,

having a length of 115 mm and a main diameter of 12 mm (Müller et al., 2011). In order

to investigate the initiation and growth of the fatigue cracks, it is sufficient to focus only

on the central part of the test pieces. Hence, a length of 19 mm was symmetrically notched

in the middle of the specimens reducing the diameter to 7.6 mm and to 7 mm in the inner

part with a length of 10 mm (Müller et al., 2011). By flattening the two opposite sides of

the round inner part, the distance between those sides was shortened to 6 mm (Müller et

al., 2011).

Besel and Brückner-Foit (2008) mention that the experiments included standard ten-

sion tests and hardness tests and that fully reversed loading was applied at room temper-

ature. To facilitate surface observation, both assays were grounded and polished before

the experiments started (Besel and Brückner-Foit, 2008). With a working distance of 46
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mm the surfaces were scanned after predefined numbers of load cycles via a long-distance

microscope (Hirox, Japan) (Besel and Brückner-Foit, 2008). With a 1.14 MPig b/w cam-

era, which was set up on a three-axis stage in front of the testing machine, hundreds of

images of each specimen were taken, which provided the basis for obtaining the data used

in this paper (Besel and Brückner-Foit, 2008).

4 Data

The aim of the fatigue experiments performed was to “observe the damage evolution as

a function of the number of load cycles” (Besel and Brückner-Foit, 2008). Thus, each

specimen’s surface was scanned after predefined time points given by the number of load

cycles. While there were 29 different points of time for Specimen 10, 15 time points were

considered for Specimen 31. More precisely, images of Specimen 10 were taken “at the

beginning and in steps of 1000 load cycles up to 20000 load cycles and then after 25000,

30000, 35000, 37000, 39000, 40000, 42000, and 44000 load cycles” and images of Specimen

31 were obtained “at the beginning and after 1000, 2000, 3000, 4000, 5000, 5000, 7000,

8000, 9000, 10000, 12000, 14000, 16000, 18000 load cycles” (Müller et al., 2011).

According to Müller et al. (2011), the images were taken from an area of about 4× 5

mm2 size lying on the flat part of the specimen, and since this was too large to cover

with a single picture, the photo had to be divided into segments. Ultimately, there were

9×5 = 45 image segments and 9×6 = 54 image segments for Specimen 10 and Specimen

31, respectively, where one image segment consists of 696 × 512 pixels and 80 pixels

correspond to 100 µm (Müller et al., 2011). Total images of Specimen 10 with 2659×4221

pixels and of Specimen 31 with 3337×4165 pixels were attained by joining their segments

(Müller et al., 2011). For a faster analysis the images were compressed by 50%, such

that the total images of Specimen 10 and Specimen 31 have a size of 1330 × 2111 and

1669× 2083 pixels, respectively (Müller et al., 2011). It is to note that the quality of the

segments differ, i.e. some of them are blurred or contain shadows at the border (Müller

et al., 2011). Composed total images of Specimen 10 and Specimen 31 before and after

the experiment are shown in Figures 2 and 3, respectively.

The images obtained are analyzed by using the free statistical software R (R Devel-

opment Core Team, 2009). One very helpful package provided by R is crackrec, which
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Figure 2: Composed total image of Specimen 10. Left: 0 load cycles; Right: 44000 load

cycles

Figure 3: Composed total image of Specimen 31. Left: 0 load cycles; Right: 18000 load

cycles
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was introduced by Gunkel et al. (2011). It allows an automatic detection of micro cracks

and a statistical analysis of crack quantities (Gunkel et al., 2011). Via the function rbmp,

the images can be converted from bmp files to R data sets. Furthermore, crackrec in-

cludes a function called median.filter, which removes the shadows in the images. In the

following analysis a median filter with a window of 101× 101 was used.

Another function included in the package is crackrec, which “provides the cracks

from a gray level image matrix” and its output consists of three components, namely

crackclusters, crackpaths and cracks (Gunkel et al., 2011). The latter one provides

the data sets used in this paper. More precisely, for each specimen and time point infor-

mation are listed in a 6×K matrix, where K denotes the number of crack clusters found

(Gunkel et al., 2011). The six rows contain the lengths of the cracks paths (length), the

sizes of the crack clusters (size) and the x - and y-coordinates of the start and end points

of the crack paths (Begin_x, Begin_y, End_x, End_y). The variables length and size are

given in pixels, where 1 pixel corresponds to 2.5 µm.

5 Statistical Methods

Circular data are observations that are measured in angles or that are two-dimensional

orientations (Fisher, 1993, p. xv). In other words, the measurements are directions (Jam-

malamadaka and SenGupta, 2001, p. 1). Two principal measuring instruments closely

associated with angular data are the compass and the clock (Mardia and Jupp, 2000, p.

1). Jammalamadaka and SenGupta (2001, p. 1) note that a direction has no magnitude,

which allows a representation on the circumference of the unit circle centered at the origin

or as a unit vector connecting the origin to that point. It is usual to measure circular data

in degrees, although it is sometimes advantageous to convert the degrees to radians by

multiplying them by π
180

(Mardia and Jupp, 2000, p. 1).

In order to specify an angle, it is necessary to determine an appropriate zero-direction,

which means to choose a starting point and a sense of rotation (clockwise or anti-clockwise)

as the positive direction (Jammalamadaka and SenGupta, 2001, p. 1). The importance

of providing these information can be illustrated by considering the following example.

A mathematician commonly regards East as the zero-direction and anti-clockwise as the

positive direction, but to other scientists, for instance Geologists, the zero-direction is
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often North and the positive direction is defined to be clockwise. As a result, an angle

of 60° looked at by a mathematician would be called an angle of 30° by a Geologist,

see Figure 4 (based on a plot in Jammalamadaka and SenGupta (2001, p. 2)). For the

analysis conducted in this paper the zero-direction is East and the sense of rotation is

anti-clockwise.

North

East

South

West

30° or 60°?

Figure 4: Value depends on choice of origin and sense of orientation

Another important feature of angular data to keep in mind is the fact that the ‘be-

ginning’ of the circle is also the ‘end’, i.e. 0 = 2π, and that “the measurement is periodic

with θ being the same as θ + p · 2π for any integer p” (Jammalamadaka and SenGupta,

2001, p. 2). Among other things, these are the reasons why the analysis of circular data

is different from a linear statistical analysis. Some of the main statistical methods for

circular data, which are used in this paper, are presented below.

5.1 Graphical Representation

To gain a first idea of the circular data given, it is advisable to visually depict them. There

are a few useful plots to accomplish this.

5.1.1 Circular Raw Data Plot

A circular raw data plot is the most basic form of representing circular data by displaying

each observation as a point on the unit circle (Mardia and Jupp, 2000, p. 1). Those data
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points can either be stacked on the outside of the circle or they can be plotted on the

circle’s perimeter. Stacking is indicated, when the observations are closely distributed,

because information might get lost, if the data points are overplotted. The big advantage

of a circular raw data plot is that it can help to get a first impression of whether the data

contain special characteristics such as modal groups or outliers (Fisher, 1993, p. 16).

Figure 5 shows two circular raw data plots of the initial directions taken by 76 turtles,

which were released after treatment (Stephens, 1969). The aim of the experiment per-

formed was to examine whether the turtles have a preferred direction. Especially, the plot

on the left hand side in Figure 5 supports this assumption. A list of all 76 observations

can be found in the Appendix A.2, Table 14.

90

270

180 0+

(a)

90

270

180 0+

(b)

Figure 5: Orientations of 76 turtles: (a) stacked (b) not stacked

5.1.2 Histogram

Another way of representing directional data is to graph a histogram. This is essentially

constructed by grouping the observations into intervals, which is then followed by summing

them up within each group and displaying the resulting frequencies as bars or bins. There

exist two types of histograms for circular data, angular and linear (Fisher, 1993, p. 17).

Angular: In a circular histogram, all angles between 0° and 360° are divided into in-

tervals, such that each observation falls into one of the groups. A group’s relative

frequency determines the length of the bar. The area of a bar is proportional to the
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frequency in that group and all bars are centered at the midpoint of the correspond-

ing group (Mardia and Jupp, 2000, p. 2). This kind of plot is useful for visualizing

the frequencies with which the data occur relative to the values, that is whether the

frequency is consistent over the range or concentrated at some value.

Linear: Another possibility is to represent the measured directions in a linear histogram,

which again gives a rough approximation of the frequency distribution. The advan-

tage is that statisticians are more experienced with the interpretation of histograms

on the real line (Mardia and Jupp, 2000, p. 2).

It is worth mentioning that an angular histogram can be obtained from a linear histogram

and vice versa. This is achieved by wrapping a linear histogram around a circle creating

the angular histogram, or by cutting the circular histogram at a suitably chosen point on

the circle and then unrolling it to a linear histogram on an interval of width 360° (Fisher,
1993, p. 17; Mardia and Jupp, 2000, p. 2).

Note that both types of histograms are sensitive to the intervals chosen, and that the

visual impression given by a linear histogram can differ depending on the point at which

the circle is cut (Mardia and Jupp, 2000, p. 2).

5.1.3 Rose Diagram

The rose diagram is a special type of angular histogram. The main difference is that the

bars are substituted by sectors, each still representing a group (Mardia and Jupp, 2000,

p. 4). According to Fisher (2011, p. 18), each sector’s radius should be proportional to

the square root of the relevant frequency when the grouping is equidistant. This ensures

that each sector’s area is proportional to the group frequency, Mardia and Jupp (2000,

p. 4) add. Naturally, the number of sectors present in the plot is equal to the number of

groups.

5.2 Measures of Location, Concentration and Dispersion

Once the circular data have been plotted, it is advisable to calculate some summary

statistics. These provide further help to characterize the sample given and to gain a

better idea of how the data are distributed.
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When dealing with circular data, the main thing of interest is whether there exists

a preferred direction. Intuitively, it makes sense to calculate the mean direction of all

observations available. However, since the data are angular, it is inappropriate to simply

use the arithmetic mean, i.e. to sum up all angles and to divide that sum by the number

of angles observed. Consider for instance the following example presented by Jammala-

madaka and SenGupta (2001, p. 11), which is visualized in Figure 6. Assume there is one

bird flying at 15° and another bird flying at 345°. When taking East as the zero direction

and anti-clockwise as the positive sense of rotation, it is obvious to state that both ob-

servations point towards East. On the other hand, if the arithmetic mean is calculated,

1
2
(15° + 345°) = 180°, the observations point towards West, which is apparently not the

case.

15°

345°

180°

Figure 6: Arithmetic mean of two directions

In order to avoid this kind of problem, the mean direction of circular data is calculated

differently. All observations are treated as unit vectors and then the direction of their

resultant vector is used. Let’s look at another example to clarify the importance of this

procedure.

Given are three directions, which can be seen on the left hand of Figure 7. When

taking East as the zero-direction and anti-clockwise as the sense of rotation, these angles

are by name 0°, 45° and 315°. The resultant vector is obtained by combining all vectors

via common vector addition, which is shown on the right hand side of Figure 7.
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East

North−East

South−East

East

resultant vector

Figure 7: Three directions. Left: vectors representing the observations; Right: vector ad-

dition

This vector describes the average direction of all vectors. If the length of the resultant

vector is divided by the number of vectors, see left hand side of Figure 8, a vector with a

length in the range of 0 and 1 is obtained, which is the resulting mean vector. Its length

is an indicator for the variability of the observed directions. In other words, the bigger

the value, the more point all angles towards the same direction, see the right hand side

of Figure 8.

mean vector

45°

315°

0°

Figure 8: Three directions. Left: mean vector; Right: mean direction added to unit circle

5.2.1 Preliminaries and Notation

As explained earlier, circular data can be represented as points on the circumference on the

unit circle. Thus, the directional position can be uniquely determined by two coordinates,

the x- and the y-coordinate (Jammalamadaka and SenGupta, 2001, p. 9). Those so-called
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Cartesian coordinates can easily be converted to polar coordinates and vice versa by using

trigonometric functions. Consider a point with polar coordinates (r, θ), where r denotes

the distance to the origin and θ denotes the direction (Jammalamadaka and SenGupta,

2001, p. 9). Then the two coordinate systems are related by the following equations:

x = r · cos θ , y = r · sin θ .

This relation is illustrated in Figure 9. Obviously, r = 1 when dealing with the unit circle.

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

y

r
y

x

θ

(x, y)
(r, θ)

Figure 9: Relation between Cartesian and polar coordinates

Remember that θ and θ + 360°, or alternatively θ and θ+2π, describe the same point

on the circle, provided that the angles are measured in degrees or radians, respectively.

Hence, in the following analysis all arithmetic done will be modulo 360° or modulo 2π.

5.2.2 Mean Resultant Length

In order to determine the resultant length, the resultant vector R needs to be obtained.

Jammalamadaka and SenGupta (2001, p. 11) explain that this is accomplished by sum-

ming the coordinates of all n unit vectors component-wise

R =

(

n
∑

j=1

cos θj ,
n
∑

j=1

sin θj

)

= (C, S) .
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Consequently, the length of this vector is the resultant length R and can be calculated via

Pythagoras’ theorem

R =
√
C2 + S2 .

Apparently, the value of R has to lie in the range of (0, n) (Fisher, 1993, p. 32). The mean

resultant length R̄ is given by

R̄ =
R

n
,

where 0 ≤ R̄ ≤ 1 (Mardia and Jupp, 2000, p. 17). According to Mardia and Jupp (2000,

pp. 17), R̄ will be close to 1, if θ1, . . . , θn are tightly clustered, but it will be almost 0, if the

directions are widely dispersed. Fisher (1993, p. 32) further points out, R̄ = 1 means that

all data points are coincident, yet “R̄ = 0 does not imply uniform distribution around the

circle”. That is why the mean resultant length is a measure of concentration. Note also

that R̄ is invariant under rotation (Mardia and Jupp, 2000, p. 18).

The mean resultant length for the example given at the beginning of this subsection

is R̄ = 1
3
·
√

[cos(0°) + cos(45°) + cos(315°)]2 + [sin(0°) + sin(45°) + sin(315°)]2 = 0.8047.

5.2.3 Circular Mean Direction

The circular mean direction θ̄ is given by the direction of the resultant vector and it can

be calculated in two different ways, Jammalamadaka and SenGupta (2001, p. 13) explain.

Either by finding a solution to the equations

cos θ̄ =
C

R
and sin θ̄ =

S

R

or by applying the following case distinction

θ̄ =























































tan−1
(

S
C

)

, if C > 0, S ≥ 0 ,

tan−1
(

S
C

)

+ π , if C < 0 ,

tan−1
(

S
C

)

+ 2π , if C ≥ 0, S < 0 ,

π
2
, if C = 0, S > 0 ,

not defined , if C = 0, S = 0 .

(1)

Jammalamadaka and SenGupta (2001, p. 13) point out that tan (θ) is equal to tan (θ+π)

such that there are two inverses for any given angle θ. Moreover, the trigonometric function

tan−1 (‘arctan’) has a range of
(

−π
2
, π
2

)

. The definition of the circular mean direction θ̄
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given in Equation (1) takes the signs of C and S into account and provides a unique

inverse on the interval [0, 2π).

Note that there exists no circular mean direction, if the length of the resultant vector is

equal to zero, implying that the data observed are not concentrated towards any preferred

direction (Jammalamadaka and SenGupta, 2001, p. 15).

5.2.4 Circular Median Direction

Another measure of location for circular data is the sample median direction θ̃. It can

be determined similarly to the median for linear data. Hence, θ̃ is any angle φ such that

half of the data points lie in the arc [φ, φ + π) and the majority of the data points are

nearer to φ than to φ + π (Mardia and Jupp, 2000, p. 17). If the sample size n is odd,

the median is the one of the data points, and if the number of data points n is even,

the median direction passes through the midpoint of two adjacent data points (Mardia

and Jupp, 2000, p. 17). Fisher (1993, p. 35) points out that the median direction is only

unique for reasonably unimodal data, but may not be uniquely defined with multimodal

or isotropic data.

5.2.5 Sample Circular Variance

A frequently used measure of dispersion of angular data is the sample circular variance

V , which is defined by

V = 1− R̄ ,

where V can take values in the range of [0, 1] (Fisher, 1993, p. 32). Its interpretation is

similar to the variance of linear data, i.e. “the smaller the value of the circular variance,

the more concentrated the distribution” (Fisher, 1993, p. 32).

5.2.6 Circular Standard Deviation

Always closely related to the variance is the standard deviation. When dealing with cir-

cular data, it is called circular standard deviation v and is calculated via the following

equation

v = {−2 log(1− V )}1/2 = {−2 logR̄}1/2 ,

which reduces to

v ≃ (2V )1/2 =
{

2(1− R̄)
}1/2

,
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if the sample circular variance V is small (Mardia and Jupp, 2000, p. 19). Other than V ,

v has a range of [0,∞) (Mardia and Jupp, 2000, p. 19).

5.2.7 Circular Range

Another measure of dispersion is the circular range w, which is defined as “the length of

the smallest arc which contains all the observations” (Mardia and Jupp, 2000, p. 20). In

order to calculate it, the circle is cut at the initial direction and the linear order statistics

of θi, 1 ≤ i ≤ n, are determined, which are denoted by θ(1) ≤ . . . ≤ θ(n). These are used

to compute the arc lengths between two adjacent observations by

Ti = θ(i+1) − θ(i) , i = 1, . . . , n− 1 ; Tn = 2π − θ(n) + θ(1) .

Eventually, the circular range w is given by

w = 2π −max(T1, . . . , Tn)

(Mardia and Jupp, 2000, p. 20).

The order statistics of the three directions in the example given at the beginning

of Subsection 5.2 are θ(1) = 0°, θ(2) = 45° and θ(3) = 315°. Thus, the circular range is

w = 360° −max(45°, 270°, 45°) = 90°.
6 Statistical Analysis

The statistical methods for circular data presented above are now applied to the data

described in Section 4. First, the data sets of each specimen will be examined individually

in terms of the orientations of the cracks. Afterwards, both assays will be compared with

a particular regard to the question, whether the behavior of the cracks differs. The whole

analysis is conducted using the statistical software R (R Development Core Team, 2009).

6.1 Computation of the Angles

The data sets of both specimens only contain the lengths of the cracks paths, the sizes of

the crack clusters and the x - and y-coordinates of the start and end points of the crack

paths. The orientations of the cracks, however, are not listed and need to be calculated

before the analysis can begin. In order to determine the angles, the differences of the start
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and end points of each micro crack are computed, i.e. ‘End_x − Begin_x’ and ‘End_y −
Begin_y’. Denote the former difference by diff.x and the latter one by diff.y, then an

angle can be calculated by applying Pythagoras’ Theorem

cos (θ) =
adjacent

hypotenuse
=

diff.x
√

diff.x2 + diff.y2
.

Next, the inverse trigonometric function cos−1 (‘arccosine’) needs to be used on both sides

of the equation. Since the domain of cos−1 is [0, π], all resulting angles take values between

0° and 180°.
Note that the start and end points were chosen arbitrarily and that the stress is given

in vertical direction, i.e. the 90° angle.
6.2 Crack Analysis of Specimen 10

In order to gain a first idea of the cracks observed in Specimen 10, the number of all

cracks per time point are determined, which can be found in Table 1.

Table 1: Number of all cracks per load cycles

Specimen 10

load all load all load all

cycles cracks cycles cracks cycles cracks

0 432 10000 3798 20000 6284

1000 508 11000 4394 25000 5997

2000 582 12000 4592 30000 6215

3000 1328 13000 4798 35000 9456

4000 1785 14000 3696 37000 8178

5000 2210 15000 4988 39000 8356

6000 2598 16000 5130 40000 8184

7000 3058 17000 5214 42000 4940

8000 3070 18000 5810 44000 7217

9000 3472 19000 6066

The main thing to notice is that overall the number of cracks increases. Particularly,

towards the end of the experiment, i.e. past 35000 load cycles, much more cracks are

present. This is attributed to the fact that the material fatigues the more load cycles are

applied and hence more cracks are generated. However, at some points of time there are

actually less cracks than the immediate prior time point, e.g. after 14000 and 42000 load
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cycles. One possible explanation for this phenomenon is that micro cracks gradually grow

and eventually merge with other micro cracks to form macro cracks, which in turn reduces

the number of cracks. Another explanation is that the poor quality and light exposure of

some images sometimes complicates the detection of all cracks.

Surprisingly, the recognition program detects 432 cracks even before the fatigue loading

has begun. In Table 2 the cracks are divided into groups of different lengths and the

corresponding frequencies are listed. The table shows that cracks up to a length of 25 µm

make up the most part of the total number of cracks.

Table 2: Number of cracks per load cycles, grouped by different lengths

Specimen 10

load load

cycles 0-10 10-30 30-70 ≥ 70 cycles 0-10 10-30 30-70 ≥ 70

0 395 34 2 1 15000 4673 309 6 1

1000 467 35 4 3 16000 4820 302 11 1

2000 545 33 4 1 17000 4876 327 10 1

3000 1268 55 4 1 18000 5423 371 16 1

4000 1710 70 4 1 19000 5637 415 16 1

5000 2117 88 4 1 20000 5845 422 17 1

6000 2482 112 4 1 25000 5564 415 18 1

7000 2921 132 5 1 30000 5722 470 23 1

8000 2921 143 5 1 35000 8570 812 71 3

9000 3286 181 4 1 37000 7455 672 50 2

10000 3604 186 7 1 39000 7586 707 60 3

11000 4145 242 7 1 40000 7459 665 56 6

12000 4316 271 6 1 42000 4591 326 21 3

13000 4500 288 9 1 44000 6635 530 45 7

14000 3503 189 3 1

Müller et al. (2011) comment that the majority of those short cracks are caused by

surface roughness, pits and scratches and are therefore no real cracks. To increase the

chance of dealing just with the ‘real’ ones, all cracks shorter than 10 pixels will be excluded

from the analysis. This procedure reduces the number of cracks drastically, see Table 15

in Appendix A.2. At time point 0, for instance, only 37 cracks are longer than 10 pixels.

Their orientations are visualized in Figure 10.

On the left hand side the frequencies are displayed in a linear histogram with 10°-
intervals and on the right hand side they are visualized via a circular raw data plot. Both
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Figure 10: Crack orientations before experiment started

plots indicate that the cracks prefer an orientation in direction of 90°. More precisely, 6

of the 37 cracks have an orientation of exactly 90°. These, however, are more likely to be

scratches that were generated while polishing the specimen. It also stands out that the

orientations are almost symmetrically distributed around the 90° angle. This symmetry

led to another idea: reflecting the angles along the vertical direction. Remember that all

angles range between 0° and 180°. Since it is only of interest how the cracks orient with

respect to the loading axis, but not whether they propagate to the left or to the right,

it is sufficient to focus on the interval [0°, 90°]. To include all cracks, angles between 90°
and 180° are reflected along the 90° angle. This procedure simplifies the interpretation of

the crack orientations, in particular, if those are represented in a rose diagram, e.g. see

Figure 11. This plot contains the same angles as in Figure 10 and it emphasizes what has

been concluded before: most cracks have an angle close to 90°.
Specimen 10

90

270

180 0

load cycles =  0 length >=  10

Figure 11: Rose diagram of crack orientations before fatigue loading started
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Next, the maximum lengths of the cracks per number of load cycles are identified and

listed in Table 3.

Table 3: Maximum length of the cracks per load cycles (in pixels)

Specimen 10

load max. load max. load max.

cycles length cycles length cycles length

0 72.57 10000 84.01 20000 84.43

1000 73.83 11000 85.43 25000 84.84

2000 74.25 12000 87.25 30000 88.70

3000 84.84 13000 88.43 35000 118.08

4000 86.08 14000 85.43 37000 114.84

5000 86.25 15000 84.84 39000 126.01

6000 86.67 16000 84.50 40000 149.23

7000 86.25 17000 83.84 42000 113.60

8000 84.84 18000 86.25 44000 325.84

9000 87.25 19000 86.25

As expected, the maximum length increases steadily over time. Especially, at the end,

namely after 35000 load cycles, it advances rather quickly. This again can be traced back

to the fact that micro cracks propagate and merge with one another, i.e. the cracks become

longer. However, if the longest crack is omitted at each time point, the maximum length

clearly changes, e.g. it drops from 72.57 pixels to 32.90 pixels at time point 0 (see Table

16, Appendix A.2). This phenomenon can easily be explained, when taking Table 2 into

account once more. Apparently, only few cracks have a length greater than 30 pixels.

Moreover, up to 35000 load cycles there is only one crack per time point that is longer

than 70 pixels. The only exception is time point 1000 with 3 long cracks.

6.2.1 Orientation at Initial Stage

Since the majority of the cracks is not longer than 30 pixels (see Table 2), long cracks

will be excluded from the following analysis. Consequently, only cracks with a minimum

length of 10 pixels and a maximum length of 30 pixels will be taken into account for the

analysis of the crack orientations at the early phase of the standard fatigue experiment.

In order to find out whether the cracks have an orientation of about 45° at the initial

stage of crack propagation, the mean direction is calculated. Note that because of the
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reflection along the 90° angle, an orientation of 45° includes angles of 135° as well. The

circular mean direction, the mean resultant length and the circular variance of the first

seven time points, i.e. up to and including 7000 load cycles, are given in Table 4. A

complete list of the measures of location and dispersion for all time points can be found

in Table 17 in Appendix A.2.

Table 4: Measures of location and dispersion at initial stage (10 ≤ length ≤ 30)

Specimen 10

load cycles

1000 2000 3000 4000 5000 6000 7000

number of cracks 35 33 55 70 88 112 132

circular mean direction 81.56° 77.93° 69.97° 62.33° 49.94° 44.86° 41.23°
mean resultant length 0.98 0.95 0.91 0.86 0.84 0.85 0.86

circular variance 0.02 0.05 0.09 0.14 0.16 0.15 0.14

The figures in Table 4 clearly show that the mean direction decreases the more stress

is applied to the material. Moreover, the assumption that initial cracks have an average

orientation of approximately 45° seems to be verified, especially after 6000 but even after

7000 load cycles. The mean resultant lengths are close to 1, meaning that the angles are

quite coincident. The low variances indicate the same. The rose diagrams of these two

specific time points illustrate the distribution of the angles, see Figure 12. Rose diagrams

of the crack orientations after 1000, 2000, 3000, 4000 and 5000 load cycles can be found

in Appendix A.1, Figures 24, 25 and 26.

Specimen 10

90

270

180 0

load cycles =  6000 10  <= length <=  30

Specimen 10

90

270

180 0

load cycles =  7000 10  <= length <=  30

Figure 12: Orientations of the cracks after 6000 load cycles (left) and 7000 load cycles

(right)
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The plots do not allow a definite identification of a preferred direction. Nonetheless,

the measures and rose diagrams suggest that progressive strain causes the orientations

of the micro cracks to change. Less cracks have an angle close to 90° and the average

direction diminishes. In other words, the cracks tend gradually more towards the 0° angle
as successively more load cycles are applied. Moreover, the cracks in Specimen 10 approach

a mean orientation of 45° after about 6000 load cycles, if cracks with a length between 10

and 30 pixels are considered. This is even true, if cracks up to 70 pixels are included, see

Table 19, Appendix A.2. Also, including all cracks longer than 10 pixels has only little

effect on the mean direction (Table 5).

To complete the analysis of the crack orientations at the initial stage, the circular

mean directions of cracks shorter than 10 pixels, longer than 30 pixels and cracks of all

lengths are each listed in Table 5. The missing time points 8000 to 44000 are given in

Appendix A.2, Table 18.

Table 5: Circular mean directions at initial stage, grouped by different lengths

Specimen 10

load cycles

1000 2000 3000 4000 5000 6000 7000

0 ≤ length ≤ 10 48.73° 38.10° 28.65° 25.84° 23.98° 23.96° 22.48°
length ≥ 10 83.83° 75.10° 69.68° 62.51° 50.56° 45.57° 42.42°
length ≥ 30 71.83° 54.39° 66.26° 64.96° 61.52° 61.99° 69.38°
all cracks 51.65° 40.79° 30.49° 27.30° 25.04° 24.86° 23.35°

Again, the circular mean direction decreases over time. Apparently, it was a good choice

of filtering out short cracks, since their mean directions are small and they influence the

mean direction of all cracks immensely. Since most of them are scratches and impurities,

they would have falsified the results.

6.2.2 Orientation at Stable Propagation Stage

To investigate whether the orientation of the cracks is perpendicular to the stress towards

the end of the fatigue process, measures of location and dispersion for all time points

are determined and can be found in Appendix A.2 in Table 19. This time, cracks with

a length of up to 70 pixels are included such that longer cracks, which develop during

the experiment, are considered as well. The table shows that the circular mean direction
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and the circular median direction decrease over time. Especially, during the early phase

both measures of location diminish very fast. After about 12000 load cycles, however, they

level out. While the mean direction mainly fluctuates between 27° and 31°, the median

direction ranges from 20° to 24° with an exception of 26.57° at time point 14000.

Of high interest is now the last time point, i.e. after 44000 load cycles have been

applied. A rose diagram of the cracks’ angles is given on the left hand side of Figure 13.

Specimen 10

90

270

180 0

load cycles =  44000 10  <= length <=  70

Specimen 10

90

270

180 0

load cycles =  44000 30  <= length <=  70

Figure 13: Orientations of the cracks after 44000 load cycles. Left: 10 ≤ length ≤ 70;

Right: 30 ≤ length ≤ 70

Since 575 cracks with a length between 10 and 70 pixels were detected at the end of

the experiment, the minimum length of the crack path is raised to 30 pixels. Thus, the

focus is set only on the longest cracks present. Left are 45 cracks, which illustrate even

better that macro cracks trend to have a horizontal orientation with respect to the loading

axis, see right hand side of Figure 13.

Specimen 10
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load cycles =  44000 length >=  40

Specimen 10
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180 0

load cycles =  44000 length >=  70

Figure 14: Orientations of the cracks after 44000 load cycles. Left: length ≥ 40; Right:

length ≥ 70
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Moreover, if all cracks longer than 40 pixels, i.e. the 24 longest macro cracks, or all

cracks longer than 70 pixels, i.e. the 7 longest macro cracks, are considered, the assumption

of a perpendicular orientation is further substantiated, see Figure 14.

Table 6: Mean direction after 44000 load cycles

Specimen 10

number of cracks circular mean direction

10 ≤ length ≤ 30 530 28.80°
10 ≤ length ≤ 70 575 28.14°
30 ≤ length ≤ 70 45 20.58°
length ≥ 40 24 12.68°
length ≥ 70 7 6.84°

Table 6 contains the mean directions of all cases just mentioned. Note that the aver-

age direction decreases the more cracks of shorter length are filtered out. This inference

reinforces the hypothesis of long cracks preferring a perpendicular orientation.

6.3 Crack Analysis of Specimen 31

The investigation of Specimen 31 starts off with determining the number of all cracks

present per load cycle. They are listed in Table 7. Once again, it can be seen that more

cracks appear the longer the fatigue loading lasts. Apparently, this specimen contains

much more cracks than Specimen 10, which is due to the higher stress level applied.

Table 7: Number of all cracks per load cycle

Specimen 31

load all load all

cycles cracks cycles cracks

0 388 8000 7957

1000 426 9000 8213

2000 981 10000 9019

3000 1650 12000 9892

4000 2990 14000 11510

5000 4842 16000 11325

6000 5137 18000 12449

7000 6842
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An interesting observation is made when identifying the maximum crack length per

load cycle, see Table 8. The maximum length varies a lot in this assay and grows much

faster than it did in Specimen 10. Especially, after the first 1000 load cycles and between

5000 and 6000 load cycles, the maximum length decreases considerably from 113.43 pixels

to 66.94 pixels and from 94.25 pixels to 59.28 pixels, respectively.

Table 8: Maximum length of cracks per load cycle

Specimen 31

load max. load max.

cycles length cycles length

0 113.43 8000 91.98

1000 66.94 9000 94.76

2000 91.77 10000 97.30

3000 92.15 12000 81.50

4000 102.91 14000 121.71

5000 94.25 16000 137.30

6000 59.28 18000 262.55

7000 93.50

This oddity can be explained by looking at the total image of Specimen 31 at the

beginning of experiment, which clearly shows a big crater in the upper middle part (see

left hand side of Figure 3). This crater is accountable for the longest crack at the beginning,

but its influence vanishes as the experiment progresses. Nevertheless, this has to be paid

attention to in the analysis of the data. Naturally, it would be best to eliminate craters

and big scratches from the data sets, but since a definite identification of the cracks is

rather complicated, this idea has be to put aside for now.

However, it is possible to determine the longest cracks per time point. A table of

the maximum lengths after the longest crack is excluded is given in Table 20, Appendix

A.2, and it shows once more how this course of action effects the maximum lengths. For

instance, it decreases from 91.77 pixels to 39.97 pixels at time point 2000. All these aspects

led once more to the decision to divide the cracks into groups of different lengths and to

determine the corresponding frequencies, which are displayed in Table 9.

As seen before with Specimen 10, the majority of the cracks have a length between 0

and 10 pixels. Since it is assumed that those are mainly scratches and impurities, they

are once again excluded from the analysis in order to avoid a falsified result.
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Table 9: Number of cracks per load cycles, grouped by different lengths

Specimen 31

load

cycles 0-10 10-30 30-70 ≥ 70

0 359 30 1 1

1000 402 21 3 0

2000 943 37 1 1

3000 1544 103 3 1

4000 2798 185 6 1

5000 4475 351 16 1

6000 4742 373 23 0

7000 6247 555 40 1

8000 7180 715 64 1

9000 7401 746 63 3

10000 8068 866 83 3

12000 8761 999 134 2

14000 9992 1315 194 10

16000 9839 1274 197 18

18000 10799 1363 254 33

6.3.1 Orientation at Initial Stage

The preferred direction of the micro cracks at the beginning of the fatigue loading is

examined by calculating the measures of the crack orientations. As with Specimen 10,

first, only cracks longer than 10 pixels and shorter than 30 pixels are considered. A

complete list of all time points is given in Table 21 in Appendix A.2.

Table 10: Measures of location and dispersion (10 ≤ length ≤ 30)

Specimen 31

load cycles

0 1000 2000 3000 4000

number of cracks 30 21 37 103 185

circular mean direction 82.75° 77.77° 52.70° 39.38° 30.55°
mean resultant length 0.97 0.96 0.84 0.88 0.91

circular variance 0.03 0.04 0.16 0.12 0.09

The main point to notice in Table 10 is that the circular mean direction decreases

much faster than it did in Specimen 10. A mean angle of 45° is passed by after time point
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3000. For rose diagrams of the cracks’ angles after 2000 and 3000 load cycles see Figure

15. Time points 1000 and 4000 are given in Appendix A.1, Figure 27.

Specimen 31

90

270

180 0

load cycles =  2000 10  <= length <=  30

Specimen 31

90

270

180 0

load cycles =  3000 10  <= length <=  30

Figure 15: Orientations of the cracks. Left: after 2000 load cycles; Right: after 3000 load

cycles

Although there are not many cracks longer than 30 pixels present during the early

phase, it is checked, whether an inclusion of them has an effect on the result. The figures

in Table 11 show that this is not the case. Moreover, the table lists the mean directions of

cracks shorter than 10 pixels, longer than 30 pixels and cracks of all lengths. The missing

time points 5000 to 18000 can be found in Appendix A.2, Table 22.

Table 11: Circular mean directions at initial stage, grouped by different lengths

Specimen 31

load cycles

0 1000 2000 3000 4000

0 ≤ length ≤ 10 51.32° 40.32° 27.75° 22.81° 21.23°
length ≥ 10 80.65° 75.16° 51.81° 39.34° 30.55°
length ≥ 30 48.07° 55.10° 36.16° 38.31° 30.42°
all cracks 53.79° 42.53° 28.72° 23.84° 21.84°

Table 11 clarifies that cracks shorter than 10 pixels have a big influence on the mean

direction. Therefore, filtering them out was once again a good decision. However, it is to

keep in mind that it is not known how many of them might actually be ‘real’ cracks and

hence should be included. Thus, an identification of the cracks would be very useful.

All in all, when looking at the rose diagrams and the measures, it is apparent that a

higher stress level causes cracks to grow faster, thus changing their orientations faster as
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well. An average direction of 45° is passed by after only applying 3000 load cycles, while

Specimen 10 had to be exposed to more than 6000 load cycles to get the same result.

6.3.2 Orientation at Stable Propagation Stage

Towards the end of the experiment, Specimen 31 behaves similarly to Specimen 10, that

is the angles become successively smaller. In other words the cracks orient gradually

more horizontal with respect to the stress. Since the micro cracks grow as the experiment

progresses (see Table 9), these evolving macro cracks become more important towards the

end. Therefore, cracks up to a length of 70 pixels are included in the following analysis.

A complete list of the measures of location and dispersion of angles with a length

between 10 and 70 pixels can be found in Appendix A.2, Table 23. As expected, the

circular mean direction and the circular median direction become smaller just like they

did in Specimen 10. However, it happens much faster in this case. Moreover, both measures

level out rather soon. After 4000 load cycles up until the end, they fluctuate between 28°
and 32° and between 23° and 27°, respectively. The mean resultant length has a constant

value of 0.93 and the variance is very low with values around 0.07. This indicates a tightly

clustered distribution of the observations. The orientations after 10000 and 18000 load

cycles are visualized in Figure 16.

Specimen 31

90
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180 0

load cycles =  10000 10  <= length <=  70

Specimen 31

90

270

180 0

load cycles =  18000 10  <= length <=  70

Figure 16: Orientations of the cracks. Left: after 10000 load cycles; Right: after 18000 load

cycles

When raising the minimum length to 40 pixels or even 70 pixels, the tendency to-

wards a perpendicular orientation becomes more evident. For one, the number of cracks

decreases noticeably, and furthermore, the mean direction decreases to 25.03° and 19.06°,



6 STATISTICAL ANALYSIS 29

respectively, see Table 12.

Table 12: Mean direction after 18000 load cycles

Specimen 31

number of cracks circular mean direction

10 ≤ length ≤ 30 1363 29.48°
10 ≤ length ≤ 70 1617 29.37°
30 ≤ length ≤ 70 254 28.77°
length ≥ 40 157 25.03°
length ≥ 70 33 19.06°

This is well illustrated in both rose diagrams in Figure 17, especially when comparing

them with the ones in Figure 16.

Specimen 31
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load cycles =  18000 length >=  40

Specimen 31
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180 0

load cycles =  18000 length >=  70

Figure 17: Orientations of the cracks after 18000 load cycles. Left: length ≥ 40; Right:

length ≥ 70

In summary, a perpendicular orientation of the angles after the experiment ended can

not be disclaimed, although it is not as distinctive as it is after 44000 load cycles in

Specimen 10.

6.4 Comparison between Specimen 10 and Specimen 31

Remember that Specimen 10 and Specimen 31 were exposed to different stress levels. A

stress level of 360 MPa was applied to Specimen 10, while Specimen 31 obtained 400 MPa.

It makes sense that a higher stress level results in a faster damage evolution. In this case

it means that the material fatigues sooner due to a quicker growth of the cracks and a
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higher number of cracks, see Figure 18. Note that the fluctuation of the number of cracks

present in Specimen 10, in particular towards the end, might also be due to the different

qualities and light exposures of the image segments examined.
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Figure 18: Number of all cracks of both specimens

Because of the analysis conducted in the former two subsections, it is already known

that the orientations of the cracks change the more load cycles are applied. This is true

for either specimen. Of interest is now, whether the stress level influences this behavior by

causing a quicker change of the orientations of the micro cracks. To allow a fair analysis of

the two assays, only cracks with a minimum length of 10 pixels and a maximum length of

70 pixels are considered. First, both specimens are compared by looking at rose diagrams.

Specimen 10
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180 0

load cycles =  0 10  <= length <=  70

Specimen 31
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180 0

load cycles =  0 10  <= length <=  70

Figure 19: 0 load cycles. Left: Specimen 10; Right: Specimen 31
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Specimen 10
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load cycles =  2000 10  <= length <=  70

Specimen 31
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Figure 20: 2000 load cycles. Left: Specimen 10; Right: Specimen 31

While the orientations behave similarly at the beginning of the experiment (Figure

19), a slight difference is noticeable at time point 2000, see Figure 20. Time point 1000 is

given in Appendix A.1, Figures 28. After 2000 load cycles, a lot of cracks in Specimen 31

already propagate with an angle between 0° and 30°, whereas the majority of the cracks in

Specimen 10 still have a preferred direction of 80° to 90°. This behavior slowly changes as

the experiment continues (Figures 29 and 30 in Appendix A.1), but an apparent difference

still exists after 5000 load cycles, see Figure 21.

Specimen 10
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load cycles =  5000 10  <= length <=  70

Specimen 31
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load cycles =  5000 10  <= length <=  70

Figure 21: 5000 load cycles. Left: Specimen 10; Right: Specimen 31

It is not until after 10000 load cycles that the cracks act similarly again (Appendix

A.1, Figure 31). After 18000 load cycles, see Figure 22, the orientations seem to be very

much alike. All rose diagrams support the idea that the angles of a specimen exposed to

a higher stress level decrease faster, i.e. the cracks start to orient perpendicular to the

loading axis sooner.

This conclusion can be checked with the distribution-free Wilcoxon test. Its big ad-
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Figure 22: 18000 load cycles. Left: Specimen 10; Right: Specimen 31

vantage is that it is only based on the ranks of the observations such that outliers have no

influence. In this case, it is used for testing whether the circular mean direction behaves

differently in both specimens. Additionally, 95% Wilcoxon confidence intervals are calcu-

lated. The null hypothesis and alternative hypothesis for the Wilcoxon test conducted are

formulated as follows:

H0 : “The orientations of the cracks do not differ in both specimens.”

H1 : “The orientations of the cracks differ in both specimens.”

If the p-value, i.e. the probability under the null hypothesis to obtain a more extreme

value of the test statistic, is smaller than a given significance level, H0 is rejected. Here,

a significance level of 5% is chosen.

Since there only exist data up to 18000 load cycles for Specimen 31, it makes sense

to compare the two specimens only up to that time point. Figure 23 shows the circular

mean directions of each specimen for all time points and the corresponding 95% Wilcoxon

confidence intervals. The plot illustrates very well how the orientations of the cracks differ,

particularly, between time points 2000 and 8000. However, at the beginning, after 1000

load cycles and after 12000 load cycles up until the end, the confidence intervals overlap,

which indicates that there is not a statistically significant difference between the two

specimens for the circular mean directions at those time points.

This needs to be checked by applying the two-sample Wilcoxon test. The resulting

p-values are given in Table 13. The table shows that the null hypothesis can be rejected

after 2000 load cycles up to and including 8000 load cycles and once again after 10000 load

cycles. Hence, the orientations of the cracks in Specimen 10 and Specimen 31 significantly
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Figure 23: Circular mean directions and 95% Wilcoxon confidence intervals for each spec-

imen (10 pixels ≤ crack length ≤ 70 pixels)

differ at these points of time. Before and after, H0 can not be rejected.

Table 13: P-values of the two-sample Wilcoxon test

load cycles 0 1000 2000 3000 4000 5000 6000 7000

p-value 0.4799 0.5459 0.0098 0.0000 0.0000 0.0000 0.0000 0.0002

load cycles 8000 9000 10000 12000 14000 16000 18000

p-value 0.0002 0.0754 0.0030 0.3143 0.3036 0.8134 0.6230

It can be concluded that both specimens provide the same starting and ending condi-

tions. Furthermore, an early distinction between an assay exposed to a lower stress level

and an assay exposed to a higher stress level seems to be possible.
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7 Conclusion

A standard fatigue experiment was performed, where two specimens of low carbon steel,

namely Specimen 10 and Specimen 31, were exposed to different stress levels. While the

former one obtained a level of 360 MPa, a higher level of 400 MPa was applied to the

latter one. After predefined time points, given as the number of load cycles, the surfaces

were scanned via a long-distance microscope and hundreds of images were taken with a

1.14 MPig b/w camera. These images built the foundation of the analysis conducted in

this paper.

Applying the R package crackrec to the images of each specimen provided two data

sets that contain the information of all cracks present in each specimen for all predefined

points of time. The variables included length (lengths of the cracks paths), size (sizes

of the crack clusters), Begin_x, Begin_y, End_x and End_y (x - and y-coordinates of the

start and end points of the crack paths). Of interest were the crack orientations during the

initial stage and the stable propagation stage of the fatigue process. In addition, it was

examined how the behavior of the cracks resembles or differs when comparing Specimen

10 with Specimen 31. Since the focus was set on the orientation of the cracks, circular

statistics instead of linear statistics had to be applied.

The first hypothesis to be investigated was whether the micro cracks have an orien-

tation of approximately 45° with respect to the loading axis in the early phase of the

damage evolution. This assumption could be reinforced for either specimen. While it took

about 6000 load cycles for Specimen 10, only about 3000 load cycles had to be applied to

Specimen 31, which obtained a higher stress level. The circular mean directions for cracks

with a length between 10 and 30 pixels at those time points were 44.86° and 39.38°,
respectively.

The second hypothesis was that cracks tend to have an orientation perpendicular to

the stress towards the end of the experiment and after micro cracks have become macro

cracks. After the fatigue process was finished, the circular mean direction of cracks longer

than 70 pixels turned out to be 6.84° and 19.06° for Specimen 10 and Specimen 31,

respectively. Therefore, this assumption could be substantiated as well.

Last but not least, both specimens were compared with one another. With the help of

the two-sample Wilcoxon test it could be concluded that the crack orientations statistically

significant differ during the intermediate stage of crack propagation. i.e. after 2000 load
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cycles up to and including 10000 load cycles, with one exception of time point 9000. Thus,

the circular mean direction is able to discriminate between two assays that were exposed

to different stress levels at an early stage of the standard fatigue experiment. It follows

that the circular mean direction is a more useful parameter than the parameters examined

by Müller et al. (2011) such as the number of crack clusters or the cumulative length,

because those can only be determined by taking all image segments into account. As for

the circular mean direction, one image segment is sufficient.

It is to keep in mind that the image segments investigated in this paper are blurred and

contain shadows, which affects the quality of the pictures and complicates a proper crack

detection. Additionally, the scratches, pits and other impurities make an identification of

‘real’ cracks very difficult. Hence, it would be helpful to identify all cracks individually in

order to find out which are real cracks and which are not. Then, the latter ones could be

filtered out such that only real micro cracks are considered in the analysis.

A possible solution of finding and eliminating scratches or craters in a data set, is to

relate the length of a crack path to the size of the corresponding crack cluster. Describing

the crater as a circle, where r denotes its radius, its diameter could be defined by the

variable length, i.e. 2 · r and size can be regarded as the circle’s area, i.e. π · r2. In order

to get rid of the variable r, length has to be squared:

length2

size
=

4 · r2
π · r2 =

4

π
≈ 1.2732 .

Hence, applying a constraint such as length2

size
> 3 to the data sets should eliminate craters.

It might be reasonable to choose a larger value on the right hand side of this inequality,

if it is apparent that big craters are present such as the big crater in the upper middle

part in the composed total image of Specimen 31.

In future studies it should be examined whether this constraint is really applicable

and helpful. If this is the case, it needs to be investigated what values should be used.

Moreover, developing a constraint for eliminating scratches would be very valuable, since

those make up most of the short cracks. One idea is to omit cracks with an angle of

exactly 90° at the beginning of the experiment, because most of them are scratches that

were caused by polishing the specimens. However, some of them might actually be real

cracks. Thus, it would be of great help to develop an improved way of distinguishing

between ‘real’ cracks and ‘non-real’ cracks.
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A Appendix

A.1 Plots

Section 6.2.1: Crack orientations of Specimen 10 at Initial Stage

Specimen 10

90

270

180 0

load cycles =  1000 10  <= length <=  30

Specimen 10

90

270

180 0

load cycles =  2000 10  <= length <=  30

Figure 24: Crack orientations after 1000 load cycles (left) and 2000 load cycles (right)

Specimen 10

90

270

180 0

load cycles =  3000 10  <= length <=  30

Specimen 10

90

270

180 0

load cycles =  4000 10  <= length <=  30

Figure 25: Crack orientations after 3000 load cycles (left) and 4000 load cycles (right)
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Figure 26: Crack orientations after 5000 load cycles

Section 6.3.1: Crack orientations of Specimen 31 at Initial Stage

Specimen 31
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load cycles =  1000 10  <= length <=  30

Specimen 31
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180 0

load cycles =  4000 10  <= length <=  30

Figure 27: Crack orientations after 1000 load cycles (left) and 4000 load cycles (right)
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Section 6.4: Comparison between Specimen 10 and Specimen 31

Specimen 10
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180 0

load cycles =  1000 10  <= length <=  70

Specimen 31
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270

180 0

load cycles =  1000 10  <= length <=  70

Figure 28: 1000 load cycles. Left: Specimen 10; Right: Specimen 31
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270

180 0

load cycles =  3000 10  <= length <=  70

Specimen 31
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180 0

load cycles =  3000 10  <= length <=  70

Figure 29: 3000 load cycles. Left: Specimen 10; Right: Specimen 31
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Figure 30: 4000 load cycles. Left: Specimen 10; Right: Specimen 31

Specimen 10
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270

180 0

load cycles =  10000 10  <= length <=  70

Specimen 31
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270

180 0

load cycles =  10000 10  <= length <=  70

Figure 31: 10000 load cycles. Left: Specimen 10; Right: Specimen 31
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A.2 Tables

Section 5.1: Graphical Representation

Table 14: Orientations of 76 turtles

Direction in degrees

8 9 13 13 14 18 22 27 30 34

38 38 40 44 45 47 48 48 48 48

50 53 56 57 58 58 61 63 64 64

64 65 65 68 70 73 78 78 78 83

83 88 88 88 90 92 92 93 95 96

98 100 103 106 113 118 138 153 153 155

204 215 223 226 237 238 243 244 250 251

257 268 285 319 343 350

Section 6.2: Crack Analysis of Specimen 10

Table 15: Number of cracks (length ≥ 10

pixels)

Specimen 10

load number of load number of

cycles cracks cycles cracks

0 37 15000 316

1000 42 16000 314

2000 38 17000 338

3000 60 18000 388

4000 75 19000 432

5000 93 20000 440

6000 117 25000 434

7000 138 30000 494

8000 149 35000 886

9000 186 37000 724

10000 194 39000 770

11000 250 40000 727

12000 278 42000 350

13000 298 44000 582

14000 193

Table 16: Maximum length after longest

crack is omitted (in pixels)

Specimen 10

load max. crack load max. crack

cycles length cycles length

0 32.90 15000 45.21

1000 70.91 16000 41.38

2000 51.14 17000 45.38

3000 35.66 18000 47.63

4000 35.66 19000 46.53

5000 35.49 20000 49.28

6000 37.31 25000 45.70

7000 35.66 30000 63.87

8000 35.07 35000 85.67

9000 35.66 37000 86.84

10000 34.66 39000 118.37

11000 37.97 40000 119.47

12000 36.87 42000 87.60

13000 37.04 44000 133.20

14000 34.66
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Table 17: Measures of location and dispersion per load cycle (10 ≤ length ≤ 30)

Specimen 10

number circular circular mean circular

load of mean median resultant circular standard

cycles cracks direction direction length variance deviation

0 34 80.50° 84.90° 0.96 0.04 0.30

1000 35 81.56° 83.66° 0.98 0.02 0.22

2000 33 77.93° 84.29° 0.95 0.05 0.33

3000 55 69.97° 80.54° 0.91 0.09 0.44

4000 70 62.33° 78.30° 0.86 0.14 0.55

5000 88 49.94° 58.19° 0.84 0.16 0.58

6000 112 44.86° 37.37° 0.85 0.15 0.56

7000 132 41.23° 34.61° 0.86 0.14 0.54

8000 143 39.17° 30.96° 0.87 0.13 0.53

9000 181 34.51° 26.57° 0.88 0.12 0.50

10000 186 35.51° 27.06° 0.89 0.11 0.49

11000 242 33.59° 25.12° 0.90 0.10 0.46

12000 271 32.43° 23.96° 0.88 0.12 0.50

13000 288 31.14° 23.96° 0.90 0.10 0.46

14000 189 32.22° 26.57° 0.89 0.11 0.47

15000 309 31.04° 24.78° 0.90 0.10 0.45

16000 302 29.66° 23.96° 0.91 0.09 0.44

17000 327 30.14° 23.20° 0.90 0.10 0.45

18000 371 28.91° 23.96° 0.91 0.09 0.43

19000 415 28.74° 21.80° 0.91 0.09 0.44

20000 422 29.32° 23.80° 0.91 0.09 0.43

25000 415 29.18° 23.96° 0.92 0.08 0.42

30000 470 29.09° 22.91° 0.91 0.09 0.43

35000 812 28.43° 22.91° 0.92 0.08 0.40

37000 672 28.66° 23.96° 0.92 0.08 0.40

39000 707 28.30° 23.96° 0.92 0.08 0.40

40000 665 28.13° 23.20° 0.93 0.07 0.39

42000 326 27.97° 21.80° 0.92 0.08 0.42

44000 530 28.80° 21.80° 0.92 0.08 0.42
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Table 18: Circular mean directions, grouped by different lengths

Specimen 10

load cycles

8000 9000 10000 11000 12000 13000 14000

0 ≤ length ≤ 10 22.88° 22.37° 22.25° 21.67° 21.65° 21.52° 21.26°
length ≥ 10 40.29° 35.15° 36.29° 34.27° 32.60° 31.61° 32.60°
length ≥ 30 68.27° 60.61° 54.95° 57.20° 40.09° 45.76° 52.99°
all cracks 23.71° 23.05° 22.96° 22.40° 22.30° 22.14° 21.84°

load cycles

15000 16000 17000 18000 19000 20000 25000

0 ≤ length ≤ 10 22.08° 21.49° 20.97° 21.24° 21.71° 22.22° 21.87°
length ≥ 10 31.34° 29.86° 30.16° 29.66° 29.19° 29.70° 29.51°
length ≥ 30 46.55° 35.13° 30.67° 47.20° 40.18° 39.09° 37.45°
all cracks 22.67° 22.03° 21.57° 21.81° 22.26° 22.75° 22.44°

load cycles

30000 35000 37000 39000 40000 42000 44000

0 ≤ length ≤ 10 20.79° 20.78° 20.61° 20.98° 20.53° 20.79° 20.08°
length ≥ 10 29.37° 28.19° 28.54° 28.00° 27.54° 27.00° 27.87°
length ≥ 30 35.18° 25.62° 26.92° 24.73° 21.24° 14.63° 18.65°
all cracks 21.49° 21.49° 21.33° 21.65° 21.17° 21.25° 20.72°
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Table 19: Measures of location and dispersion per load cycle (10 ≤ length ≤ 70)

Specimen 10

number circular circular mean circular

load of mean median resultant circular standard

cycles cracks direction direction length variance deviation

0 36 79.21° 84.90° 0.94 0.06 0.34

1000 39 81.52° 83.99° 0.98 0.02 0.22

2000 37 75.92° 84.29° 0.93 0.07 0.38

3000 59 70.56° 81.25° 0.91 0.09 0.44

4000 74 63.19° 79.19° 0.86 0.14 0.54

5000 92 51.00° 60.91° 0.84 0.16 0.58

6000 116 45.88° 39.24° 0.85 0.15 0.57

7000 137 42.65° 38.29° 0.86 0.14 0.55

8000 148 40.49° 32.01° 0.86 0.14 0.54

9000 185 35.29° 28.30° 0.88 0.12 0.51

10000 193 36.42° 28.61° 0.88 0.12 0.50

11000 249 34.33° 26.57° 0.89 0.11 0.47

12000 277 32.68° 23.96° 0.88 0.12 0.50

13000 297 31.64° 23.96° 0.90 0.10 0.46

14000 192 32.71° 26.57° 0.89 0.11 0.48

15000 315 31.40° 24.78° 0.90 0.10 0.46

16000 313 29.92° 23.96° 0.91 0.09 0.44

17000 337 30.21° 23.20° 0.90 0.10 0.45

18000 387 29.70° 23.96° 0.91 0.09 0.44

19000 431 29.21° 21.80° 0.91 0.09 0.44

20000 439 29.74° 23.96° 0.91 0.09 0.43

25000 433 29.55° 23.96° 0.91 0.09 0.43

30000 493 29.39° 23.20° 0.91 0.09 0.44

35000 883 28.24° 22.62° 0.92 0.08 0.40

37000 722 28.59° 23.73° 0.92 0.08 0.41

39000 767 28.04° 23.20° 0.92 0.08 0.40

40000 721 27.66° 22.62° 0.93 0.07 0.39

42000 347 27.12° 19.98° 0.92 0.08 0.41

44000 575 28.14° 21.80° 0.92 0.08 0.42



A APPENDIX 44

Section 6.3: Crack Analysis of Specimen 31

Table 20: Maximum length after longest crack is omitted (in pixels)

Specimen 31

load max. load max.

cycles length cycles length

0 56.43 8000 56.70

1000 55.70 9000 82.01

2000 39.97 10000 80.25

3000 64.18 12000 79.91

4000 39.73 14000 102.33

5000 47.80 16000 116.33

6000 48.36 18000 213.28

7000 55.11

Table 21: Measures of location and dispersion per load cycle (10 ≤ length ≤ 30)

Specimen 31

number circular circular mean circular

load of mean median resultant circular standard

cycles cracks direction direction length variance deviation

0 30 82.75° 85.42° 0.97 0.03 0.23

1000 21 77.77° 83.66° 0.96 0.04 0.29

2000 37 52.70° 59.04° 0.84 0.16 0.59

3000 103 39.38° 32.47° 0.88 0.12 0.51

4000 185 30.55° 24.78° 0.91 0.09 0.42

5000 351 31.81° 26.57° 0.92 0.08 0.42

6000 373 30.14° 27.76° 0.93 0.07 0.38

7000 555 29.98° 24.78° 0.93 0.07 0.39

8000 715 29.23° 25.02° 0.93 0.07 0.39

9000 746 29.10° 26.57° 0.94 0.06 0.37

10000 866 28.33° 23.96° 0.93 0.07 0.37

12000 999 28.24° 23.96° 0.93 0.07 0.37

14000 1315 29.14° 24.78° 0.93 0.07 0.39

16000 1274 29.08° 23.96° 0.93 0.07 0.38

18000 1363 29.48° 24.78° 0.93 0.07 0.39
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Table 22: Circular mean directions, grouped by different lengths

Specimen 31

load cycles

5000 6000 70000 8000 9000

0 ≤ length ≤ 10 20.25° 19.49° 19.65° 19.95° 19.60°
length ≥ 10 31.70° 29.88° 30.08° 28.95° 28.87°
length ≥ 30 29.43° 25.66° 31.55° 25.82° 26.27°
all cracks 21.12° 20.32° 20.57° 20.85° 20.55°

load cycles

10000 12000 14000 16000 18000

0 ≤ length ≤ 10 19.84° 20.39° 20.46° 20.81° 20.91°
length ≥ 10 28.62° 28.19° 29.01° 29.06° 29.15°
length ≥ 30 31.64° 27.86° 28.16° 28.94° 27.62°
all cracks 20.79° 21.31° 21.62° 21.94° 22.04°

Table 23: Measures of location and dispersion per load cycle (10 ≤ length ≤ 70)

Specimen 31

number circular circular mean circular

load of mean median resultant circular standard

cycles cracks direction direction length variance deviation

0 31 81.49° 85.24° 0.97 0.03 0.26

1000 24 75.16° 83.66° 0.94 0.06 0.34

2000 38 51.47° 52.02° 0.84 0.16 0.59

3000 106 39.00° 33.62° 0.88 0.12 0.51

4000 191 30.33° 24.44° 0.91 0.09 0.43

5000 367 31.59° 26.57° 0.92 0.08 0.42

6000 396 29.88° 26.57° 0.93 0.07 0.37

7000 595 30.01° 25.02° 0.93 0.07 0.39

8000 779 28.89° 24.78° 0.93 0.07 0.38

9000 809 28.83° 25.51° 0.94 0.06 0.36

10000 949 28.64° 24.23° 0.93 0.07 0.37

12000 1133 28.19° 23.96° 0.93 0.07 0.37

14000 1509 29.12° 24.78° 0.93 0.07 0.39

16000 1471 29.19° 24.44° 0.93 0.07 0.39

18000 1617 29.37° 24.62° 0.93 0.07 0.39
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A.3 R-Codes

Figure 4: Value depends on choice of origin and sense of orientation

a <- seq(0,2*pi, length.out=100)

plot(cos(a),sin(a),xlim=c(-1,1),ylim=c(-1,1),type="l",lwd=2,xlab="",ylab="",axes=FALSE,asp=1)

arrows(0, 0, cos(pi/3), sin(pi/3), cex=1.1)

points(0,1, pch=3); points(1,0, pch=3); points(0,-1, pch=3); points(-1,0, pch=3)

text(0,0.9, "North", cex=1.75); text(0.85,0,"East",cex=1.75)

text(0,-0.9, "South", cex=1.75); text(-0.85,0,"West",cex=1.75)

legend(0.4, 1, "30° or 60°?", bty = "n", cex=1.75)

Figure 5: Orientations of 76 turtles

library(CircNNTSR) # An R package for the statistical analysis of circular data

data(turtles_radians) # Directions of turtles in radians

library(CircStats) # An R package needed to plot a circular raw data plot

par(mar=c(1.0, 1.5, 1.5, 1.5))

# Circular raw data plots:

circ.plot(turtles_radians, shrink=1.2)

legend(-0.225,-1.1, "(a)", bty = "n", cex=1.5)

circ.plot(turtles_radians, stack=TRUE, bins=120, shrink=1.2, dotsep=20)

legend(-0.225,-1.1, "(b)", bty = "n", cex=1.5)

Figure 6: Arithmetic mean of two directions

a <- seq(0,2*pi, length.out=100)

plot(cos(a),sin(a),xlim=c(-1.15,1.15),ylim=c(-1.15,1.15),type="l",lwd=2,xlab="",ylab="",axes=FALSE,asp=1)

arrows(0, 0, cos(pi/12), sin(pi/12), cex=1.1, lwd=2) # 15°
arrows(0, 0, cos(pi*23/12), sin(pi*23/12), cex=1.1, lwd=2) # 345°
arrows(0, 0, cos(pi), sin(pi), cex=1.1, lty=5) # 180°
text(1.1,0.3, "15°", cex=1.5)

text(1.15,-0.3, "345°", cex=1.5)

text(-1.15,0, "180°", cex=1.5)

Figures 7 and 8: Three directions

# 1. plot: showing three arrows (=directions)

# -------------------------------------------

a <- seq(0,2*pi, length.out=100)

plot(cos(a),sin(a),xlim=c(-1,1),ylim=c(-1,1),type="n",lwd=2,xlab="",ylab="",axes=FALSE,asp=1)

arrows(-0.5, 0, -0.5+cos(pi/4), sin(pi/4), cex=1.1, col=3) # North-East

arrows(-0.5, 0, -0.5+cos(7*pi/4), sin(7*pi/4), cex=1.1, col=4) # South-East

arrows(-0.5, 0, 0.5, 0, cex=1.1, col=8) # East

text(0.5,0.75, "North-East", cex=1.5); text(0.5,-0.75, "South-East", cex=1.5); text(0.65,0, "East", cex=1.5)

box()

# 2. plot: vector addition

# -------------------------------------------
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a <- seq(0,2*pi, length.out=100)

plot(cos(a),sin(a),xlim=c(-1,1),ylim=c(-1,1),type="n",lwd=2,xlab="",ylab="",axes=FALSE,asp=1)

arrows(-1, 0, -0.5, 0.5, cex=1.1, lwd=1.5, col=3)

arrows(-0.5, 0.5, -0.5+sqrt(0.5), 0.5, cex=1.1, lwd=1.5, col=8)

arrows(-0.5+sqrt(1/2), 0.5, sqrt(0.5), 0, cex=1.1, lwd=1.5, col=4)

arrows(-1, 0, sqrt(0.5), 0, cex=1.1, lty=2, lwd=2.5, col=2)

text(0.5,-0.4, "resultant vector", cex=1.5, col=2)

arrows(0.4, -0.35, 0.4, -0.05, cex=0.25, length=0.1)

box()

# 3. plot: mean vector

# -------------------------------------------

a <- seq(0,2*pi, length.out=100)

plot(cos(a),sin(a),xlim=c(-1,1),ylim=c(-1,1),type="n",lwd=2,xlab="",ylab="",axes=FALSE,asp=1)

arrows(-1, 0, -0.5, 0.5, cex=1.1, lwd=1.5, col=3)

arrows(-0.5, 0.5, -0.5+sqrt(0.5), 0.5, cex=1.1, lwd=1.5, col=8)

arrows(-0.5+sqrt(1/2), 0.5, sqrt(0.5), 0, cex=1.1, lwd=1.5, col=4)

arrows(-1, 0, sqrt(0.5), 0, cex=1.1, lty=2, col=9)

arrows(-1, 0, -1+((1+sqrt(0.5))/3), 0, cex=1.1, lwd=2.5, col=2)

text(-0.75,-0.4, "mean vector", cex=1.5, col=2)

arrows(-0.75, -0.35, -0.75, -0.05, cex=0.25, length=0.1)

box()

# 4. plot: three directions plus mean vector

# -------------------------------------------

a <- seq(0,2*pi, length.out=100)

plot(cos(a),sin(a),xlim=c(-1,1),ylim=c(-1,1),type="l",lwd=2,xlab="",ylab="",axes=FALSE,asp=1)

arrows(0, 0, cos(pi/4), sin(pi/4), cex=1.1, col=3) # North-East

arrows(0, 0, cos(7*pi/4), sin(7*pi/4), cex=1.1, col=4) # South-East

arrows(0, 0, 1, 0, cex=1.1, col=8) # East

text(0.775,0.75, "45°", cex=1.25); text(0.75,-0.775, "315°", cex=1.25); text(1.05,0, "0°", cex=1.25)

arrows(0, 0, ((1+2*cos(pi/4))/3), 0, cex=1.1, lwd=3.5, col=2)

box()

Figure 9: Relation between Cartesian and polar coordinates

a <- seq(0,2*pi, length.out=100)

plot(cos(a),sin(a),xlim=c(-1,1),ylim=c(-1,1),type="l",lwd=2,xlab="x",ylab="y",asp=1,cex.lab=1.5,cex.axis=1.5)

abline(h=0, lty=3); abline(v=0, lty=3)

points(cos(pi/6), sin(pi/6), pch=19)

arrows(0, 0, cos(pi/6), sin(pi/6), lwd=2.5, length=0, col="green")

text(0.45,0.35, expression(r), cex=1.75, col="green")

arrows(cos(pi/6), 0, cos(pi/6), sin(pi/6), lwd=2.5, length=0, col="brown")

text(0.8,0.2, expression(y), cex=1.75, col="brown")

arrows(0, 0, cos(pi/6), 0, lwd=2.5, length=0, col="blue")

text(0.45,-0.1, expression(x), cex=1.75, col="blue")

text(0.25,0.075, expression(theta), cex=1.75)

text(1,0.6, expression(’(x, y)’), cex=1.5)

text(1.025,0.475, expression(paste(’(r, ’, theta, ’)’)), cex=1.5)
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Plotting rose diagrams

### ------------------------------------------------------------------------------------------

### GRAPHICAL REPRESENTATION

### Function that plots rose diagram with angles in [0°, 90°]:
### ------------------------------------------------------------------------------------------

library(CircStats) # package needed to plot circular raw data plot and rose diagram

graph.rep <- function(X, lc, min.l, max.l, bin.rose)

# Input: X ... 6xK matrix (containing length, size, x-/y-coordinates per load cycle),

# lc ... number of load cycles

# min.l ... minimum length of cracks to be included in analysis

# max.l ... maximum length of cracks to be included in analysis

# bin.rose ... number of bins in rose diagram

{

X <- X[,X["length",]>=min.l] # only cracks with length >= min.l

X <- X[,X["length",]<=max.l] # only cracks with length >= max.l

n <- length(X["length",]) # number of cracks with min.l <= length <= max.l

print(c("Number of cracks: ", n))

diff.x <- X["End_x",] - X["Begin_x",] # difference x-coordinates

diff.y <- X["End_y",] - X["Begin_y",] # difference y-coordinates

diff.coord <- cbind(diff.x, diff.y) # combining diff.x & diff.y in one vector

### -----------------

### Calculate angles:

### -----------------

# RADIANS:

radian <- numeric(n) # empty vector to store radians

for (i in (1:n)) {

if (diff.x[i]==0 & diff.y[i]==0){radian[i] <- 0} # if x- and y-coordinate = 0 ---> radian=0

else{radian[i] <- acos(diff.x[i]/sqrt(diff.x[i]^2+diff.y[i]^2))} } # cos(theta) = adj/hyp

for (i in (1:n)) # if angle is between pi/2 & pi, "reduce" it to be between 0 & pi/2

# by reflecting it along the y-axis

{ if (radian[i]>pi/2){radian[i] <- radian[i]-2*(radian[i]-pi/2)} }

par(mar=c(0.0, 0.0, 3.0, 1.0)) # margins of the plot

### -------------

### ROSE DIAGRAM:

### -------------

rose.diag(radian, bins=bin.rose, main="Specimen 31", shrink=1.1)

legend("bottomleft", cex=1.25, bty = "n", paste("load cycles = ", lc))

# legend("bottomright", cex=1.25, bty = "n", paste("length >= ", min.l))

legend("bottomright", cex=1.25, bty = "n", paste(min.l, " <= length <= ", max.l))

}
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Calculating the measures of location and dispersion

### -----------------------------------------------------------------------------------------

### DESCRIPTIVE STATISTICS

### Function that calculates and prints summary statistics:

### -----------------------------------------------------------------------------------------

descr.summ.s31 <- function(X, min.l, max.l)

# Input: X ... 6xK matrix (containing length, size, x-/y-coordinates per load cycle),

# min.l ... minimum length of cracks to be included in analysis

# max.l ... maximum length of cracks to be included in analysis

{

X <- X[,X["length",]>=min.l]

X <- X[,X["length",]<=max.l]

n <- length(X[1,])

print(c("Number of cracks: ", n))

print(c("Max. length: ", round(max(X[1,]),2)))

diff.x <- X["End_x",] - X["Begin_x",]; diff.y <- X["End_y",] - X["Begin_y",]

diff.coord <- cbind(diff.x, diff.y)

### -----------------

### Calculate angles:

### -----------------

# RADIANS:

radian <- numeric(n) # empty vector to store radians

for (i in (1:n)) {

if (diff.x[i]==0 & diff.y[i]==0){radian[i] <- 0} # if x- and y-coordinate = 0 ---> radian=0

else{radian[i] <- acos(diff.x[i]/sqrt(diff.x[i]^2+diff.y[i]^2))} } # cos(theta) = adj/hyp

for (i in (1:n)) # if angle is between pi/2 & pi, "reduce" it to be between 0 & pi/2

# by reflecting it along the y-axis

{ if (radian[i]>pi/2){radian[i] <- radian[i]-2*(radian[i]-pi/2)} }

# Convert to DEGREES:

degree <- radian*180/pi

### ---------------------------------------------------

### MEASURES OF LOCATION, CONCENTRATION AND DISPERSION:

### ---------------------------------------------------

# Cartesian coordinates of center of mass:

C.bar <- mean(cos(radian))

S.bar <- mean(sin(radian))

# Mean resultant length:

R.bar <- sqrt(C.bar^2 + S.bar^2)

# Mean direction:

C <- n*C.bar

S <- n*S.bar

if(C>0 & S>=0){theta.bar <- atan(S/C)}

if(C<0){theta.bar <- atan(S/C)+pi}
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if(C>=0 & S<0){theta.bar <- atan(S/C)+2*pi}

if(C==0 & S>0){theta.bar <- pi/2}

if(C==0 & S==0){theta.bar <- NA}

# Median direction:

theta.tilde <- median(radian)

theta.tilde*180/pi

# Resultant length:

R <- n*R.bar

# Circular variance:

V <- 1-R.bar

# Circular range:

rad.sort <- sort(radian) # sort angles in ascending order

T.i <- c(rad.sort[2:n]-rad.sort[1:(n-1)],2*pi+rad.sort[1]-rad.sort[n])

w <- (2*pi-max(T.i))*180/pi

# Circular standard deviation:

v <- sqrt(-2*log(R.bar))

### ------------------

### Print information:

### ------------------

print(c("Mean resultant length:", round(R.bar, 2)))

print(c("Mean direction:", round(theta.bar, 2), round(theta.bar*180/pi, 2)))

print(c("Median direction:", round(theta.tilde, 2), round(theta.tilde*180/pi, 2)))

print(c("Circular variance:", round(V, 2)))

print(c("Circular standard deviation:", round(v, 2)))

}

Figure 23: Circular mean directions and 95% Wilcoxon confidence intervals

for each specimen

# function to calculate and plot 95% Wilcoxon confidence intervals:

# -----------------------------------------------------------------

‘wilcox.compare‘ <- function (x, y)

# Input:

# x ... list of orientations of the cracks present per time point in Specimen 10

# y ... list of orientations of the cracks present per time point in Specimen 31

{

xL <- length(x) # 29 time points for Specimen 10

yL <- length(y) # 15 time points for Specimen 31

xwilcox <- NULL

ywilcox <- NULL

for(i in 1:xL){

xwilcox <- cbind(xwilcox,wilcox.test(x[[i]],conf.int=T)$conf.int) }

for(i in 1:yL){

ywilcox <- cbind(ywilcox,wilcox.test(y[[i]],conf.int=T)$conf.int) }

plot(-1,0,ylim=c(min(c(xwilcox[1,],ywilcox[1,])),

max(c(xwilcox[2,],ywilcox[2,])+5)),xlim=c(1,19),

ylab="Mean direction (in degrees)",xlab="Number of load cycles (x 1000)", , xaxt = "n")
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axis(1, at=c(1:19), label=c(0:18))

t.s10 <- c(1:19)

segments(t.s10,xwilcox[1,],t.s10,xwilcox[2,], col="lightslategray")

t.s31 <- c(1:11, 13, 15, 17, 19)

segments(t.s31+0.1,ywilcox[1,],t.s31+0.1,ywilcox[2,], lty=1)

}

wilcox.compare(x[1:19], y)

points(mean.s10[1:19], pch=21, bg="grey85"); points(mean.s31, pch=16)

legend("top", c("Specimen 10", "Specimen 31"), pch=c(21,16), pt.bg=c("grey85", "black"),

col=c("lightslategray", "black"), lty=c(1,1))

Table 13: P-values of the two-sample Wilcoxon test

p.values <- NULL

for(i in c(1:11)){ p.values[i] <- wilcox.test(x[[i]], y[[i]], paired=FALSE)$p.value}

p.values[12] <- wilcox.test(x[[13]], y[[12]], paired=FALSE)$p.value

p.values[13] <- wilcox.test(x[[15]], y[[13]], paired=FALSE)$p.value

p.values[14] <- wilcox.test(x[[17]], y[[14]], paired=FALSE)$p.value

p.values[15] <- wilcox.test(x[[19]], y[[15]], paired=FALSE)$p.value

round(p.values, 4)
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Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine an-
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